The Diatom Nanofrustulum shiloi as a Promising Species in Modern Biotechnology

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article presents the results of studies of intensive culture of a new species of bentoplanktonic diatom N. shiloi (Lee, Reimer et McEnery) Round, Hallsteinsen et Paasche 1999 for the Black Sea. The features of the process of isolating the species into an algologically pure culture, as well as the morphological and taxonomic characteristics of the strain in light and electron scanning microscopes are described in detail. The biochemical and production characteristics of the strain were studied, as well as the ability to accumulate fucoxanthin (Fx) and polyunsaturated fatty acids (PUFA) in laboratory conditions. In the exponential growth phase, the specific culture growth rate was µ=0.8 1/day, and the maximum productivity P = 0.46 g dry weight /(L day). The accumulation of PUFAs in the biomass of N. shiloi reached 67.39 mg/g dry weight of algae. The Fx concentration in the biomass at the beginning of the stationary growth phase was 10 mg/g dry weight. The fairly high rate of Fx biosynthesis in microalgae cells, as well as the composition of fatty acids of the Black Sea strain, make it possible to classify N. shiloi as a promising object in biotechnology.

Full Text

Restricted Access

About the authors

A. A. Blaginina

Kovalevsky Institute of Biology of the Southern Seas of Russian Academy of Sciences

Author for correspondence.
Email: aablaginina@gmail.com
Russian Federation, Sevastopol

S. N. Zheleznova

Kovalevsky Institute of Biology of the Southern Seas of Russian Academy of Sciences; Kutateladze Institute of Thermophysics, Siberian Branch of the Russian Academy of Sciencies

Email: aablaginina@gmail.com
Russian Federation, Sevastopol; Novosibirsk

E. S. Miroshnichenko

Kovalevsky Institute of Biology of the Southern Seas of Russian Academy of Sciences

Email: aablaginina@gmail.com
Russian Federation, Sevastopol

R. G. Gevorgiz

Kovalevsky Institute of Biology of the Southern Seas of Russian Academy of Sciences; Kutateladze Institute of Thermophysics, Siberian Branch of the Russian Academy of Sciencies

Email: aablaginina@gmail.com
Russian Federation, Sevastopol; Novosibirsk

L. I. Ryabushko

Kovalevsky Institute of Biology of the Southern Seas of Russian Academy of Sciences

Email: aablaginina@gmail.com
Russian Federation, Sevastopol

References

  1. Vázquez-Romero B., Perales J.A., Pereira H., Barbosa M., Ruiz J. // Sci. Total. Environ. 2022. V. 837. P. 1–10. https://doi.org/10.1016/j.scitotenv.2022.155742.
  2. Ahmed S.F., Mofijur M., Parisa T.A., Islam N., Kusumo F., Inayat A. et al.// Chemosphere. 2022. V. 286. Part 1. P. 1–14. https://doi.org/10.1016/j.chemosphere.2021.131656.
  3. Maghzian A., Aslani A., Zahedi R. // Energy Reports. 2022. V. 8. № . 4. P. 3337–3349. https://doi.org/10.1016/j.egyr.2022.02.125.
  4. Revellame E.D., Aguda R., Chistoserdov A., Fortela D.L., Hernandez R.A., Zappi M.E. // Algal Research. 2021. V. 55. № . 5. P. 1–6. https://doi.org/10.1016/j.algal.2021.102258.
  5. Wang S., Verma S.K., Said I.H., Thomsen L., Ullrich M.S., Kuhnert N. // Microb. Cell. Fact. 2018. V. 17. № . 1. P. 1–13. https://doi.org/10.1186/s12934-018-0957-0.
  6. Supramaetakorn W., Meksumpun S., Ichimi K., Thawonsode N., Veschasit O.-I. // J. Fish. Environ. 2019. V. 43. № . 3. P. 1–10.
  7. Жузе А.П., Прошкина-Лавренко А.И., Шешукова В.С. Диатомовый анализ. Книга 1. Том 1. / Ред. А. И. Прошкина-Лавренко. М.-Л.: Государственное издательство геологической литературы, 1949. 239 с.
  8. Kuczynska P., Jemiola-Rzeminska M., Strzalka K. // Mar. Drugs. 2015. V. 13. № . 9. P. 5847–5881. https://doi.org/10.3390/md13095847
  9. Геворгиз Р.Г., Железнова С. Н. // Морской биологический журнал. 2020. Т. 5, № 1. С. 12–19. https://doi.org/10.21072/mbj.2020.05.1.02
  10. Dang N.P., Vasskog T., Pandey A., Calay R.K. // Int. J. Biol. Ecolog. Eng.. 2022. V. 16. № . 12. P. 108–112.
  11. Silva B.F., Wendt E.V., Castro J.C., Oliveira A.E., Carrim A.J.I., Gonçalves Vieira J.D., et al. // Algal Research. 2015. V. 9. P. 312–321. https://doi.org/10.1016/j.algal.2015.04.010
  12. Jaramillo-Madrid A.C., Ashworth J., Ralph P. J. // J. Mar. Sci. Eng. 2020. V. 8. № . 2. P. 1–14. https://doi.org/10.3390/jmse8020085
  13. Геворгиз Р.Г., Гуреев М.А., Железнова С.Н., Гуреева Е.В., Нехорошев М.В. // Прикл.биохимия и микробиология. 2022. Т. 58. № 3.
  14. Eilertsen H.C., Eriksen G.K., Bergum J-S., Strømholt J., Elvevoll E., Eilertsen K-E. et al.// Appl. Sci. 2022. V. 12. № 6. P. 1–35. https://doi.org/10.3390/app12063082
  15. Blaginina A., Ryabushko L. // Int. J. on Algae. 2021. V. 23. № . 3. P. 247–256. https://doi.org/10.1615/InterJAlgae.v23.i3.40
  16. Round F.E., Hallsteinsen H., Paasche E. // Diatom Research. 1999. V. 14. № . 2. P. 343–356. https://doi.org/10.1080/0269249X.1999.9705476
  17. Woelfel J., Schoknecht A., Schaub I., Enke N., Schumann R., Karsten U. // Phycol. 2014. V. 53. № . 6. P. 639–651.
  18. Sahin M.S., Khazi M.I., Demirel Z., Dalay M.C. // Biocatalysis and Agricultural Biotechnol. 2019. V. 17. P. 390–398. https://doi.org/10.1016/j.bcab.2018.12.023
  19. Demirel Z., Imamoglu E., Dalay M.C. // Braz. Arch. Biol. Technol. 2020a. V. 63. № . 4. P. 1–8. https://doi.org/10.1590/1678-4324-2020190201
  20. Grubišić M., Šantek B., Zorić Z., Čošić Z., Vrana I., Gašparović B. et al. // Molecules. 2022. V. 27. № . 4. P. 1–27. doi: 10.3390/molecules27041248.
  21. Рябушко В.И., Железнова С.Н., Нехорошев М.В. // Аlgologia. 2017. Т. 27. № . 1. С. 15–21. https://doi.org/10.15407/alg27.01.015
  22. Bae M., Kim M.-B., Park Y.-K., Lee J.-Y. // Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2020. V. 1865. № . 11. P. 1–7. https://doi.org/10.1016/j.bbalip.2020.158618
  23. Рябушко Л.И. Микрофитобентос Черного моря. / Ред. А. В. Гаевская. Севастополь: ЭКОСИ-Гидрофизика, 2013. 416 c.
  24. Guillard R.R.L., Ryther J. // Can. J. Microbiol. 1963. V. 8. № . 2. P. 229–239 https://doi.org/10.1139/m62-029.
  25. Агатова А.И., Аржанова Н.В., Лапина Н.М., Налетова И.А., Торгунова Н.И. Руководство по современным биохимическим методам исследования водных экосистем, перспективных для промысла и марикультуры / Ред А. И. Агатовой. М.: ВНИРО, 2004. 123 с.
  26. Hashimoto T., Ozaki Y., Taminato M., Dass S.K., Mizuno M., Yoshimura K. et al. // British Journal of Nutrition. 2009. V. 102. № . 2. P. 242–248. https://doi.org/10.1017/S0007114508199007.
  27. Kates M. Techniques of Lipidology. Isolation, Analysis and Identification of Lipids. /Ed. T. S. Work, E. Work. Amsterdam; North Holland Publ. 1972. V. 3. Part II. P. 347–390.
  28. Sar E.A., Sunesen I. // Nova Hedwigia. 2003. V. 77. № . 3–4. P. 399–406. https://doi.org/10.1127/0029-5035/2003/0077-0399
  29. Геворгиз Р.Г., Железнова С.Н., Зозуля Ю.В., Уваров И.П., Репков А.П., Лелеков А.С. // Актуальные вопросы биологической физики и химии. БФФХ-2016: Севастополь. 2016. Т. 1. C. 73–77.
  30. Naumov I.V., Gevorgiz R.G., Skripkin S.G., Tintulova M.V., Tsoy M.A., Sharifullin B.R. // Chemical Engineering and Processing – Process Intensification. 2023b. V. 191. P. 1–12. https://doi.org/j.cep.2023.109467
  31. Лелеков А.С., Геворгиз Р.Г., Жондарева Я.Д. // Прикладная биохимия и микробиология. 2016. Т. 52. № . 3. C. 333–338. https://doi.org/10.7868/S0555109916030090
  32. Тренкеншу Р.П. // Экол. моря. 2005. Вып. 67. C. 98–110.
  33. Xia S., Wang K., Wan L., Li A., Hu Q., Zhang C. // Mar. Drugs. 2013. V. 11. № . 7. P. 2667–2681. https://doi.org/10.3390/md11072667.
  34. De Castro Araújo S., Tavano Garcia V.M. // Aquaculture. 2005. V. 246. № . 1–4. P. 405–412. https://doi.org/10.1016/j.aquaculture.2005.02.051
  35. Li H.-Y., Lu Y., Zheng J.-W., Yang W.-D., Liu J.-S. // Mar. Drugs. 2014. V. 12. № . 1. P. 153–166. https://doi.org/10.3390/md12010153.
  36. Spilling K., Seppälä J., Schwenk D., Rischer H., Tamminen T. // J Appl Phycol. 2021. V. 33. P. 1447–1455. https://doi.org/10.1007/s10811-021-02380-9
  37. Cointet E., Wielgosz-Collin G., Bougaran G., Rabesaotra V., Gonçalves O., Méléder V. // PLoS ONE. 2019. V. 14. № . 11. P. 1–28. https://doi.org/10.1371/journal.pone.0224701
  38. Sprynskyy M., Monedeiro F., Monedeiro-Milanowski M., Nowak Z., Krakowska-Sieprawska A., Pomastowski P. et al. // Algal Research. 2022. V. 62. P. 1–30. https://doi.org/10.1016/j.algal.2021.102615
  39. Preston M.R. // Curr. Atheroscler. Rep. 2019. V. 21. № 1. P. 1–11. https://doi.org/10.1007/s11883-019-0762-1
  40. Wang H., Zhang Y., Chen L., Cheng W., Liu T. // Bioprocess Biosyst Eng. 2018. V. 41. № . 7. P. 1061–1071. https://doi.org/10.1007/s00449-018-1935-y
  41. Гладышев М.И. // Журнал Cибирского федерального университета. Серия: Биология. 2012. Т. 5. № . 4. С. 352–386.
  42. Yang R., Wei D., Xie J. // Crit. Rev. Biotechnol. 2020. V. 40. № . 7. P. 993–1009. https://doi.org/10.1080/07388551.2020.1805402
  43. Gevorgiz R.G., Gureev M.A., Zheleznova S.N., Gureeva E.V., Nechoroshev M.V. // Appl.ed Biochem. Microbiol. 2022. V. 58, № . 3. P. 261–268. https://doi.org/10.1134/S0003683822010033
  44. Erdoğan A., Demirel Z., Dalay M.C., Eroğlu A.E. // Turk. J. Fish. Aquat. Sci. 2016. V. 16. № . 3. P. 499–506. https://doi.org/10.4194/1303-2712-v16_3_01

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Laboratory setup for intensive cultivation of the diatom alga N. shiloi

Download (36KB)
3. Fig. 2. SEM image of N. shiloi on the surface of plastic substrates: a – external and b – internal view of the valves, arrows indicate one apical pore at both ends of the axial field. Scale: 1 µm [15].

Download (24KB)
4. Fig. 3. N. shiloi cells in mixed cultures with cyanobacteria: Leptolyngbya sp. (a) and Stanieria sp. (b) in CM (scale bar 10 µm).

Download (45KB)
5. Fig. 4. Monoculture of N. shiloi, valves from different angles in SEM: a – cells in chains, scale: 10 µm; b – single cell, c, d – cells connected in pairs by marginal spines, scale: 1 µm.

Download (63KB)
6. Fig. 5. CM image of N. shiloi monoculture, scale bar 10 µm.

Download (47KB)
7. Fig. 6. The ability of N. shiloi to settle to the bottom of a laboratory beaker in 1 min (a), in 3 h (b).

Download (38KB)
8. Fig. 7. Dynamics of N. shiloi biomass in intensive culture on nutrient media F and 5F. For the cumulative curve 5F, the numbers indicate the growth phases: 1 - exponential, 2 - deceleration, 3 - stationary. For the cumulative curve F, the productivity in the linear growth phase was calculated using equation (2) (marked in red) PF/2 = 0.05 g / (L day), R2 = 0.99. The specific growth rate in the exponential phase for the cumulative curve 5F was calculated using equation (1) (marked in blue) µ = 0.8 1 /day, R2 = 0.99. The dots indicate the average values, the standard deviation for all measurements did not exceed 0.01 g / L. The arrow indicates the moment of measurement of FA and fucoxanthin.

Download (13KB)
9. Fig. 8. Biotechnological characteristics of the diatom alga N. shiloi.

Download (98KB)

Copyright (c) 2024 Russian Academy of Sciences