Influence of iron content in palladium catalysts supported on alumina and their reduction conditions on the hydrodechlorination of diclofenac in aqueous solutions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using the method of wet impregnation of alumina with iron and palladium nitrates, 1Pd0.5Fe and 1Pd10Fe catalysts modified with iron oxides were prepared with a target content of 1 wt % Pd, 0.5 or 10 wt % iron. The catalysts were compared with each other and with the monometallic catalyst 1Pd in the hydrodechlorination (HDC) of diclofenac (DCF) in dilute aqueous solutions at 30°C in batch and flow reactors after high-temperature (320°C) and mild (30°C) reduction; the latter was carried out in a batch or flow reactor. Using X-ray photoelectron spectroscopy (XPS), it was shown that after reduction at 320°C the surface of catalysts contains mainly Pd0, Fe2+ and Fe3+. The surface Fe2+/Fe3+ ratio increases as the iron content decreases. The reduction of Pd2+ to Pd0 is possible already at 30°C, but it proceeds much worse on the surface of 1Pd0.5Fe compared to 1Pd10Fe. According to XPS data, temperature-programmed reduction and infrared spectroscopy of diffuse reflection of adsorbed CO, modification with iron oxides increases the palladium content on the surface compared to 1Pd, promotes the emergence of new Pd–O–Fe centers, and affects the ability of palladium to be reduced. These effects increase with increasing iron content. Iron-modified catalysts reduced at 320°C showed similar activity and stability in the conversion of DCP in flow-through and batch systems. Unlike 1Pd0.5Fe, the 1Pd10Fe catalyst is highly efficient and stable even after mild reduction at 30°C. Under flow conditions with comparable DCF conversion, it provides increased selectivity in the HDC reaction of diclofenac compared to 1Pd, which is also active in hydrogenation.

Full Text

Restricted Access

About the authors

E. S. Lokteva

Lomonosov Moscow State University

Author for correspondence.
Email: LES@kge.msu.ru

Chemistry Department

Russian Federation, Leninskie Gory, 1, building 3, Moscow, 119991

M. D. Pesotskiy

Lomonosov Moscow State University

Email: LES@kge.msu.ru

Chemistry Department

Russian Federation, Leninskie Gory, 1, building 3, Moscow, 119991

E. V. Golubina

Lomonosov Moscow State University

Email: LES@kge.msu.ru

Chemistry Department

Russian Federation, Leninskie Gory, 1, building 3, Moscow, 119991

K. I. Maslako

Lomonosov Moscow State University

Email: LES@kge.msu.ru

Chemistry Department

Russian Federation, Leninskie Gory, 1, building 3, Moscow, 119991

A. N. Kharlanov

Lomonosov Moscow State University

Email: LES@kge.msu.ru

Chemistry Department

Russian Federation, Leninskie Gory, 1, building 3, Moscow, 119991

V. V. Shishova

Lomonosov Moscow State University

Email: LES@kge.msu.ru

Chemistry Department

Russian Federation, Leninskie Gory, 1, building 3, Moscow, 119991

I. Yu. Kaplin

Lomonosov Moscow State University

Email: LES@kge.msu.ru

Chemistry Department

Russian Federation, Leninskie Gory, 1, building 3, Moscow, 119991

S. V. Maksimov

Lomonosov Moscow State University

Email: LES@kge.msu.ru

Chemistry Department

Russian Federation, Leninskie Gory, 1, building 3, Moscow, 119991

References

  1. Xu S., Zhou S., Xing L., Shi P., Shi W., Zhou Q., Pan Y., Song M.-Y., Li A. // Sci. Total Environ. 2019. V. 682. P. 756.
  2. Zhao J., Wang Q., Fu Y., Peng B., Zhou G. // Environ. Sci. Pollut. Res. 2018. V. 25. P. 22998.
  3. Umbreen N., Sohni S., Ahmad I., Khattak N.U., Gul K. // J. Colloid Interface Sci. 2018. V. 527. P. 356.
  4. Gros M., Petrović M., Barceló D. // Environ. Tox. Chem. 2007. V. 26. P. 1553.
  5. Dobrin D., Bradu C., Magureanu M., Mandache N.B., Pârvulescu V.I. // Chem. Eng. J. 2013. V. 234. P. 389.
  6. Lokteva E., Golubina E., Likholobov V., Lunin V., Disposal of Chlorine-Containing Wastes / In: Chemistry Beyond Chlorine, Springer International Publishing. Eds. P. Tundo, L.-N. He, E. Lokteva and C. Mota, Cham, 2016. 559 p. https://doi.org/10.1007/978-3-319-30073-3_21
  7. Munoz M., Mora F.J., de Pedro Z.M., Alvarez-Torrellas S., Casas J.A., Rodriguez J.J. // J. Hazard. Mater. 2017. V. 331. P. 45.
  8. Nieto-Sandoval J., Munoz M., de Pedro Z.M., Casas J.A. // J. Hazard. Mater. Adv. 2022. V. 5. P. 100047.
  9. Lokteva E.S., Shishova V.V., Maslakov K.I., Golubina E.V., Kharlanov A.N., Rodin I.A., Vokuev M.F., Filimonov D.S., Tolkachev N.N. // Appl. Surf. Sci. 2023. V. 613. P. 156022.
  10. Wu K., Qian X., Chen L., Xu Z., Zheng S., Zhu D. // RSC Adv. 2015. V. 5. P. 18702.
  11. Nieto-Sandoval J., Munoz M., de Pedro Z.M., Casas J.A. // Chemosphere. 2018. V. 213. P. 141.
  12. Zhou T., Li Y., Lim T.-T. // Separ. Purif. Technol. 2010. V. 76. P. 206.
  13. Liu M., Huang R., Li C., Che M., Su R., Li S., Yu J., Qi W., He Z. // Chem. Eng. Sci. 2019. V. 201. P. 121.
  14. Witońska I.A., Walock M.J., Binczarski M., Lesiak M., Stanishevsky A.V., Karski S. // J. Mol. Catal. A: Chem. 2014. V. 393. P. 248.
  15. Zhang L., Meng Z., Zang S. // J. Environ. Sci. 2015. V. 31. P. 194.
  16. Lokteva E.S., Shishova V.V., Tolkachev N.N., Maslakov K.I., Kamaev A.O., Maksimov S.V., Golubina E.V. // Mendeleev Commun. 2022. V. 32. P. 249.
  17. Silva J.M., Araújo J.F.D.F., Brocchi E., Solórzano I.G. // Ceram. Int. 2020. V. 46. P. 19052.
  18. Th P., Zimmermann R., Steiner P., Hüfner S. // J. Phys. Condens. Matter. 1997. V. 9. P. 3987.
  19. Amoyal M., Vidruk-Nehemya R., Landau M.V., Herskowitz M. // J. Catal. 2017. V. 348. P. 29.
  20. Armenta M.A., Maytorena V.M., Flores-Sánchez L.A., Quintana J.M., Valdez R., Olivas A. // Fuel. 2020. V. 280. P. 118545.
  21. Tian Z., Zhang W., Liu T., Liu J., Wang C., Lei L., Liao M., Wang C., Chen Y. // Int. J. Hydrogen Energy. 2022. V. 47. P. 41468.
  22. Han X., Qing M., Wang H., Yu X., Suo H.-Y., Shen X.-F., Yang Y., Li Y.-W. // J. Fuel Chem. Technol. 2023. V. 51. P. 155.
  23. Lu Z.-Y., Muir D.M. // Hydrometallurgy. 1988. V. 21. P. 9.
  24. Tao F., Dag S., Wang L.-W., Liu Z., Butcher D.R., Bluhm H., Salmeron M., Somorjai G.A. // Science. 2010. V. 327. P. 850.
  25. Boudart M., Hwang H.S. // J. Catal. 1975. V. 39. P. 44.
  26. Babu N.S., Lingaiah N., Kumar J.V., Prasad P.S.S. // Appl. Catal. A: Gen. 2009. V. 367. P. 70.
  27. Lieltz G., Nimz M., Völter J., Läzär K., Guczi L. // Appl. Catal. 1988. V. 45. P. 71.
  28. Berry F.J., Changhai X., Jobson S. // J. Chem. Soc. Faraday Trans. 1990. V. 86. P. 165.
  29. Arnoldy P., Moulijn J.A. // J. Catal. 1985. V. 93. P. 38.
  30. Arnoldy P., van Oers E.M., Bruinsma O.S.L., de Beer V.H.J., Moulijn J.A. // J. Catal. 1985. V. 93. P. 231.
  31. Sepúlveda J.H., Fígoli N.S. // Appl. Surf. Sci. 1993. V. 68. P. 257.
  32. Pino N., Sitthisa S., Tan Q., Souza T., López D., Resasco D.E. // J. Catal. 2017. V. 350. P. 30.
  33. Liu W., Ismail M., Dunstan M.T., Hu W., Zhang Z., Fennell P.S., Scott S.A., Dennis J.S. // RSC Adv. 2015. V. 5. P. 1759.
  34. Tataroğlu A., Al-Ghamdi A.A., El-Tantawy F., Farooq W.A., Yakuphanoğlu F. // Appl. Phys. A. 2016. V. 122. P. 220.
  35. Jastrzębska I., Szczerba J., Błachowski A., Stoch P. // Eur. J. Mineral. 2017. V. 29. P. 62.
  36. Yewale A.D., Kherdekar P.V., Bhatia D. // Chem. Eng. Sci. 2022. V. 249. P. 117281.
  37. Kamada T., Ueda T., Fukuura S., Yumura T., Hosokawa S., Tanaka T., Kan D., Shimakawa Y. // J. Am. Chem. Soc. 2023. V. 145. P. 1631.
  38. Schwertmann U. // Plant and Soil. 1991. V. 130. P. 1.
  39. Sidhu P.S., Gilkes R.J., Cornell R.M., Posner A.M., Quirk J.P. // Clays and Clay Minerals. 1981. V. 29. P. 269
  40. Kolev N.I. Solubility of O2, N2, H2 and CO2 in water / In: Multiphase Flow Dynamics 4: Turbulence, Gas Adsorption and Release, Diesel Fuel Properties. Ed. N.I. Kolev. Berlin, Heidelberg: Springer, 2012.209 р. https://doi.org/10.1007/978-3-642-20749-5_11

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1. Diclofenac HDC scheme.

Download (198KB)
3. Fig. 1. HDC of diclofenac in a batch reactor in the presence of 1Pd0.5Fe. The dotted line shows the data for 1Pd0.5Fe(30), the solid line – for 1Pd0.5Fe(320).

Download (190KB)
4. Fig. 2. HDC of DKF at 30°C in an aqueous medium in a batch reactor in the presence of palladium-iron catalysts on aluminum oxide, unreduced (no) and after preliminary reduction, the temperature of which is indicated in brackets. CO(DKF) – 150 mg/l, H2 feed rate – 0.6 l/h.

Download (167KB)
5. Fig. 3. HDC of DKF at 30°C in an aqueous medium in a flow reactor in the presence of catalysts on aluminum oxide: a – reduced at 320°C, b – reduced at 30°C directly in the reactor. Reaction conditions: C0(DKF) = 75 mg/l, mixture feed rate – 42 ml/h, H2 – 0.6 l/h, catalyst loading – 0.1 g.

Download (308KB)
6. Fig. 4. Diffraction patterns of unreduced samples.

Download (655KB)
7. Fig. 5. SEM image of the 1Pd0.5Fe catalyst (a) and distribution maps of Pd (b) and Fe (c) obtained by the EDA method.

Download (725KB)
8. Fig. 6. TEM micrographs of the 1Pd0.5Fe catalyst in bright (a) and dark (b, c, e) fields, maps of the distribution of palladium (g) and iron (e) on the surface, EDA results (h) in the 007 region shown in the image (g).

Download (1MB)
9. Fig. 7. High-resolution XPS spectra: Pd3d (a) and Fe2p (b) before and after catalyst reduction; Pd3d (c) and Cl2p (d) of 1Pd(30f) and 1Pd10Fe(30f) catalysts after catalytic testing in a flow system.

Download (1003KB)
10. Fig. 8. IR DO spectra of CO adsorbed on catalysts at room temperature and a CO pressure of 50 Torr, after heat treatment in vacuum at 550°C and subsequent reductive treatment with H2 at 320°C for 1 h. F(R) is the Kubelka–Munk function. The intensity of the 1Pd10Fe(320) spectrum is reduced by 3 times.

Download (237KB)
11. Fig. 9. TPV profiles of bimetallic (1Pd10Fe and 1Pd0.5Fe) and monometallic (1Pd and 10Fe) catalysts.

Download (296KB)
12. Fig. 10. Surface structure of palladium-containing catalysts after mild and high-temperature reduction.

Download (404KB)