Quantum chemical study of the stereochemistry of double bond migration in 2-vinylnorbornane on palladium surface

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Quantum-chemical modeling of the mechanism of isomerization of endo/exo-isomers of 2-vinylnorbornane (VNB) into Z/E-isomers of 2-ethylidene-norbornane (ENB) has been carried out using the DFT-PBE method. For each isomerization reaction, two 4-step routes including VNB adsorption, ENB desorption, and H atom detachment and attachment steps, the sequence of which depends on the type of route, have been considered. In the “allylic” route, the H atom is first cleaved off, leading to the formation of the allylic intermediate (C7H10)·CHCH2. In the “ethylidene” route, the H atom is initially attached to the terminal C atom, forming the ethylidene intermediate C7H11C·HCH3. According to calculations, an allyl intermediate is formed from adsorbed VNB with a small activation barrier, which binds strongly to the surface. The observed activation energy of almost all routes considered is determined by the energy of this intermediate. In the absence of hydrogen, the allylic intermediates will deactivate the active centers of the catalyst. The experimentally observed stereoselectivity is determined by a thermodynamic factor, namely the relative energy difference between the adsorbed endo/exo-isomers of VNB* and the desorbed Z/E-isomers of ENB. The formed E-ENB from endo-VNB and Z-ENB from exo-VNB have moderate adsorption energies and their desorption is found to be thermodynamically favorable.

About the authors

R. S. Shamsiev

MIREA–Russian Technological University

Author for correspondence.
Email: shamsiev.r@gmail.com

Lomonosov Institute of Fine Chemical Technologies

Russian Federation, 86 Vernadsky Ave., Moscow, 119571

V. R. Flid

MIREA–Russian Technological University

Email: shamsiev.r@gmail.com

Lomonosov Institute of Fine Chemical Technologies

Russian Federation, 86 Vernadsky Ave., Moscow, 119571

References

  1. Беликова Н.А., Каргин В.А., Платэ А.Ф., Платэ Н.А., Тайц Г.С, Лямина И.Н. // Нефтехимия. 1961. Т. 1. С. 218.
  2. Осокин Ю.Г. // Нефтехимия. 2007. Т. 47. № 1. С. 3. (Osokin Y.G. // Petrol. Chem. 2007. V. 47. № 1. P. 1.)
  3. Шорунов С.В., Пискунова Е.С., Петров В.А., Быков В.И., Бермешев М.В. // Нефтехимия. 2018. Т. 58. № 6. С. 712. (Shorunov S.V., Piskunova E.S., Petrov V.A., Bykov V.I., Bermeshev M.V. // Petrol. Chem. 2018. V. 58. № 12. P. 1056.)
  4. Ушаков Н.В. // Журнал прикладной химии. 2018. Т. 91. № 5. С. 631. (Ushakov N.V. // Russ. J. Appl. Chem. 2018. V. 91. № 5. P. 728.)
  5. Осокин Ю.Г., Михайлов В.А., Зубович И.А., Фельдблюм В.Ш. // Докл. АН СССР. 1975. Т. 220. № 4. С. 851.
  6. Osokin Yu.G., Grinberg M.Yu., Feldblyum V.Sh., Yastinskii O.A., Plachtinskii V.V., Kofanov E.R., Ustinov V.A., Mironov G.S. // React. Kinet. Catal. Lett. 1978. V. 9. № 2. P. 189.
  7. Kovács J., Speier G., Markó L. // Acta Chim. Hung. 1976. V. 88. P. 177.
  8. Ishii Y., Saitoh A., Hamanaka S., Ogawa M. // J. Jpn. Pet. Inst. 1986. V. 29. P. 20.
  9. Suzukamo G., Fukao M., Minobe M. // J. Chem. Lett. 1987. P. 585.
  10. Pillari S.M. // React. Kinet. Catal. Lett. 1994. V. 52. P. 35.
  11. Kabashima H., Tsuji H., Hattori H. // React. Kinet. Catal. Lett. 1996. V. 58. № 2. P. 255.
  12. Baba T., Endou T., Handa H., Ono Y. // J. Appl. Catal. A. 1993. V. 97. P. L19.
  13. Cui C., Wang X., Ding Y. // Huagong Keji. 1998. V. 6. № 4. P. 35.
  14. Ермакова А.И., Аншелес В.Р., Рыжих О.Н., Мирзоян Ж.A., Исмайлов Д.Г. // Кинетика и катализ. 1986. Т. 27. № 6. C. 1450. (Ermakova A.I., Ansheles V.R., Ryzhikh O.N., Mirzoyan Z.A., Ismailov D.G. // Kinet. Catal. 1986. V. 27. P. 1259.)
  15. Дураков С.А., Егиазарян К.Т., Шамсиев Р.С., Флид В.Р. // Тонкие хим. технологии. 2023. Т. 18. № 4. С. 355. (Durakov S.A., Egiazaryan К.Т., Shamsiev R.S., Flid V.R. // Tonk. Khim. Tekhnol. 2023. V. 18. № 4. P. 355.)
  16. Замалютин В.В., Шамсиев Р.С., Флид В.Р. // Изв. АН. Сер. хим. 2022. № 10. С. 2142. (Zamalyutin V.V., Shamsiev R.S., Flid V.R. // Russ. Chem. Bull. 2022. V. 71. № 10. P. 2142.)
  17. Замалютин В.В., Кацман Е.А., Рябов А.В., Скрябина А.Ю., Шпынева М.А., Данюшевский В.Я., Флид В.Р. // Кинетика и катализ. 2022. Т. 63. № 2. С. 267. (Zamalyutin V.V., Katsman E.A., Ryabov A.V., Skryabina A.Y., Shpinyova M.A., Danyushevsky V.Y., Flid V.R. // Kinet. Catal. 2022. V. 63. № 2. P. 234.)
  18. Uzio D., Berhault G. // Catal. Rev. Sci. Eng. 2010. V. 52. P. 106.
  19. Laikov D.N. // Chem. Phys. Lett. 1997. V. 281. P. 151.
  20. Лайков Д.Н., Устынюк Ю.А. // Изв. АН. Сер. хим. 2005. № 3. С. 804. (Laikov D.N., Ustynyuk Yu.A. // Russ. Chem. Bull. 2005. V. 54. № 3. P. 820.)
  21. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865.
  22. Laikov D.N. // Chem. Phys. Lett. 2005. V. 416. P. 116.
  23. Шамсиев Р.С., Данилов Ф.О., Морозова Т.А. // Изв. АН. Сер. Хим. 2017. № 3. С. 401 (Shamsiev R.S., Danilov F.O., Morozova T.A. // Russ. Chem. Bull. 2017. V. 66. № 3. P. 401.)
  24. Шамсиев Р.С., Данилов Ф.О. // Кинетика и катализ. 2018. Т. 59. № 3. С. 340. (Shamsiev R.S., Danilov F.O. // Kinet. Catal. 2018. V. 59. № 3. P. 333.)
  25. Шамсиев Р.С., Данилов Ф.О. // Изв. АН. Сер. Хим. 2017. № 3. С. 395. (Shamsiev R.S., Danilov F.O. // Russ. Chem. Bull. 2017. V. 66. № 3. P. 395.)
  26. Kozuch S., Martin J.M.L. // ACS Catal. 2011. V. 1. P. 246.
  27. Темкин О.Н. О различных взаимосвязях кинетики и термодинамики. Saarbrücken: Lambert Acad. Publ., 2016. 119 p.

Supplementary files

Supplementary Files
Action
1. JATS XML