III-нитридные hemt гетероструктуры с ультратонким барьером AlN: получение и экспериментальное применение

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методом МЛЭ с плазменной активацией азота получены III-нитридные HEMT гетероструктуры, содержащие ультратонкий барьер AlN. Исследовано влияние режимов нуклеации и роста буферного слоя на кристаллическое качество, морфологию поверхности и электрофизические свойства экспериментальных ГС. Слоевое сопротивление оптимизированной ГС составило менее 230 Ом/□. Изготовлены тестовые СВЧ транзисторы с затвором Шоттки. Предложена параметрическая модель HEMT на основе AlN/GaN ГС.

Полный текст

Доступ закрыт

Об авторах

А. С. Гусев

Национальный исследовательский ядерный университет “МИФИ”

Автор, ответственный за переписку.
Email: ASGusev@mephi.ru
Россия, Москва

А. О. Султанов

Национальный исследовательский ядерный университет “МИФИ”

Email: ASGusev@mephi.ru
Россия, Москва

Р. В. Рыжук

Национальный исследовательский ядерный университет “МИФИ”

Email: ASGusev@mephi.ru
Россия, Москва

Т. Н. Неволина

Национальный исследовательский ядерный университет “МИФИ”

Email: ASGusev@mephi.ru
Россия, Москва

Д. Цунваза

Национальный исследовательский ядерный университет “МИФИ”

Email: ASGusev@mephi.ru
Россия, Москва

Г. К. Сафаралиев

Национальный исследовательский ядерный университет “МИФИ”

Email: ASGusev@mephi.ru
Россия, Москва

Н. И. Каргин

Национальный исследовательский ядерный университет “МИФИ”

Email: ASGusev@mephi.ru
Россия, Москва

Список литературы

  1. I.P. Smorchkova, S. Keller, S. Heikman et al. Two-dimensional electron-gas AlN/GaN heterostructures with extremely thin AlN barriers // Appl. Phys. Lett. – 2000. – V. 77. – I. 24. – pp. 3998-4000. https://doi.org/10.1063/1.1332408
  2. Yu Cao and Debdeep Jena, High-mobility window for two-dimensional electron gases at ultrathin AlN∕GaN heterojunctions // Appl. Phys. Lett. – 2007. – V. 90. – I. 18. – article ID 182112. https://doi.org/10.1063/1.2736207
  3. D.J. Meyer et al., High electron velocity submicrometer AlN/GaN MOS-HEMTs on freestanding GaN substrates // in IEEE Electron Device Letters. – 2013. – V. 34. – № 2. – pp. 199 – 201. doi: 10.1109/LED.2012.2228463.
  4. J.S. Xue, J.C. Zhang, Y. Hao, Ultrathin barrier AlN/GaN high electron mobility transistors grown at a dramatically reduced growth temperature by pulsed metal organic chemical vapor deposition // Appl. Phys. Lett. – 2015. – V. 107. – I. 4. – article ID 043503. https://doi.org/10.1063/1.4927743
  5. O. Ambacher, J. Smart, J.R. Shealy et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures // J. Appl. Phys. – 1999. – V. 85. – pp. 3222–3233. https://doi.org/10.1063/1.369664
  6. Y. Cao, K. Wang, G. Li et al. MBE growth of high conductivity single and multiple AlN/GaN heterojunctions // Journal of Crystal Growth. – 2011. – V. 323. – I. 1. – pp. 529–533. https://doi.org/10.1016/j.jcrysgro.2010.12.047
  7. X. Luo et al. Scaling and high-frequency performance of AlN/GaN HEMTs // in IEEE International Symposium on Radio-Frequency Integration Technology. – 2011. – pp. 209–212. doi: 10.1109/RFIT.2011.6141776.
  8. K. Harrouche, R. Kabouche, E. Okada et al. High performance and highly robust AlN/GaN HEMTs for millimeter-wave operation // in IEEE Journal of the Electron Devices Society. – 2019. – V. 7. – pp. 1145–1150. doi: 10.1109/JEDS.2019.2952314
  9. I.P. Smorchkova et al. AlN/GaN and (Al, Ga)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy // Journal of Applied Physics. – 2001. – V. 90. – № 10 – pp. 5196–5201. https://doi.org/10.1063/1.1412273
  10. T. Zimmermann et al. AlN/GaN Insulated-gate HEMTs with 2,3 A/mm output current and 480 mS/mm transconductance // IEEE Electron Device Letters. – 2008. – V. 29. – № 7. – pp. 661–664. https://ieeexplore.ieee.org/document/4558119
  11. C.Y. Chang et al. Very low sheet resistance AlN/GaN high electron mobility transistors // Proc. CS MANTECH Conference. – 2009. – pp. 18–21.
  12. Д.Ю. Протасов, Т.В. Малин, А.В. Тихонов и др. Рассеяние электронов в гетероструктурах AlGaN/GaN с двумерным электронным газом // Физика и техника полупроводников, 2013, том 47, вып. 1, стр. 36–47.
  13. S. Mukhopadhyay, C. Liu, J. Chen et al. Crack-free high-composition (> 35%) thick-barrier (>30 nm) AlGaN/AlN/GaN high-electron-mobility transistor on sapphire with low sheet resistance (< 250 Ω/□) // Crystals. – 2023. – V. 13(10). – Article ID 1456. https://doi.org/10.3390/cryst13101456
  14. S. Müller, K. Köhler, R. Kiefer et al. Growth of AlGaN/GaN based electronic device structures with semi-insulating GaN buffer and AlN interlayer // Phys. Stat. Sol. (C). – 2005. – V. 2. – № 7. – pp. 2639–2642. https://doi.org/10.1002/pssc.200461288
  15. R.K. Kaneriya, C. Karmakar, G. Rastogi et al. Influence of AlN spacer and GaN cap layer in GaN heterostructure for RF HEMT applications // Microelectronic engineering. – 2022. – V. 255. – Article ID 111724. https://doi.org/10.1016/j.mee.2022.111724
  16. D.F. Storm, D.S. Katzer, S.C. Binari et al. Room temperature Hall mobilities above 1900 cm2/(V∙s) in MBE-grown AlGaN/GaN HEMT structures // Electronics letters. – 2004. – V. 40. – I. 19. – pp. 1226–1227. doi: 10.1049/el:20045859
  17. D.F. Storm, D.S. Katzer, J.A. Mittereder et al. Growth and characterization of plasma-assisted molecular beamepitaxial-grown AlGaN/GaN heterostructures on free-standing hydride vapor phase epitaxy GaN substrates // Journal of vacuum science & technology B. – 2005. – V. 23. – № 3. – pp. 1190–1193. https://doi.org/10.1116/1.1885013
  18. Y.-K. Noh, S.-T. Lee, M.-D. Kim et al. High electron mobility transistors with Fe-doped semi-insulating GaN buffers on (110) Si substrates grown by ammonia molecular beam epitaxy // Journal of crystal growth. – 2019. – V. 509. – pp. 141–145. https://doi.org/10.1016/j.jcrysgro.2018.07.016.
  19. S. Wu, X. Ma, L. Yang et al. A millimeter-wave AlGaN/GaN HEMT fabricated with transitional-recessed-gate technology for high-gain and high-linearity applications // IEEE Electron device letters. – 2019. – V. 40. – № 6. – pp. 846–849. doi: 10.1109/LED.2019.2909770
  20. Y. Cordier, M. Portail, S. Chenot et al. AlGaN/GaN high electron mobility transistors grown on 3C-SiC/Si(111) // Journal of crystal growth. – 2008. – V. 310. – I. 20. – pp. 4417–4423. https://doi.org/10.1016/j.jcrysgro.2008.07.063.
  21. Y. Cordier, J.-C. Moreno, N. Baron et al. Demonstration of AlGaN/GaN high-electron-mobility transistors grown by molecular beam epitaxy on Si(110) // IEEE Electron device letters. – 2008. – V. 29. – № 11. – pp. 1187–1189. doi: 10.1109/LED.2008.2005211.
  22. Z. Chen, Y. Pei, S. Newman et al. Growth of AlGaN/GaN heterojunction field effect transistors on semi-insulating GaN using an AlGaN interlayer // Appl. phys. lett. – 2009. – V. 94. – article ID 112108. https://doi.org/10.1063/1.3103210
  23. L. Guo, X. Wang, C. Wang et al. The influence of 1 nm AlN interlayer on properties of the Al0.3Ga0.7N/AlN/GaN HEMT structure // Microelectronics journal. – 2008. – V. 39. – I. 5. – pp. 777–781. https://doi.org/10.1016/j.mejo.2007.12.005.
  24. C. Wang, H.-T. Hsu, T.-J. Huang et al. Effect of AlN Spacer on the AlGaN/GaN HEMT Device Performance at Millimeter-Wave Frequencies // 2018 Asia-Pacific microwave conference (APMC). – 2018. – pp. 1208–1210. doi: 10.23919/APMC.2018.8617568
  25. X. Wang, G. Hu, Z. Ma et al. AlGaN/AlN/GaN/SiC HEMT structure with high mobility GaN thin layer as channel grown by MOCVD // Journal of crystal growth. – 2007. – V. 298. – pp. 835–839. https://doi.org/10.1016/j.jcrysgro.2006.10.219.
  26. R.S. Balmer, K.P. Hilton, K.J. Nash et al. Analysis of thin AlN carrier exclusion layers in AlGaN/GaN microwave heterojunction field-effect transistors // Semiconductor science and technology. – 2004. – V. 19. – № 6. – pp. L65–L67. doi: 10.1088/0268-1242/19/6/L02
  27. Ma Zhi-Yong, Wang Xiao-Liang, Hu Guo-Xin et al. Growth and Characterization of AlGaN/AlN/GaN HEMT structures with a compositionally step-graded AlGaN barrier layer // Chinese physics letters. – 2007. – V. 24. – № 6. – pp. 1705–1708.
  28. W. Xiaoliang, H. Guoxin, M. Zhiyong et al. MOCVD-grown AlGaN/AlN/GaN HEMT structure with high mobility GaN thin layer as channel on SiC // Chin. J. semicond. – 2006. – V. 27. – I. 9. – pp. 1521–1525.
  29. M. Gonschorek, J.-F. Carlin, E. Feltin et al. High electron mobility lattice-matched AlInN∕GaN field-effect transistor heterostructures // Appl. Phys. Lett. – 2006. – V. 89. – article ID 062106. https://doi.org/10.1063/1.2335390
  30. M. Hiroki, N. Maeda, T. Kobayashi, Fabrication of an InAlN/AlGaN/AlN/GaN heterostructure with a flat surface and high electron mobility // Applied Physics Express. – 2008. – V. 1. – № 11. – article ID 111102. https://doi.org/10.1143/APEX.1.111102
  31. J. Kuzmik, G. Pozzovivo, S. Abermann et al. Technology and performance of InAlN/AlN/GaN HEMTs with gate insulation and current collapse suppression using ZrO2 or HfO2 // IEEE Transactions on Electron Devices. – 2008. – V. 55. – № 3. – pp. 937–941. doi: 10.1109/TED.2007.915089.
  32. J. Guo, Y. Cao, C. Lian et al. Metal-face InAlN/AlN/GaN high electron mobility transistors with regrown ohmic contacts by molecular beam epitaxy // Phys. Status Solidi (A). – 2011. – V. 208. – № 7. – pp. 1617–1619. https://doi.org/10.1002/pssa.201001177
  33. Y. Yue, Z. Hu, J. Guo et al. Ultrascaled InAlN/GaN high electron mobility transistors with cutoff frequency of 400 GHz // Japanese Journal of Applied Physics. – 2013. – V. 52. – № 8S. – article ID 08JN14. https://doi.org/10.7567/JJAP.52.08JN14
  34. T. Han, S. Dun Y. Lu et al. 70-nm-gated InAlN/GaN HEMTs grown on SiC substrate with fT/fmax > 160 GHz // Journal of Semiconductors. – 2016. – V. 37. – № 2. – article number 024007. https://doi.org/10.1088/1674-4926/37/2/024007
  35. A. Malmros, J.-T. Chen, H. Hjelmgren et al. Enhanced mobility in InAlN/AlN/GaN HEMTs using a GaN interlayer // IEEE Transactions on Electron Devices. – 2019. – V. 66. – I.7. – pp. 2910–2915. doi: 10.1109/TED.2019.2914674
  36. F. Medjdoub, R. Kabouche, A. Linge et al. High electron mobility in high-polarization sub-10 nm barrier thickness InAlGaN/GaN heterostructure // Applied Physics Express. – 2015. – V. 8. – № 10. – article ID 101001. https://doi.org/10.7567/APEX.8.101001
  37. G. Zhu, K. Zhang, Y. Kong et al. High electron mobility in high-polarization sub-10 nm barrier thickness InAlGaN/GaN heterostructure // Applied Physics Express. – 2017. – V. 10. – № 11. – article ID 114101. https://doi.org/10.7567/APEX.10.114101
  38. J. Kotani, A. Yamada, T. Ohki et al. Recent advancement of GaN HEMT with InAlGaN barrier layer and future prospects of A1N-based electron devices // IEEE International Electron Devices Meeting (IEDM). – 2018. – pp. 30.4.1–30.4.4. doi: 10.1109/IEDM.2018.8614519
  39. I. Sanyal, Y.-C. Lee, Y.-C. Chen et al. Achieving high electron mobility in AlInGaN/GaN heterostructures: the correlation between thermodynamic stability and electron transport properties // Appl. Phys. Lett. – 2019. – V. 114. – article ID 222103. https://doi.org/10.1063/1.5090874
  40. S. Burnham, W. Doolittle, In situ growth regime characterization of AlN using reflection high energy electron diffraction // Journal of vacuum science & technology B. – 2006. – V. 24. – pp. 2100–2104.
  41. S. Burnham, G. Namkoong, K. Lee et al. Reproducible reflection high energy electron diffraction signatures for improvement of AlN using in situ growth regime characterization // Journal of Vacuum Science & Technology B. – 2007. – V. 25. – pp. 1009–1013.
  42. A.R. Smith, R.M. Feenstra, D.W. Greve et al. Determination of wurtzite GaN lattice polarity based on surface reconstruction // Appl. Phys. Lett. – 1998. – V. 72. – I.17 – pp. 2114–2116. https://doi.org/10.1063/1.121293
  43. S. Fernández-Garrido, G. Koblmüller, E. Calleja et al. In situ GaN decomposition analysis by quadrupole mass spectrometry and reflection high-energy electron diffraction // Journal of applied physics. – 2008. – V. 104. – article ID 033541 https://doi.org/10.1063/1.2968442
  44. A.S. Gusev, A.O. Sultanov, A.V. Katkov et al. Analysis of carrier scattering mechanisms in AlN/GaN HEMT heterostructures with an ultrathin AlN barrier // Russian Microelectronics. – 2024. – V. 53. – № 3. – pp. 252–259.
  45. I. Angelov, H. Zirath, N. Rosman, A new empirical nonlinear model for HEMT and MESFET devices // IEEE Transactions on microwave theory and techniques. – 1992. – V. 40. – № 12. – pp. 2258–2266
  46. K. Fujii, Y. Hara, F.M. Ghannouchi et al. A nonlinear GaAs FET model suitable for active and passive mm-wave applications. – 2000. – IEICE Trans. – V. E83-A. – № 2. – p. 228.
  47. D. Tsunvaza, R.V. Ryzhuk, I.S. Vasil’evskii et al. The design of nonlinear model of pseudomorphic 0,15 μm рHEMT AlGaAs/InGaAs/GaAs transistor // Russian microelectronics. – 2023. – V. 52. – № 3. pp. 160–166.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Зависимость ρs от ns для ГС с барьерными слоями различного состава: AlxGa1-xN (0,18 ≤ x ≤ 0,36) – коричневые маркеры; InхAl1-хN (х = 0,17–0,18) – красные маркеры; InAlGaN с различной мольной долей In – серые маркеры; AlN – голубые маркеры [2, 3, 6, 9–11, 13–39].

Скачать (90KB)
3. Рис. 2. Типичные картины ДОБЭ от исходной подложки (а) и экспериментальных ГС в направлении на стадии нуклеации (б); в процессе формирования GaN буфера (в); в случае остановки процесса роста GaN и снижения параметра Ts до 600°С (г).

Скачать (214KB)
4. Рис. 3. (а) зависимость подвижности 2DEG от параметра ; (б) зависимость слоевого сопротивления полной ГС от параметра .

Скачать (157KB)
5. Рис. 4. (а) топология тестовой структуры, (б) экспериментальная зависимость среднего (по выборке) тока утечки через тест мезаизоляции от параметра .

Скачать (224KB)
6. Рис. 5. (а) РЭМ изображение топологии тестового транзистора; (б) РЭМ изображение поперечного среза (ФИП) его затворной части (Т-образный затвор)

Скачать (321KB)
7. Рис. 6. Семейство выходных (DC) характеристик одного из тестовых транзисторов (при изменении напряжения на затворе UGS от – 7,0 до + 2,5 В) (а); типичные частотные зависимости модуля коэффициента передачи по току (|h21|) и максимально достижимого/стабильного коэффициента усиления по мощности (MAG/MSG) тестового транзистора (б).

Скачать (284KB)
8. Рис. 7. Топология 4-х (а) и 6-секционного (б) транзисторов с межсоединениями в виде воздушных мостов (изображения получены с помощью оптической микроскопии).

Скачать (269KB)
9. Рис. 8. S-параметры AlN/GaN HEMT в диапазоне частот 0,5–25,5 ГГц при UGS = –2,75 В и UDS = 5 В (сплошными линиями изображены измеренные характеристики, пунктирными – результаты моделирования).

Скачать (366KB)

© Российская академия наук, 2024