III-nitride HEMT Heterostructures with an Ultrathin AlN Barrier: Fabrication and Experimental Application

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using molecular beam epitaxy (MBE) with plasma-activated nitrogen, III-nitride HEMT heterostructures with an ultrathin AlN barrier were obtained. The effects of nucleation and buffer layer growth conditions on the crystalline quality, surface morphology, and electrophysical properties of the experimental heterostructures were studied. The sheet resistance of the optimized heterostructure was less than 230 Ω/□. Test microwave transistor samples with Schottky gates were fabricated. A parametric model of the HEMT based on the AlN/GaN heterostructure was proposed.

Full Text

Restricted Access

About the authors

A. S. Gusev

National Research Nuclear University MEPhI

Author for correspondence.
Email: ASGusev@mephi.ru
Russian Federation, Moscow

A. O. Sultanov

National Research Nuclear University MEPhI

Email: ASGusev@mephi.ru
Russian Federation, Moscow

R. V. Ryzhuk

National Research Nuclear University MEPhI

Email: ASGusev@mephi.ru
Russian Federation, Moscow

T. N. Nevolina

National Research Nuclear University MEPhI

Email: ASGusev@mephi.ru
Russian Federation, Moscow

D. Tsunvaza

National Research Nuclear University MEPhI

Email: ASGusev@mephi.ru
Russian Federation, Moscow

G. K. Safaraliev

National Research Nuclear University MEPhI

Email: ASGusev@mephi.ru
Russian Federation, Moscow

N. I. Kargin

National Research Nuclear University MEPhI

Email: ASGusev@mephi.ru
Russian Federation, Moscow

References

  1. I.P. Smorchkova, S. Keller, S. Heikman et al. Two-dimensional electron-gas AlN/GaN heterostructures with extremely thin AlN barriers // Appl. Phys. Lett. – 2000. – V. 77. – I. 24. – pp. 3998–4000. https://doi.org/10.1063/1.1332408
  2. Yu Cao and Debdeep Jena. High-mobility window for two-dimensional electron gases at ultrathin AlN∕GaN heterojunctions // Appl. Phys. Lett. – 2007. – V. 90. – I. 18. – article ID 182112. https://doi.org/10.1063/1.2736207
  3. D.J. Meyer et al., High electron velocity submicrometer AlN/GaN MOS-HEMTs on freestanding GaN substrates // in IEEE Electron Device Letters. – 2013. – V. 34. – № 2. – pp. 199–201. doi: 10.1109/LED.2012.2228463.
  4. J.S. Xue, J.C. Zhang, Y. Hao, Ultrathin barrier AlN/GaN high electron mobility transistors grown at a dramatically reduced growth temperature by pulsed metal organic chemical vapor deposition // Appl. Phys. Lett. – 2015. – V. 107. – I. 4. – article ID 043503. https://doi.org/10.1063/1.4927743
  5. O. Ambacher, J. Smart, J.R. Shealy et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures // J. Appl. Phys. – 1999. – V. 85. – pp. 3222–3233. https://doi.org/10.1063/1.369664
  6. Y. Cao, K. Wang, G. Li et al. MBE growth of high conductivity single and multiple AlN/GaN heterojunctions // Journal of Crystal Growth. – 2011. – V. 323. – I. 1. – pp. 529–533. https://doi.org/10.1016/j.jcrysgro.2010.12.047
  7. X. Luo et al. Scaling and high-frequency performance of AlN/GaN HEMTs // in IEEE International Symposium on Radio-Frequency Integration Technology. – 2011. – pp. 209–212. doi: 10.1109/RFIT.2011.6141776.
  8. K. Harrouche, R. Kabouche, E. Okada et al. High performance and highly robust AlN/GaN HEMTs for millimeter-wave operation // in IEEE Journal of the Electron Devices Society. – 2019. – V. 7. – pp. 1145–1150. doi: 10.1109/JEDS.2019.2952314
  9. I.P. Smorchkova et al. AlN/GaN and (Al, Ga)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy // Journal of Applied Physics. – 2001. – V. 90. – №10 – pp. 5196–5201. https://doi.org/10.1063/1.1412273
  10. T. Zimmermann et al. AlN/GaN Insulated-gate HEMTs with 2,3 A/mm output current and 480 mS/mm transconductance // IEEE Electron Device Letters. – 2008. – V. 29. – № 7. – pp. 661–664. https://ieeexplore.ieee.org/document/4558119
  11. C.Y. Chang et al. Very low sheet resistance AlN/GaN high electron mobility transistors // Proc. CS MANTECH Conference. – 2009. – pp. 18–21.
  12. D. Yu. Protasov, T.V. Malin, A.V. Tikhonov et al. Scattering of 2DEG electrons in AlGaN/GaN heterostructures // Fizika I Tehnika Poluprovodnikov (Phys. and Tech. of Semicon.). – 2013. – V. 47(1), – pp. 36–47
  13. S. Mukhopadhyay, C. Liu, J. Chen et al. Crack-free high-composition (> 35%) thick-barrier (>30 nm) AlGaN/AlN/GaN high-electron-mobility transistor on sapphire with low sheet resistance (< 250 Ω/□) // Crystals. – 2023. – V. 13(10). – Article ID 1456. https://doi.org/10.3390/cryst13101456
  14. S. Müller, K. Köhler, R. Kiefer et al. Growth of AlGaN/GaN based electronic device structures with semi-insulating GaN buffer and AlN interlayer // Phys. Stat. Sol. (C). – 2005. – V. 2. – № 7. – pp. 2639–2642. https://doi.org/10.1002/pssc.200461288
  15. R.K. Kaneriya, C. Karmakar, G. Rastogi et al. Influence of AlN spacer and GaN cap layer in GaN heterostructure for RF HEMT applications // Microelectronic engineering. – 2022. – V. 255. – Article ID 111724. https://doi.org/10.1016/j.mee.2022.111724
  16. D.F. Storm, D.S. Katzer, S.C. Binari et al. Room temperature Hall mobilities above 1900 cm2/(V∙s) in MBE-grown AlGaN/GaN HEMT structures // Electronics letters. – 2004. – V. 40. – I. 19. – pp. 1226 – 1227. doi: 10.1049/el:20045859
  17. D.F. Storm, D.S. Katzer, J.A. Mittereder et al. Growth and characterization of plasma-assisted molecular beamepitaxial-grown AlGaN/GaN heterostructures on free-standing hydride vapor phase epitaxy GaN substrates // Journal of vacuum science & technology B. – 2005. – V. 23. – № 3. – pp. 1190–1193. https://doi.org/10.1116/1.1885013
  18. Y.-K. Noh, S.-T. Lee, M.-D. Kim et al. High electron mobility transistors with Fe-doped semi-insulating GaN buffers on (110) Si substrates grown by ammonia molecular beam epitaxy // Journal of crystal growth. – 2019. – V. 509. – pp. 141–145. https://doi.org/10.1016/j.jcrysgro.2018.07.016.
  19. S. Wu, X. Ma, L. Yang et al. A millimeter-wave AlGaN/GaN HEMT fabricated with transitional-recessed-gate technology for high-gain and high-linearity applications // IEEE Electron device letters. – 2019. – V. 40. – № 6. – pp. 846–849. doi: 10.1109/LED.2019.2909770
  20. Y. Cordier, M. Portail, S. Chenot et al. AlGaN/GaN high electron mobility transistors grown on 3C-SiC/Si(111) // Journal of crystal growth. – 2008. – V. 310. – I. 20. – pp. 4417–4423. https://doi.org/10.1016/j.jcrysgro.2008.07.063.
  21. Y. Cordier, J.-C. Moreno, N. Baron et al. Demonstration of AlGaN/GaN high-electron-mobility transistors grown by molecular beam epitaxy on Si(110) // IEEE Electron device letters. – 2008. – V. 29. – № 11. – pp. 1187 – 1189. doi: 10.1109/LED.2008.2005211.
  22. Z. Chen, Y. Pei, S. Newman et al. Growth of AlGaN/GaN heterojunction field effect transistors on semi-insulating GaN using an AlGaN interlayer // Appl. phys. lett. – 2009. – V. 94. – article ID 112108. https://doi.org/10.1063/1.3103210
  23. L. Guo, X. Wang, C. Wang et al. The influence of 1 nm AlN interlayer on properties of the Al0.3Ga0.7N/AlN/GaN HEMT structure // Microelectronics journal. – 2008. – V. 39. – I. 5. – pp. 777–781. https://doi.org/10.1016/j.mejo.2007.12.005.
  24. C. Wang, H.-T. Hsu, T.-J. Huang et al. Effect of AlN Spacer on the AlGaN/GaN HEMT Device Performance at Millimeter-Wave Frequencies // 2018 Asia-Pacific microwave conference (APMC). – 2018. – pp. 1208–1210. doi: 10.23919/APMC.2018.8617568
  25. X. Wang, G. Hu, Z. Ma et al. AlGaN/AlN/GaN/SiC HEMT structure with high mobility GaN thin layer as channel grown by MOCVD // Journal of crystal growth. – 2007. – V. 298. – pp. 835–839. https://doi.org/10.1016/j.jcrysgro.2006.10.219.
  26. R.S. Balmer, K.P. Hilton, K.J. Nash et al. Analysis of thin AlN carrier exclusion layers in AlGaN/GaN microwave heterojunction field-effect transistors // Semiconductor science and technology. – 2004. – V. 19. – № 6. – pp. L65-L67. doi: 10.1088/0268-1242/19/6/L02
  27. Ma Zhi-Yong, Wang Xiao-Liang, Hu Guo-Xin et al. Growth and Characterization of AlGaN/AlN/GaN HEMT structures with a compositionally step-graded AlGaN barrier layer // Chinese physics letters. – 2007. – V. 24. – № 6. – pp. 1705–1708.
  28. W. Xiaoliang, H. Guoxin, M. Zhiyong et al. MOCVD-grown AlGaN/AlN/GaN HEMT structure with high mobility GaN thin layer as channel on SiC // Chin. J. semicond. – 2006. – V. 27. – I. 9. – pp. 1521–1525.
  29. M. Gonschorek, J.-F. Carlin, E. Feltin et al. High electron mobility lattice-matched AlInN∕GaN field-effect transistor heterostructures // Appl. Phys. Lett. – 2006. – V. 89. – article ID 062106. https://doi.org/10.1063/1.2335390
  30. M. Hiroki, N. Maeda, T. Kobayashi, Fabrication of an InAlN/AlGaN/AlN/GaN heterostructure with a flat surface and high electron mobility // Applied Physics Express. – 2008. – V. 1. – № 11. – article ID 111102. https://doi.org/10.1143/APEX.1.111102
  31. J. Kuzmik, G. Pozzovivo, S. Abermann et al. Technology and performance of InAlN/AlN/GaN HEMTs with gate insulation and current collapse suppression using ZrO2 or HfO2 // IEEE Transactions on Electron Devices. – 2008. – V. 55. – №3. – pp. 937–941. doi: 10.1109/TED.2007.915089.
  32. J. Guo, Y. Cao, C. Lian et al. Metal-face InAlN/AlN/GaN high electron mobility transistors with regrown ohmic contacts by molecular beam epitaxy // Phys. Status Solidi (A). – 2011. – V. 208. – № 7. – pp. 1617–1619. https://doi.org/10.1002/pssa.201001177
  33. Y. Yue, Z. Hu, J. Guo et al. Ultrascaled InAlN/GaN high electron mobility transistors with cutoff frequency of 400 GHz // Japanese Journal of Applied Physics. – 2013. – V. 52. – № 8S. – article ID 08JN14. https://doi.org/10.7567/JJAP.52.08JN14
  34. T. Han, S. Dun Y. Lu et al. 70-nm-gated InAlN/GaN HEMTs grown on SiC substrate with fT/fmax > 160 GHz // Journal of Semiconductors. – 2016. – V.37. – № 2. – article number 024007. https://doi.org/10.1088/1674-4926/37/2/024007
  35. A. Malmros, J.-T. Chen, H. Hjelmgren et al. Enhanced mobility in InAlN/AlN/GaN HEMTs using a GaN interlayer // IEEE Transactions on Electron Devices. – 2019. – V. 66. – I.7. – pp. 2910–2915. doi: 10.1109/TED.2019.2914674
  36. F. Medjdoub, R. Kabouche, A. Linge et al. High electron mobility in high-polarization sub-10 nm barrier thickness InAlGaN/GaN heterostructure // Applied Physics Express. – 2015. – V. 8. – № 10. – article ID 101001. https://doi.org/10.7567/APEX.8.101001
  37. G. Zhu, K. Zhang, Y. Kong et al. High electron mobility in high-polarization sub-10 nm barrier thickness InAlGaN/GaN heterostructure // Applied Physics Express. – 2017. – V. 10. – № 11. – article ID 114101. https://doi.org/10.7567/APEX.10.114101
  38. J. Kotani, A. Yamada, T. Ohki et al. Recent advancement of GaN HEMT with InAlGaN barrier layer and future prospects of A1N-based electron devices // IEEE International Electron Devices Meeting (IEDM). – 2018. – pp. 30.4.1–30.4.4. doi: 10.1109/IEDM.2018.8614519
  39. I. Sanyal, Y.-C. Lee, Y.-C. Chen et al. Achieving high electron mobility in AlInGaN/GaN heterostructures: the correlation between thermodynamic stability and electron transport properties // Appl. Phys. Lett. – 2019. – V. 114. – article ID 222103. https://doi.org/10.1063/1.5090874
  40. S. Burnham, W. Doolittle, In situ growth regime characterization of AlN using reflection high energy electron diffraction // Journal of vacuum science & technology B. – 2006. – V. 24. – pp. 2100–2104.
  41. S. Burnham, G. Namkoong, K. Lee et al. Reproducible reflection high energy electron diffraction signatures for improvement of AlN using in situ growth regime characterization // Journal of Vacuum Science & Technology B. – 2007. – V. 25. – pp. 1009–1013.
  42. A.R. Smith, R.M. Feenstra, D.W. Greve et al. Determination of wurtzite GaN lattice polarity based on surface reconstruction // Appl. Phys. Lett. – 1998. – V. 72. – I.17 – pp. 2114 – 2116. https://doi.org/10.1063/1.121293
  43. S. Fernández-Garrido, G. Koblmüller, E. Calleja et al. In situ GaN decomposition analysis by quadrupole mass spectrometry and reflection high-energy electron diffraction // Journal of applied physics. – 2008. – V. 104. – article ID 033541 https://doi.org/10.1063/1.2968442
  44. A.S. Gusev, A.O. Sultanov, A.V. Katkov et al. Analysis of carrier scattering mechanisms in AlN/GaN HEMT heterostructures with an ultrathin AlN barrier // Russian Microelectronics. – 2024. – V. 53. – № 3. – pp. 252–259.
  45. I. Angelov, H. Zirath, N. Rosman, A new empirical nonlinear model for HEMT and MESFET devices // IEEE Transactions on microwave theory and techniques. – 1992. – V. 40. – № 12. – pp. 2258–2266
  46. K. Fujii, Y. Hara, F.M. Ghannouchi et al. A nonlinear GaAs FET model suitable for active and passive mm-wave applications. – 2000. – IEICE Trans. – V. E83-A. – № 2. – p. 228.
  47. D. Tsunvaza, R.V. Ryzhuk, I.S. Vasil’evskii et al. The design of nonlinear model of pseudomorphic 0,15 μm рHEMT AlGaAs/InGaAs/GaAs transistor // Russian microelectronics. – 2023. – V. 52. – №3. pp. 160–166. https://doi.org/10.1134/S1063739723700415

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of ρs on ns for HS with barrier layers of different compositions: AlxGa1-xN (0.18 ≤ x ≤ 0.36) - brown markers; InxAl1-xN (x = 0.17-0.18) - red markers; InAlGaN with different mole fraction of In - gray markers; AlN - blue markers [2, 3, 6, 9-11, 13-39].

Download (90KB)
3. Fig. 2. Typical DOBE patterns from the initial substrate (a) and experimental GS in the direction at the nucleation stage (b); during GaN buffer formation (c); in the case of stopping the GaN growth process and reducing the Ts parameter to 600°C (d).

Download (214KB)
4. Fig. 3. (a) dependence of 2DEG mobility on parameter ; (b) dependence of layer resistance of full GS on parameter .

Download (157KB)
5. Fig. 4. (a) topology of the test structure, (b) experimental dependence of the average (per sample) leakage current through the mesa-isolation test on the parameter .

Download (224KB)
6. Fig. 5. (a) SEM image of the topology of the test transistor; (b) SEM image of the cross-section (FIP) of its gate part (T-shaped gate)

Download (321KB)
7. Fig. 6. Family of output (DC) characteristics of one of the test transistors (when the UGS gate voltage is varied from - 7.0 to + 2.5 V) (a); typical frequency dependences of the modulus of current gain (|h21|) and maximum achievable/stable power gain (MAG/MSG) of the test transistor (b).

Download (284KB)
8. Fig. 7. Topology of 4-section (a) and 6-section (b) transistors with air-bridge interconnects (images obtained by optical microscopy).

Download (269KB)
9. Fig. 8. S-parameters of AlN/GaN HEMT in the frequency range of 0.5-25.5 GHz at UGS = -2.75 V and UDS = 5 V (solid lines depict measured characteristics, dashed lines depict simulation results).

Download (366KB)

Copyright (c) 2024 Russian Academy of Sciences