Inducible whole-cell biosensor for detection of formate ions
- Authors: Cherenkova А.А.1,2, Yuzbashev Т.V.3, Melkina О.Е.1
-
Affiliations:
- National Research Center “Kurchatov Institute”
- Mendeleev University of Chemical Technology
- Rothamsted Research
- Issue: Vol 60, No 5 (2024)
- Pages: 545-551
- Section: Articles
- URL: https://medjrf.com/0555-1099/article/view/681862
- DOI: https://doi.org/10.31857/S0555109924050128
- EDN: https://elibrary.ru/QSTNOY
- ID: 681862
Cite item
Abstract
Ten strains of the yeast Yarrowia lipolytica were constructed, the genomes of which contain hrGFP gene under the regulation of the formate dehydrogenase promoters. The resulting strains can act as whole-cell biosensors for the detection of formate ions in various mediums. By visual assessment of biomass fluorescence, we selected the three most promising yeast strains. The main biosensor characteristics (threshold sensitivity, amplitude and response time) of the selected strains were measured. As a result, in terms of characteristics, the B26 strain was recognized as the most suitable for the detection of formate ions. A carbon source for the nutrient medium that does not reduce the activation of the biosensor was selected. Furthermore, we showed that unlike formate and formaldehyde, methanol practically does not induce the biosensor fluorescence response.
Full Text

About the authors
А. А. Cherenkova
National Research Center “Kurchatov Institute”; Mendeleev University of Chemical Technology
Email: oligamelkina@gmail.com
Complex of NBICS Technologies
Russian Federation, Moscow, 123098; Moscow, 125480Т. V. Yuzbashev
Rothamsted Research
Email: oligamelkina@gmail.com
Plant Sciences and the Bioeconomy
United Kingdom, West Common, Harpenden, AL5 2JQ, HertfordshireО. Е. Melkina
National Research Center “Kurchatov Institute”
Author for correspondence.
Email: oligamelkina@gmail.com
Complex of NBICS Technologies
Russian Federation, Moscow, 123098References
- Robles H. Encyclopedia of Toxicology. 2nd Ed. / Ed. P. Wexler: Elsevier, 2005. P. 378‒380.
- Cunha S., Rangaiah G.P., Hidajat K. Computer Aided Chemical Engineering. / Eds. A. Espuña, M. Graells, L. Puigjaner: Elsevier, 2017. V. 40. P. 1093‒1098.
- Larsson S., Palmqvist E., Hahn-Hägerdal B., Tengborg C., Stenberg K., Zacchi G., Nilvebrant N.O. // Enzyme Microb. Technol. 1999. V. 24. P. 151‒159.
- Zaldivar J., Martinez A., Ingram L.O. // Biotechnol. Bioeng.. 2000. V. 68. № 5. P. 524‒530.
- Кочетков А.В. // Строительные материалы. 2011. № 7. С. 44‒46.
- Triebig G., Schaller K.H. // Clin Chim Acta. 1980. V. 108. № 3. P. 355‒360.
- Ohmori S., Sumii I., Toyonaga Y., Nakata K., Kawase M. //J. Chromatogr. 1988. V. 426. № 1. P. 15‒24.
- Kim, J.K., Shiraishi T., Fukusaki E.I., Kobayashi A. // J. Chromatogr. A. 2003. V. 986. № 2. P. 313‒317.
- Abolin C., McRae J.D., Tozer T.N., Takki S. // Biochem. Med. 1980. V. 23. № 2. P. 209‒218.
- Campos A.F., Cassella R.J. // Food Chem. 2018. V. 269. P. 252‒257.
- Cheng Vollmer A., Van Dyk T.K. // Adv. Microb. Physiol. 2004. V. 49. P. 131‒174.
- Bazhenov S.V., Novoyatlova U.S., Scheglova E.S., Prazdnova E.V., Mazanko M.S., Kessenikh A.G. et al. // Biosens. Bioelectron. X. 2023. V. 13. https://doi.org/10.1016/j.biosx.2023.100323.
- Chistoserdova L., Laukel M., Portais J.C., Vorholt J.A., Lidstrom M.E. // J. Bacteriol. 2004. V. 186. № 1. P. 22‒28.
- Godfrey C., Coddington A., Greenwood C., Thomson A.J., Gadsby P.M. // Biochem. J. 1987. V. 243. № 1. P. 225‒233.
- Benoit S., Abaibou H., Mandrand-Berthelot M.A. // J. Bacteriol. 1998. V. 180. № 24. P. 6625‒6634.
- Sakai Y., Murdanoto A.P., Konishi T., Iwamatsu A., Kato N. // J. Bacteriol. 1997. V. 179. № 14. P. 4480‒4485.
- Патент ЕС. 1988. № 0299108A1.
- Overkamp K.M., Kötter P., van der Hoek R., Schoondermark-Stolk S., Luttik M.A., van Dijken J.P., Pronk J.T. // Yeast. 2002. V. 19. № 6. P. 509‒520.
- Kobayashi A., Taketa M., Sowa K., Kano K., Higuchi Y., Ogata H. // IUCrJ. 2023. V. 10. P. 544‒554.
- Патент Великобритания, Германия. 2022. № WO2022008929A1.
- Маниатис Т., Фрич Э., Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование. Москва: Мир, 1984. 480 с.
- Yuzbashev T.V., Yuzbasheva E.Y., Melkina O.E., Patel D., Bubnov D., Dietz H., Ledesma-Amaro R. // Commun. Biol. 2023. V. 6. № 1. P. 858.
- Yurimoto H., Komeda T., Lim C.R., Nakagawa T., Kondo K., Kato N., Sakai Y. // Biochim. Biophys. Acta. 2000. V. 1493. P. 56–63.
- Hartner F.S., Glieder A. // Microb. Cell Fact. 2006. V. 5. P. 39.
- Chen N.H., Djoko K.Y., Veyrier F.J., McEwan A.G. // Front Microbiol. 2016. V. 7. P. 257.
- Liu A., Feng R., Liang B. // Enzyme Microb. Technol. 2016. V. 91. P. 59–65.
- Buttery J.E., Chamberlain B.R. // J. Anal. Toxicol. 1988. V. 12. № 5. P. 292–294.
- Ogata M., Iwamoto T. // Int. Arch. Occup. Environ. Health. 1990. V. 62. № 3. P. 227–232.
Supplementary files
