Influence of Endophytic Bacteria Bacillus subtilis 26D and Bacillus velezensis M66 on the Resistance of Potato Plants to the Early Blight Pathogen Alternaria solani
- Authors: Sorokan A.V.1, Gabdrakhmanova V.F.1, Mardanshin I.S.2, Maksimov I.V.1
-
Affiliations:
- Institute of Biochemistry and Genetics – a separate structural division of the Ufa Federal Research Center of the Russian Academy of Sciences
- Bashkir Research Institute of Agriculture – a separate structural division of the Ufa Federal Research Center of the Russian Academy of Sciences
- Issue: Vol 60, No 6 (2024)
- Pages: 623-631
- Section: Articles
- URL: https://medjrf.com/0555-1099/article/view/681119
- DOI: https://doi.org/10.31857/S0555109924060064
- EDN: https://elibrary.ru/QFSBZM
- ID: 681119
Cite item
Abstract
The effect of Bacillus velezensis M66 and Bacillus subtilis 26D bacteria on the resistance of potato plants to the causative agent of potato early blight necrotrophic fungus Alternaria solani was studied. For the first time, accumulation of viable bacterial cells of these strains in the internal tissues of potato stems, roots and tubers over a long period of time was shown. A significant reduction of the damaged by the early blight area of leaves inoculated with plant endophytes was revealed, as well as inhibition of pathogen growth under the influence of bacterial strains, which can be explained by the synthesis of lipopeptide antibiotics, the genes responsible for the synthesis of which were detected by PCR, and proteolytic enzymes, the activity of which was shown in vitro. Increase of plant resistance to the pathogen under the influence of inoculation with B. subtilis 26D and B. velezensis M66 was accompanied by the accumulation of hydrogen peroxide in the first hours after infection of plants with A. solani spores and a decrease in this parameter at the late stages of pathogenesis due to an increase of the activity of catalase and peroxidases. Limitation of the spread of the fungus was accompanied by an increase in the activity of proteinase inhibitors, which probably reduced the negative impact of proteolytic enzymes of the necrotrophic pathogen A. solani on plants. It can be assumed that inoculation of plants with bacterial cells of the B. velezensis M66 strain contributed to the increase of plant resistance to the early blight effectively priming the phytoimmune potential, comparable to the B. subtilis 26D strain, the active component of the biopreparation Fitosporin-M, which successfully used under the field conditions, .
Full Text

About the authors
A. V. Sorokan
Institute of Biochemistry and Genetics – a separate structural division of the Ufa Federal Research Center of the Russian Academy of Sciences
Author for correspondence.
Email: fourtyanns@googlemail.com
Russian Federation, Ufa, 450054
V. F. Gabdrakhmanova
Institute of Biochemistry and Genetics – a separate structural division of the Ufa Federal Research Center of the Russian Academy of Sciences
Email: fourtyanns@googlemail.com
Russian Federation, Ufa, 450054
I. S. Mardanshin
Bashkir Research Institute of Agriculture – a separate structural division of the Ufa Federal Research Center of the Russian Academy of Sciences
Email: fourtyanns@googlemail.com
Russian Federation, Ufa, 450059
I. V. Maksimov
Institute of Biochemistry and Genetics – a separate structural division of the Ufa Federal Research Center of the Russian Academy of Sciences
Email: fourtyanns@googlemail.com
Russian Federation, Ufa, 450054
References
- Fagodiya R.K., Trivedi A., Fagodia B.L.// Sci. Rep. 2022. V. 12. P. 6131–6147. https://doi.org/10.1038/s41598-022-10108-z
- Fernandes C., Casadevall A., Gonçalves T. // FEMS Microbiol. Rev. 2023. V. 47. № 6. A. fuad061. https://doi.org/10.1093/femsre/fuad061
- Miranda-Apodaca J., Artetxe U., Aguado I., Martin-Souto L., Ramirez-Garcia A., Lacuesta M., et al. // Plants. 2023. V. 12. № 6. P. 1304–1321. https://doi.org/10.3390/plants12061304
- Brouwer S.M., Odilbekov F., Burra D.D., Lenman M., Hedley P.E., Grenville-Briggs L., et al. // Plant Mol. Biol. 2020. V. 104. № 1–2. P. 1–19. https://doi.org/10.1007/s11103-020-01019-6
- Wu X., Wang Z., Zhang R., Xu T., Zhao J., Liu Y. // Archives of Microbiology. 2022. V. 204. № 4. P. 213. https://doi.org/10.1007/s00203-022-02824-x
- Kim J.A., Song J.S., Kim P.I., Kim D.H., Kim Y. // J. of Fungi. 2022. V. 8. № 10. P. 1053. https://doi.org/10.3390/jof81010532
- Liu H., Jiang J., An M., Li B., Xie Y., Xu C., Jiang L., Yan F., Wang Z., Wu Y. // Front Microbiol. 2022. V. 13. A. 840318. https://doi.org/10.3389/fmicb.2022.840318
- Chen L., Wu Y.D., Chong X.Y., Xin Q.H., Wang D.X., Bian K.// J. Appl. Microbiol. 2022. V. 128. P. 803–813. https://doi.org/10.1111/jam.14508
- Maksimov I.V., Singh B.P., Cherepanova E.A., Burkhanova G.F., Khairullin R.M.// Appl. Biochem. Microbiol. 2020. V. 14. P. 15–28. https://doi.org/10.1134/S0003683820010135
- Liu D., Li K., Hu J., Wang W., Liu X., Gao Z. // Int. J. Mol. Sci. 2019. V. 20(12). P. 2908. https://doi.org/10.3390/ijms20122908
- Andri S., Meyer T., Rigolet A, Prigent-Combaret C., Höfte M., Balleux G. et al. // Microbiol. Spectr. 2021. V. 9. A. e0203821. https://doi.org/10.1128/spectrum.02038-21
- Cawoy H., Debois D., Franzil L., De Pauw E., Thonart P., Ongena M.// Microb. Biotechnol. 2015. V. 2. P. 281–295. https://doi.org/10.1111/1751-7915.12238
- Fazle Rabbee M., Baek K.H. // Molecules. 2020. V. 25. № 21. P. 4973–4985. https://doi.org/10.3390/molecules25214973
- Sui X., Han X., Cao J., Li Y., Yuan Y., Gou J. et al. // Front. Microbiol. 2022. V. 13. A. 940156. https://doi.org/10.3389/fmicb.2022.940156
- Черепанова Е.А., Галяутдинов И.В., Бурханова Г.Ф., Максимов И.В. // Прикл. биохимия микробиология. 2021. Т. 57. №?? С. 496–503. https://doi.org/10.31857/S0555109921050032
- Cheffi M., Bouket A.C., Alenezi F.N., Luptakova L., Belka M., Vallat A., et al. // Microorganisms. 2019. V. 7. № 9. P. 314. https://doi.org/10.3390/microorganisms7090314
- Liu S., Zha Z., Chen S., Tang R., Zhao Y., Lin Q., Duan Y., Wang K. // J. Sci. Food. Agric. 2023. V.103. № 5. P. 2675–2680. https://doi.org/10.1002/jsfa.12272
- Kudriavtseva N.N., Sofin A.V., Revina T.A., Gvozdeva E.L., Ievleva E.V., Valueva T.A.// App. Biochem. Microbiol. 2013. V. 49. № 5. P. 513–521. https://doi.org/10.7868/S0555109913050073
- Cho Y./ Eukary Cell. 2015. V. 14. P. 335–344. https://doi.org/10.1128/EC.00226-14
- Dey P., Ramanujam R., Venkatesan G., Nagarathnam R. // PLoS One. 2019 V. 14(9). A. e0223216. https://doi.org/10.1371/journal.pone.0223216 http://ibg.anrb.ru/wp-content/uploads/2019/04/Katalog-endofit.doc (available on 25.05.2024)
- Sorokan A., Veselova S., Benkovskaya G., Maksimov I. // Plants. 2021. V. 10. P. 923–938. https://doi.org/10.3390/plants10050923
- Ганнибал Ф.Б. /Ред. М.М. Левитина. СПб.: ГНУ ВИЗР Россельхозакадемии., 2011. 70 с.
- Ганнибал Ф.Б., Орина А.С. // Микология и фитопатология. 2022. T. 56. № 6. с. 431–440
- Nowicki M., Foolad M.R., Nowakowska M., Kozik E.U. // Plant Dis. 2012. V. 96. № 1. P. 4–17. https://doi.org/10.1094/PDIS-05-11-0458
- Сорокань А.В., Бурханова Г.Ф., Алексеев В.Ю., Максимов И.В. // Вестник Томского государственного университета. Биология. 2021. T. 53. С. 109–130. https://doi.org/10.17223/19988591/53/6
- Sorokan A., Benkovskaya G., Burkhanova G., Blagova. D., Maksimov. I. // Plants. 2020. V. 9. A. 1115. https://doi.org/10.3390/plants9091115
- Максимов И.В., Пусенкова Л.И., Абизгильдина Р.Р. // Агрохимия. 2011. № 6. С. 43–48.
- Lastochkina O., Baymiev A., Shayahmetova A., Garshina D., Koryakov I., Shpirnaya I. et al. // Plants. 2020. V. 9. P 76–81. https://doi.org/10.3390/plants9010076
- Rumyantsev S.D., Alekseev V.Y., Sorokan A.V., Burkhanova G.F., Cherepanova E.A., Garafutdinov R.R. et al. // Life. 2023. V. 13. P. 214–226. https://doi.org/10.3390/life13010214
- Attia M.S., Hashem A.H., Badawy A.A. // Bot. Stud. 2022. V. 63. P. 26–38. https://doi.org/10.1186/s40529-022-00357-6
- Yánez-Mendizábal V., Falconí C.E. // Biotechnol. Lett. 2021. V. 43. № 3. P. 719–728. https://doi.org/10.1007/s10529-020-03066-x
Supplementary files
