Influence of Endophytic Bacteria Bacillus subtilis 26D and Bacillus velezensis M66 on the Resistance of Potato Plants to the Early Blight Pathogen Alternaria solani

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of Bacillus velezensis M66 and Bacillus subtilis 26D bacteria on the resistance of potato plants to the causative agent of potato early blight necrotrophic fungus Alternaria solani was studied. For the first time, accumulation of viable bacterial cells of these strains in the internal tissues of potato stems, roots and tubers over a long period of time was shown. A significant reduction of the damaged by the early blight area of leaves inoculated with plant endophytes was revealed, as well as inhibition of pathogen growth under the influence of bacterial strains, which can be explained by the synthesis of lipopeptide antibiotics, the genes responsible for the synthesis of which were detected by PCR, and proteolytic enzymes, the activity of which was shown in vitro. Increase of plant resistance to the pathogen under the influence of inoculation with B. subtilis 26D and B. velezensis M66 was accompanied by the accumulation of hydrogen peroxide in the first hours after infection of plants with A. solani spores and a decrease in this parameter at the late stages of pathogenesis due to an increase of the activity of catalase and peroxidases. Limitation of the spread of the fungus was accompanied by an increase in the activity of proteinase inhibitors, which probably reduced the negative impact of proteolytic enzymes of the necrotrophic pathogen A. solani on plants. It can be assumed that inoculation of plants with bacterial cells of the B. velezensis M66 strain contributed to the increase of plant resistance to the early blight effectively priming the phytoimmune potential, comparable to the B. subtilis 26D strain, the active component of the biopreparation Fitosporin-M, which successfully used under the field conditions, .

Full Text

Restricted Access

About the authors

A. V. Sorokan

Institute of Biochemistry and Genetics – a separate structural division of the Ufa Federal Research Center of the Russian Academy of Sciences

Author for correspondence.
Email: fourtyanns@googlemail.com
Russian Federation, Ufa, 450054

V. F. Gabdrakhmanova

Institute of Biochemistry and Genetics – a separate structural division of the Ufa Federal Research Center of the Russian Academy of Sciences

Email: fourtyanns@googlemail.com
Russian Federation, Ufa, 450054

I. S. Mardanshin

Bashkir Research Institute of Agriculture – a separate structural division of the Ufa Federal Research Center of the Russian Academy of Sciences

Email: fourtyanns@googlemail.com
Russian Federation, Ufa, 450059

I. V. Maksimov

Institute of Biochemistry and Genetics – a separate structural division of the Ufa Federal Research Center of the Russian Academy of Sciences

Email: fourtyanns@googlemail.com
Russian Federation, Ufa, 450054

References

  1. Fagodiya R.K., Trivedi A., Fagodia B.L.// Sci. Rep. 2022. V. 12. P. 6131–6147. https://doi.org/10.1038/s41598-022-10108-z
  2. Fernandes C., Casadevall A., Gonçalves T. // FEMS Microbiol. Rev. 2023. V. 47. № 6. A. fuad061. https://doi.org/10.1093/femsre/fuad061
  3. Miranda-Apodaca J., Artetxe U., Aguado I., Martin-Souto L., Ramirez-Garcia A., Lacuesta M., et al. // Plants. 2023. V. 12. № 6. P. 1304–1321. https://doi.org/10.3390/plants12061304
  4. Brouwer S.M., Odilbekov F., Burra D.D., Lenman M., Hedley P.E., Grenville-Briggs L., et al. // Plant Mol. Biol. 2020. V. 104. № 1–2. P. 1–19. https://doi.org/10.1007/s11103-020-01019-6
  5. Wu X., Wang Z., Zhang R., Xu T., Zhao J., Liu Y. // Archives of Microbiology. 2022. V. 204. № 4. P. 213. https://doi.org/10.1007/s00203-022-02824-x
  6. Kim J.A., Song J.S., Kim P.I., Kim D.H., Kim Y. // J. of Fungi. 2022. V. 8. № 10. P. 1053. https://doi.org/10.3390/jof81010532
  7. Liu H., Jiang J., An M., Li B., Xie Y., Xu C., Jiang L., Yan F., Wang Z., Wu Y. // Front Microbiol. 2022. V. 13. A. 840318. https://doi.org/10.3389/fmicb.2022.840318
  8. Chen L., Wu Y.D., Chong X.Y., Xin Q.H., Wang D.X., Bian K.// J. Appl. Microbiol. 2022. V. 128. P. 803–813. https://doi.org/10.1111/jam.14508
  9. Maksimov I.V., Singh B.P., Cherepanova E.A., Burkhanova G.F., Khairullin R.M.// Appl. Biochem. Microbiol. 2020. V. 14. P. 15–28. https://doi.org/10.1134/S0003683820010135
  10. Liu D., Li K., Hu J., Wang W., Liu X., Gao Z. // Int. J. Mol. Sci. 2019. V. 20(12). P. 2908. https://doi.org/10.3390/ijms20122908
  11. Andri S., Meyer T., Rigolet A, Prigent-Combaret C., Höfte M., Balleux G. et al. // Microbiol. Spectr. 2021. V. 9. A. e0203821. https://doi.org/10.1128/spectrum.02038-21
  12. Cawoy H., Debois D., Franzil L., De Pauw E., Thonart P., Ongena M.// Microb. Biotechnol. 2015. V. 2. P. 281–295. https://doi.org/10.1111/1751-7915.12238
  13. Fazle Rabbee M., Baek K.H. // Molecules. 2020. V. 25. № 21. P. 4973–4985. https://doi.org/10.3390/molecules25214973
  14. Sui X., Han X., Cao J., Li Y., Yuan Y., Gou J. et al. // Front. Microbiol. 2022. V. 13. A. 940156. https://doi.org/10.3389/fmicb.2022.940156
  15. Черепанова Е.А., Галяутдинов И.В., Бурханова Г.Ф., Максимов И.В. // Прикл. биохимия микробиология. 2021. Т. 57. №?? С. 496–503. https://doi.org/10.31857/S0555109921050032
  16. Cheffi M., Bouket A.C., Alenezi F.N., Luptakova L., Belka M., Vallat A., et al. // Microorganisms. 2019. V. 7. № 9. P. 314. https://doi.org/10.3390/microorganisms7090314
  17. Liu S., Zha Z., Chen S., Tang R., Zhao Y., Lin Q., Duan Y., Wang K. // J. Sci. Food. Agric. 2023. V.103. № 5. P. 2675–2680. https://doi.org/10.1002/jsfa.12272
  18. Kudriavtseva N.N., Sofin A.V., Revina T.A., Gvozdeva E.L., Ievleva E.V., Valueva T.A.// App. Biochem. Microbiol. 2013. V. 49. № 5. P. 513–521. https://doi.org/10.7868/S0555109913050073
  19. Cho Y./ Eukary Cell. 2015. V. 14. P. 335–344. https://doi.org/10.1128/EC.00226-14
  20. Dey P., Ramanujam R., Venkatesan G., Nagarathnam R. // PLoS One. 2019 V. 14(9). A. e0223216. https://doi.org/10.1371/journal.pone.0223216 http://ibg.anrb.ru/wp-content/uploads/2019/04/Katalog-endofit.doc (available on 25.05.2024)
  21. Sorokan A., Veselova S., Benkovskaya G., Maksimov I. // Plants. 2021. V. 10. P. 923–938. https://doi.org/10.3390/plants10050923
  22. Ганнибал Ф.Б. /Ред. М.М. Левитина. СПб.: ГНУ ВИЗР Россельхозакадемии., 2011. 70 с.
  23. Ганнибал Ф.Б., Орина А.С. // Микология и фитопатология. 2022. T. 56. № 6. с. 431–440
  24. Nowicki M., Foolad M.R., Nowakowska M., Kozik E.U. // Plant Dis. 2012. V. 96. № 1. P. 4–17. https://doi.org/10.1094/PDIS-05-11-0458
  25. Сорокань А.В., Бурханова Г.Ф., Алексеев В.Ю., Максимов И.В. // Вестник Томского государственного университета. Биология. 2021. T. 53. С. 109–130. https://doi.org/10.17223/19988591/53/6
  26. Sorokan A., Benkovskaya G., Burkhanova G., Blagova. D., Maksimov. I. // Plants. 2020. V. 9. A. 1115. https://doi.org/10.3390/plants9091115
  27. Максимов И.В., Пусенкова Л.И., Абизгильдина Р.Р. // Агрохимия. 2011. № 6. С. 43–48.
  28. Lastochkina O., Baymiev A., Shayahmetova A., Garshina D., Koryakov I., Shpirnaya I. et al. // Plants. 2020. V. 9. P 76–81. https://doi.org/10.3390/plants9010076
  29. Rumyantsev S.D., Alekseev V.Y., Sorokan A.V., Burkhanova G.F., Cherepanova E.A., Garafutdinov R.R. et al. // Life. 2023. V. 13. P. 214–226. https://doi.org/10.3390/life13010214
  30. Attia M.S., Hashem A.H., Badawy A.A. // Bot. Stud. 2022. V. 63. P. 26–38. https://doi.org/10.1186/s40529-022-00357-6
  31. Yánez-Mendizábal V., Falconí C.E. // Biotechnol. Lett. 2021. V. 43. № 3. P. 719–728. https://doi.org/10.1007/s10529-020-03066-x

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The area of alternariasis symptoms (a) on potato leaves under the control and influence of B. subtilis 26D and B. velezensis M66 (figures show % of the affected area of the leaf blade), and the suppression of the growth of the A. solani fungus culture (b) by the studied strains (figures show the distance between bacterial and fungal colonies). Statistically significant differences in indicators are indicated in different letters (at p < 0.05).

Download (309KB)
3. 2. Antagonistic properties of B. subtilis 26D and B. velezensis M66 against pathogens. (a) is a photograph of a polyacrylamide gel after separation of bacterial DNA sequence PCR products with primers for genes encoding lipopeptide biosynthesis enzymes: 1 – phosphopantheteinyl transferase; 2 – surfactin synthase; 3 – iturin synthase A; 4 – iturin synthase B; 5 – phengicin synthase; 6 – 16S rRNA housekeeping gene; (b) – growth of colonies of B. subtilis 26D and B. velezensis M66 on 3% skimmed milk agar.

Download (116KB)
4. 3. The effect of B. subtilis 26D and B. velezensis M66 bacteria on the content of hydrogen peroxide (a), catalase activity (b), peroxidase (c), and trypsin inhibitors (d) in healthy and alternariasis-infected potato plants: 1-1 hours, 2-24 hours, 3-6 days after applying the spores of the pathogen. Statistically significant differences in the indicators observed at the corresponding time point (at p < 0.05) are indicated by different letters.

Download (506KB)

Copyright (c) 2024 Russian Academy of Sciences