Isobutane Dehydrogenation on CrOx/Al2O3 Nanoparticles, Prepared by Laser Synthesis in Various Gases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The catalytic properties of nCrOx/Al2O3 nanoparticles (n = 4.8 ± 0.05 wt %) tested in the isobutane dehydrogenation reaction which were obtained by laser synthesis in various gases are studied in detail for the first time. Laser synthesis of 4.8% CrOx/Al2O3 nanopowders was carried out by the vaporization of 5.0% Cr : α-Al2O3 ceramic targets using cw CO2 laser irradiation in an inert, oxidizing and reducing gaseous environment in a vaporization chamber: in an Ar medium; Ar with addition of O2, H2 and CH4 at concentrations of 20, 30, and 13 vol. %, respectively. The role of the gas medium during the synthesis of 4.8% CrOx/Al2O3 nanopowders in their catalytic properties (activity, selectivity, conversion, and stability in the reaction) was determined. A comprehensive study of the physicochemical properties of the obtained nanocatalysts was carried out using XRD, TEM, UV-Vis DRS, and Raman techniques. According to XRD data the phase composition is predominantly consists of γ-Al2O3 with the beginning of the transition to δ-Al2O3. According to the TEM results, the shape of nanoparticles is spherically symmetric with an average particle size dm = 15 nm. Using the UV-Vis DRS method, charge states of Crq+ (q = 3, 6) in different coordination (Cr6+(Td) and Cr3+(Oh)) and its different ratios depending on the gas atmosphere used in the process of laser vaporization were revealed in the obtained 4.8% CrOx/Al2O3 nanopowders. Nanosized 4.8% CrOx/Al2O3 catalyst prepared in an atmosphere (Ar + H2) demonstrated the highest values of isobutane conversion (39%) and isobutylene selectivity (90.7%); the lowest corresponding values of conversion (18.8%) and selectivity (85.6%) were typical for the sample obtained in the atmosphere (Ar + CH4). Thus, the most active and selective in the isobutane dehydrogenation reaction was the 4.8% CrOx/Al2O3 nanocatalyst synthesized in the (Ar + H2) medium, and the presence of methane during vaporization led to the initial surface carbonization, which prevents the access of reacting molecules to it.

About the authors

M. G. Baronskiy

Boreskov Institute of Catalysis, Siberian Branch of Russian Academy
of Science

Author for correspondence.
Email: baronskiymg@mail.ru
Russia, 630090, Novosibirsk, Ave. Akad. Lavrentyeva, 5

N. A. Zaitseva

Boreskov Institute of Catalysis, Siberian Branch of Russian Academy
of Science

Email: snyt@catalysis.ru
Russia, 630090, Novosibirsk, Ave. Akad. Lavrentyeva, 5

A. I. Kostyukov

Boreskov Institute of Catalysis, Siberian Branch of Russian Academy
of Science

Email: snyt@catalysis.ru
Russia, 630090, Novosibirsk, Ave. Akad. Lavrentyeva, 5

A. V. Zhuzhgov

Boreskov Institute of Catalysis, Siberian Branch of Russian Academy
of Science

Email: snyt@catalysis.ru
Russia, 630090, Novosibirsk, Ave. Akad. Lavrentyeva, 5

V. N. Snytnikov

Boreskov Institute of Catalysis, Siberian Branch of Russian Academy
of Science

Author for correspondence.
Email: snyt@catalysis.ru
Russia, 630090, Novosibirsk, Ave. Akad. Lavrentyeva, 5

References

  1. Sattler J.J.H.B., Ruiz-Martinez J., Santillan-Jimenez E., Weckhuysen B.M. // Chem. Rev. 2014. V. 114. № 20. P. 10613.
  2. Fridman V.Z. // Appl. Catal. A: Gen. 2010. V. 382. № 2. P. 139.
  3. Немыкина Е.И., Пахомов Н.А., Данилевич В.В., Pогов В.А., Зайковский В.И., Ларина Т.В., Молчанов В.В. // Кинетика и катализ. 2010. Т. 51. № 6. С. 929.
  4. Пахомов Н.А. // Промышленный катализ в лекциях. 2006. № 6. С. 53.
  5. Sanfilippo D., Miracca I. // Catal. Today. 2006. V. 111. I. 1–2. P. 13.
  6. Пахомов Н.А., Парахин О.А., Немыкина Е.И., Данилевич В.В., Чернов М.П., Печериченко В.А. // Катализ в промышленности. № 3. 2012. С. 65.
  7. Байрамгулова Р.И., Трапезникова Е.Ф. // Сетевое издание “Нефтегазовое дело”. 2019. № 4. С. 173.
  8. Болдырева Н.Н., Чесноков В.В., Довлитова Л.С., Чичкань А.С. // Кинетика и катализ. 2020. Т. 61. № 3. С. 436.
  9. Bellussi G., Bohnet M., Bus J., Drauz K., Greim H., Klaus-Peter J., Karst U., Kleemann A., Kreysa G., Laird T., Meier W., Ottow E., Röper M., Scholtz J., Sundmacher K., Ulber R., Wietelmann U. Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2011.
  10. Sangalov Yu.A., Minsker K.S., Zaikov G.E. Polymers Derived from Isobutylene. Synthesis, Properties, Application (New Concepts in Polymer Science). CRC Press, 2001, 386 p.
  11. Fridman V.Z., Xing R. // Appl. Catal. A: Gen. 2017. V. 530. P. 154.
  12. Петров И.Я., Трясунов Б.Г. // Вестник КузГТУ. 2008. № 6. С. 50.
  13. Петров И.Я., Трясунов Б.Г. // Вестник КузГТУ. 2009. № 3. С. 49.
  14. Airaksinen S.M.K., Krause A.O.I., Sainio J., Lahtinen J., Chao K., Guerrero-Perez M.O., Banares M.A. // Phys. Chem. Chem. Phys. 2003. V. 5. P. 4371.
  15. Nazimov D.A., Klimov O.V., Trukhan S.N., Cherepanova S.V., Prosvirin I.P., Noskov A.S. // Energy Technol. 2019. V. 7. P. 1800735.
  16. Baronskiy M.G., Kostyukov A.I., Larina T.V., Snytnikov V.N. // Mat. Chem. Phys. 2019. V. 234. P. 403.
  17. Kostyukov A.I., Baronskiy M.G., Larina T.V., Snytnikov Vl.N., Zaitseva N.A., Pochtar A.A., Ishchenko A.V., Cherepanova S.V., Snytnikov V.N. // Mater. Charact. 2020. V. 169. P. 110664.
  18. Baronskiy M.G., Kostyukov A.I., Snytnikov V.N. // J. Phys.: Conf. Ser. 2021. V. 2067. P. 012007.
  19. Kostyukov A.I., Zaitseva N.A., Baronskiy M.G., Nashivochnikov A.A., Snytnikov V.N. // J. Nanopart. Res. 2022. V. 24. P. 144.
  20. Kurland H.-D., Grabow J., Muller F.A. // J. Eur. Ceram. Soc. 2011. V. 31. P. 2559.
  21. Müller L., Hornig P., Grabow J., Müller F.A. // Nanoscale Adv. 2022. V. 4. P. 182.
  22. Kostyukov A.I., Snytnikov Vl.N., Yelisseyev A.P., Zhuzhgov A.V., Kostyukova N.Y., Ishchenko A.V., Cherepanova S.V., Snytnikov V.N. // Adv. Powder Technol. 2021. V. 32. P. 2733.
  23. Kostyukov A.I., Nashivochnikov A.A., Snytnikov Vl.N., Rakhmanova M.I., Snytnikov V.N. // Quantum Electron. 2022. V. 52. P. 149.
  24. Kostyukov A.I., Snytnikov V.N., Snytnikov Vl.N., Ishchenko A.V., Rakhmanova M.I., Krylov A.S., Aleksandrovsky A.S. // Opt. Mater. 2020. V. 104. P. 109843.
  25. Тюряев И.Я. Физико-химические и технологические основы получения дивинила из бутана. Москва, Ленинград: Химия, 1980. 182 с.
  26. Hakuli A., Kytökivi A., Krause A.O.I., Suntolay T. // J. Catal. 1996. V. 161. P. 393.
  27. De Rossi S., Ferraris G., Fremiotti S., Indovina V., Cimino A. // Appl. Catal. 1993. V. 106. P. 125.
  28. Airaksinen S.M.K., Krause A.O.I. // Ind. Eng. Chem. Res. 2005. V. 44. P. 3862.
  29. Airaksinen S.M.K., Krause A.O.I., Sainio J., Lahtinen J., Chao K., Guerrero-Pérezd M.O., Banãres M.A. // Phys. Chem. Chem. Phys. 2003. V. 5. P. 4371.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (177KB)
3.

Download (1MB)
4.

Download (120KB)
5.

Download (113KB)
6.

Download (137KB)
7.

Download (66KB)