The method for the vizualization of the dynamics of catalyst transformations based on the results of competing experiments

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Present paper demonstrates that relative reactivity estimated under competition of several similar substrates can be applied for the demonstrative visualization of the dynamics of active catalyst in a complex catalytic process. The fundamental advantage of the proposed approach is that the state of an active catalyst can be monitored throughout the catalytic reaction without differentiation of the kinetic data on the concentrations of the substances reacted.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Kurokhtina

Irkutsk State University

Email: aschmidt@chem.isu.ru

Chemical Department

Ресей, K. Marx str., 1, Irkutsk, 664003

E. Larina

Irkutsk State University

Email: aschmidt@chem.isu.ru

Chemical Department

Ресей, K. Marx str., 1, Irkutsk, 664003

N. Lagoda

Irkutsk State University

Email: aschmidt@chem.isu.ru

Chemical Department

Ресей, K. Marx str., 1, Irkutsk, 664003

A. Schmidt

Irkutsk State University

Хат алмасуға жауапты Автор.
Email: aschmidt@chem.isu.ru

Chemical Department

Ресей, K. Marx str., 1, Irkutsk, 664003

Әдебиет тізімі

  1. Темкин О.Н. // Кинетика и катализ. 2012. Т. 53. С. 326. (Temkin O.N. // Kinet. Catal. 2012. V. 53. P. 313.)
  2. Galushko A.S., Kashin A.S., Eremin D.B., Polynski M.V., Pentsak E.O., Chernyshev V.M., Ananikov V.P. / In: Nanoparticles in Catalysis: Advances in Synthesis and Applications. Wiley Online Books, 2021. P. 13.
  3. Martín A.J., Mitchell S., Mondelli C., Jaydev S., Pérez-Ramírez J. // Nature Catal. 2022. V. 5. P. 854.
  4. Li Y., Zakharov D., Zhao S., Tappero R., Jung U., Elsen A., Baumann Ph., Nuzzo R.G., Stach E.A., Frenkel A.I. // Nature Commun. 2015. V. 6. P. 1.
  5. Galushko A.S., Boiko D.A., Pentsak E.O., Eremin D.B., Ananikov V.P. // J. Am. Chem. Soc. 2023. V. 145. P. 9092.
  6. Lu Y., Wu Q., Zhang C., Xu M., Yuan Y., Yao J. // Chem. Commun. 2022. V. 58. P. 6538.
  7. Wen S., Niu Y., Li S., Zhang L., Zhang Y., Botton G.A., Wan Y., Zhang B. // ACS Nano. 2021. V. 15. P. 8621.
  8. Yuan N., Pascanu V., Huang Z., Valiente A., Heidenreich N., Leubner S., Inge A.K., Gaar J., Stock N., Persson I., Martín-Matute B., Zou X. // J. Am. Chem. Soc. 2018. V. 140. P. 8206.
  9. Bañares M.A. // Adv. Mater. 2011. V. 23. P. 5293.
  10. Schmidt A.F., Kurokhtina A.A., Larina E.V. // Mendeleev Commun. 2017. V. 27. P. 213.
  11. Lv C., Cheng H., He W., Shah M.I.A., Xu C., Meng X., Jiao L., Wei S., Li J., Liu L., Li Y. // Nano Res. 2016. V. 9. P. 2544.
  12. Kaftan A., Kusche M., Laurin M., Wasserscheid P., Libuda J. // Appl. Catal. B: Environ. 2017. V. 201. P. 169.
  13. Tillekaratne A., Simonovis J.P., Zaera F. // Surf. Sci. 2016. V. 652. P. 134.
  14. Schmidt A.F., Kurokhtina A.A., Larina E.V. // Catal. Sci. Technol. 2014. V. 4. P. 3439.
  15. Шмидт А.Ф., Курохтина А.А. // Кинетика и катализ. 2012. Т. 53. № 6. С. 760. (Schmidt A.F., Kurokhtina A.A. // Kinet. Catal. 2012. V. 53. P. 714.)
  16. Темкин О.Н. Гомогенный металлокомплексный катализ. Кинетические аспекты. Москва: ИКЦ “Академкнига”, 2008. 918 с. (Temkin O.N. Homogeneous Catalysis with Metal Complexes. Kinetic Aspects and Mechanisms. Chichester: John Wiley & Sons Ltd. 2012. 803 p.)
  17. Шмидт А.Ф., Курохтина А.А., Ларина Е.В., Лагода Н.А. // Тонкие химические технологии. 2023. Т. 18. № 4. С. 328. (Schmidt A.F., Kurokhtina A.A., Larina E.V., Lagoda N.A. // Fine Chem. Tech. 2023. V. 18. P. 328.)
  18. Suzuki A. // Angew. Chem. Int. Ed. 2011. V. 50. P. 6722.
  19. The Mizoroki–Heck Reaction.Ed. Oestreich M. Munster: John Wiley & Sons Ltd., 2009. 587 р.
  20. Excel for Scientists and Engineers: Numerical Methods. 2nd Ed. E.J. Billo. John Wiley & Sons, 2007. 480 р.
  21. Мироненко Р.М., Бельская О.Б., Лихолобов В.А. // Российский химический журнал. 2019. T. 62. № 1–2. С. 141. (Mironenko R.M., Belskaya O.B., Likholobov V.A. // Rus. J. Gen. Chem. 2020. V. 90. P. 532.)
  22. Newton O., Hellgardt K., Richardson J., Hii K.K.M. // J. Catal. 2023. V. 424. P. 29.
  23. Jeddi N., Scott N.W.J., Fairlamb I.J.S. // ACS Catal. 2022. V. 12. Р. 11615.
  24. Hammond C. // Green Chem. 2017. V. 19. Р. 2711.
  25. Finney E.E., Finke R.G. // Ind. Eng. Chem. Res. 2017. V. 56. P. 10271.
  26. Reay A.J., Fairlamb I.J.S. // Chem. Commun. 2015. V. 51. P. 16289.
  27. Crabtree R.H. // Chem. Rev. 2015. V. 115. P. 127.
  28. Schmidt A.F., al Halaiqa A., Smirnov V.V. // Synlett. 2006. V. 18. P. 2861.
  29. Ivančič A., Košmrlj J., Gazvoda M. // Commun. Chem. 2023. V. 6. P. 51.
  30. Nunes C.M, Monteiro A.L. // J. Brazil. Chem. Soc. 2007. V. 18. P. 1443.
  31. Hong S.-B., Liang L.-C. // RSC Adv. 2022. V. 12. P. 28862.
  32. Ларина Е.В., Курохтина А.А., Лагода Н.А., Шмидт А.Ф. // Кинетика и катализ. 2022. Т. 63. № 2. С. 234. (Larina E.V., Kurokhtina A.A., Lagoda N.A., Schmidt A.F. // Kinet. Catal. 2022. V. 62. P. 207.)
  33. Larina E.V., Kurokhtina A.A., Vidyaeva E.V., Lagoda N.A., Schmidt A.F. // Mol. Catal. 2021. V. 513. P. 111778.
  34. Ananikov V.P., Beletskaya I.P. // Organometallics. 2012. V. 31. P. 1595.
  35. Gnad C., Abram A., Urstöger A., Weigl F., Schuster M., Köhler K. // ACS Catal. 2020. V. 10. P. 6030.
  36. Amatore C., Jutand A. // Acc. Chem. Res. 2000. V. 33. P. 314.
  37. Kurokhtina A.A., Larina E.V., Yarosh E.V., Lagoda N.A., Schmidt A.F. // Organometallics. 2018. V. 37. P. 2054.
  38. Шмидт А.Ф., Смирнов В.В. // Кинетика и катализ. 2005. Т. 46. С. 529. (Shmidt A.F., Smirnov V.V. // Kinet. Catal. 2005. V. 46. P. 495.)
  39. Schroeter F., Strassner T. // Inorg. Chem. 2018. V. 57. P. 5159.
  40. Altan O. // Appl. Organomet. Chem. 2022. V. 36. P. e6690.
  41. Amatore C., Jutand A., M’Barki M.A. // Organometallics. 1992. V. 11. P. 3009.
  42. Scott N.W.J., Ford M.J., Jeddi N., Eyles A., Simon L., Whitwood A.C., Tanner T., Willans C.E. Fairlamb I.J.S. // J. Am. Chem. Soc. 2021. V. 143. P. 9682.
  43. De Tovar J., Rataboul F., Djakovitch L. // ChemCatChem. 2020. V. 12. P. 5797.
  44. Van Vaerenbergh B., Lauwaert J., Thybaut J.W., Vermeir P., De Clercq J. // Chem. Eng. J. 2019. V. 374. P. 576.
  45. Шмидт А.Ф., Курохтина А.А., Ларина Е.В. // Кинетика и катализ. 2012. Т. 53. № 1. С. 86. (Schmidt A.F., Kurokhtina A.A., Larina E.V. // Kinet. Catal. 2012. V. 53. P. 84.)
  46. Lagoda N.A., Larina E.V., Vidyaeva E.V., Kurokhtina A.A., Schmidt A.F. // Org. Proc. Res. Dev. 2021. V. 25. P. 916.
  47. Kurokhtina A.A., Larina E.V., Schmidt A.F., Malaika A., Krzyżyńska B., Rechnia P., Kozłowski M. // J. Mol. Catal. A: Chem. 2013. V. 379. P. 327.
  48. Шмидт А.Ф., Курохтина А.А., Ларина Е.В., Лагода Н.А., Явсин Д.А., Гуревич С.А., Зеликман В.М., Кротова И.Н., Ростовщикова Т.Н., Тарханова И.Г. // Кинетика и катализ. 2023. Т. 64. № 1. С. 39. (Schmidt A.F., Kurokhtina A.A., Larina E.V., Lagoda N.A., Yavsin D.A., Gurevich S.A., Zelikman V.M., Krotova I.N., Rostovshchikova T.N., Tarkhanova I.G. // Kinet. Catal. 2023. V. 64. P. 32.)
  49. Шмидт А.Ф., Халайка А. // Кинетика и катализ. 1998. Т. 39. № 6. С. 875. (Shmidt A.F., Khalaika A. // Kinet. Catal. 1998. V. 39. P. 803.)
  50. Biffis A., Centomo P., del Zotto A., Zecca M. // Chem. Rev. 2018. V. 118. P. 2249.
  51. Phan N.T.S., van der Sluys M., Jones C.W. // Adv. Synth. Catal. V. 348. P. 609.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Scheme 1. Reactions of Suzuki–Miyaury (a) and Mizoroki–Heka (b) in the words of competing couples. арилгалогенидов.

Жүктеу (262KB)
3. Scheme 2. The principal reaction scheme of Suzuki-Miyaur and Mizoroki-Heka is in the city овании пары конкурирующих арилгалогенидов.

Жүктеу (210KB)
4. Scheme 3. Общая схема взимопревращения сосуществующих форм катализатора в Reaction to the collection of arilgalogenids.

Жүктеу (264KB)
5. Fig. 1. Dependences of the values ​​of the relative reactivity of competing 4-bromoacetophenone and bromobenzene, krel = k4-bromoacetophenone/kbromobenzene, calculated according to equation (7), on the conversion of phenylboronic acid in the Suzuki–Miyaura reaction with varying the nature and loading of the palladium catalyst precursor.

Жүктеу (260KB)
6. Fig. 2. Dependences of the values ​​of relative reactivity of competing 4-chloroacetophenone and 1,4-dichlorobenzene krel = k4-chloroacetophenone/kdichlorobenzene, calculated according to equation (7), on the conversion of n-butyl acrylate in the Mitsoroki–Heck reaction with varying the nature and loading of the palladium precursor of the catalyst.

Жүктеу (224KB)