The effect of S-Nitrosoglutathione on the amount and activity of erythroid nuclear factor Nrf2 in human hepatocellular carcinoma cells

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

S-nitrosoglutathione (GSNO) is an endogenous donor of nitric oxide (NO), which, at the same time, can act both as a signaling molecule and a toxic agent, forming active forms of nitrogen. The purpose of this work was to study the mechanism of NO participation in the regulation of erythroid nuclear factor 2 (Nrf2) functioning, which is a redox-sensitive transcription factor. It was shown that when GSNO was exposed to human hepatocellular carcinoma cells (HepG2), the level of intracellular NO increased dose-dependently during incubation for 24 and 72 hours. The maximum increase of NO level at 100 mM concentration led to decrease of the amount of non-protein SH groups, to maximum increase of 3-nitrothyrosine and bityrosine levels, which contributed to the decline of cell viability. The NO donor — S-nitrosoglutation activated Nrf2 during exposure for 24 hours, most likely due to nitrosylation of Keap1 protein, and at 72 hours not only activated Nrf2, but also led to an increase in its amount. This process was carried out through NO-cGMP signaling pathway. Activation of Nrf2 is a key factor in protecting cells from the toxic effects of nitrosative stress products.

全文:

受限制的访问

作者简介

Yu. Abalenikhina

Ryazan State Medical University named after Academician I.P. Pavlov

编辑信件的主要联系方式.
Email: abalenihina88@mail.ru
俄罗斯联邦, Ryazan, 390026

O. Suchkova

Ryazan State Medical University named after Academician I.P. Pavlov

Email: abalenihina88@mail.ru
俄罗斯联邦, Ryazan, 390026

E. Kostyukova

Ryazan State Medical University named after Academician I.P. Pavlov

Email: abalenihina88@mail.ru
俄罗斯联邦, Ryazan, 390026

A. Shchulkin

Ryazan State Medical University named after Academician I.P. Pavlov

Email: abalenihina88@mail.ru
俄罗斯联邦, Ryazan, 390026

A. Topunov

Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: abalenihina88@mail.ru
俄罗斯联邦, Moscow, 119071

参考

  1. Thomas D.D., Ridnour L.A., Isenberg J.S., Flores-Santana W., Switzer C.H., Donzelli S. et al. // Free Radic. Biol. Med. 2008. V. 45. № 1. P. 18–31. https://doi.org/10.1016/j.freeradbiomed.2008.03.020
  2. Сучкова О.Н., Абаленихина Ю.В., Костюкова Е.В., Щулькин А.В., Кочанова П.Д., Гаджиева Ф.Т. и др. // Вопросы биологической, медицинской и фармацевтической химии. 2024. Т. 9. № 27. С. 50–56. https://doi.org/10.29296/25877313-2024-09-07
  3. Калинин Р.Е., Сучков И.А., Мжаванадзе Н.Д., Короткова Н В., Климентова Э.А., Поваров В.О. // Наука молодых (Eruditio Juvenium). 2021. Т. 9. № 3. С. 407–414. https://doi.org/10.23888/HMJ202193407-414
  4. Abalenikhina Yu.V., Kosmachevskaya O.V., Topunov A.F. // Appl. Biochem. Microbiol. 2020. V. 56. № 6. P. 611–623. https://doi.org/10.1134/S0003683820060022
  5. He F., Ru X., Wen T. // Int. J. Mol. Sci. 2020. V. 21. № 13. e4777. https://doi.org/10.3390/ijms21134777
  6. Турпаев К.Т. // Биохимия. 2013. Т. 78. № 2. С. 147–166
  7. McMahon M., Lamont D.J., Beattie K.A., Hayes J.D. // Proc. Natl. Acad. Sci. USA. 2010. V. 107. № 44. Р. 18838–18843. https://doi.org/10.1073/pnas.1007387107
  8. Fourquet S., Guerois R., Biard D., Toledano M.B // J. Biol. Chem. 2010. V. 285. № 11. С. 8463–8471. https://doi.org/10.1074/jbc. М109.051714
  9. Um H.-C., Jang J.-H., Kim D.-H., Lee C., Surh Y.-J. // Nitric Oxide. 2011. V. 25. № 2. Р. 161–168. https://doi.org/10.1016/j.niox.2011.06.001
  10. Cortese-Krott M.M., Pullmann D., Feelisch M. // Pharmacol. Res. 2016. V. 113. Pt. A. Р. 490–499. https://doi.org/10.1016/j.phrs.2016.09.022
  11. Sun Z., Zhang S., Chan J.Y., Zhang D.D. // Mol. Cell. Biol. 2007. V. 27. № 18. Р. 6334-6349. https://doi.org/10.1128/MCB.00630-07
  12. Kim S.-R., Seong K.-J., Kim W.-J., Jung J.-Y. // Int. J. Mol. Sci. 2022. V. 23. № 7. e4004. https://doi.org/10.3390/ijms23074004
  13. Gorska-Arcisz M., Popeda M., Braun M., Piasecka D., Nowak J.I., Kitowska K. et al. // Cell. Mol. Biol. Lett. 2024. V. 29. № 1. e71. https://doi.org/10.1186/s11658-024-00586-6
  14. Menegon S., Columbano A., Giordano S. // Trends Mol. Med. 2016. V. 22. № 7. P. 578–593. https://doi.org/10.1016/j.molmed.2016.05.002
  15. Gjorgieva Ackova D., Maksimova V., Smilkov K., Buttari B., Arese M., Saso L. // Pharmaceuticals. 2023. V. 16. № 6. e850. https://doi.org/10.3390/ph16060850
  16. Kryszczuk M., Kowalczuk O. // Arch. Biochem. Biophys. 2022. V. 15. № 730. e109417. https://doi.org/10.1016/j.abb.2022.109417
  17. Kalantari L., Ghotbabadi Z.R., Gholipour A., Ehymayed H.M., Najafiyan B., Amirlou P. et al. // Cell. Commun. Signal. 2023. V. 21. № 1. e318. https://doi.org/10.1186/s12964-023-01351-6
  18. Song Y., Lu Q., Jiang D., Lan X. // Eur. J. Nucl. Med. Mol. Imaging. 2023. V. 50. № 3. Р. 639–641. https://doi.org/10.1007/s00259-022-06043-w
  19. Hwang T.L. // Br. J. Pharmacol. 1998. V. 125. № 6. Р. 1158–1163.
  20. Bollong M.J., Yun H., Sherwood L., Woods A.K., Lairson L.L., Schultz P.G. // ACS Chem. Biol. 2015. V. 10. № 10. Р. 2193–2198. https://doi.org/10.1021/acschembio.5b00448
  21. Balcerczyk A., Soszynski M., Bartosz G. // Free Radic. Biol. Med. 2005. V. 39. № 3. Р. 327–335. https://doi.org/10.1016/j.freeradbiomed.2005.03.017
  22. Kumar P., Nagarajan A., Uchil P.D. // Cold Spring Harb. Protoc. 2018. V. 2018. № 6. https://doi.org/10.1101/pdb.prot095505
  23. Kosmachevskaya O.V., Nasybullina E.I., Shumaev K.B., Novikova N.N., Topunov A.F. // Int. J. Mol. Sci. 2021. V. 22. № 24. e13649. https://doi.org/10.3390/ijms222413649
  24. Kojima S., Nakayama K., Ishida H. // J. Radiat. Res. 2024. V. 45. № 1. Р. 33–39. https://doi.org/10.1269/jrr.45.33
  25. Pravkin S.K., Yakusheva E.N., Uzbekova D.G. // Bull. Exp. Biol. Med. 2013. V. 156. № 2. P. 220-223. https://doi.org/1010.1007/s10517-013-2315-x
  26. Li W., Wang D., Lao K.U., Wang X. // ACS Biomater. Sci. Eng. 2023. V. 13. № 9. P. 1694–1705. https://doi.org/10.1021/acsbiomaterials.2c01284
  27. Broniowska K.A., Diers A.R., Hogg N. // Biochim. Biophys. Acta. 2013. V. 1830. № 5. Р. 3173–3181. https://doi.org/10.1016/j.bbagen.2013.02.004
  28. Ramachandran N., Root P., Jiang X-M., Hogg P.J., Mutus B. // Proc. Natl. Acad. Sci. USA. 2001. V. 98. № 17. Р. 9539–9544.
  29. Ferrer-Sueta G., Campolo N., Trujillo M., Bartesaghi S., Carballal S., Romero N. et al. // Chem. Rev. 2018. V. 118. № 3. Р. 1338–1408.
  30. Boer T.R., Palomino R.I., Mascharak P.K. // Med. One. 2019. V. 4. e190003. https://doi.org/10.20900/mo.20190003
  31. Yu J., Zhao Y., Li B., Sun L., Huo H. // J. Biochem. Mol. Toxicol. 2012. V. 26. № 7. Р. 264–269. https://doi.org/10.1002/jbt.21417
  32. Абаленихина Ю.В., Ерохина П.Д., Сеидкулиева А.А., Завьялова О.А., Щулькин А.В., Якушева Е.Н. // Российский медико-биологический вестник им. академика И.П. Павлова. 2022. Т. 30. № 3. С. 295–304. https://doi.org/10.17816/PAVLOVJ105574
  33. Xu W., Liu L.Z., Loizidou M., Ahmed M., Charles I.G. // Cell. Res. 2002. V. 12. № 5–6. P. 311–320. https://doi.org/10.1038/sj.cr.7290133

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Fluorescence intensity (U. fl.) in HepG2 cell lysate after exposure to GSNO for 24 h (a) and 72 h (b) when stained with DAF-FM.

下载 (227KB)
3. Fig. 2. Changes in NO levels in HepG2 cells exposed to GSNO for 24 h (a) and 72 h (b). Cells were stained with DAF-FM, nuclei were stained with DAPI. Cell visualization was performed using an Olympus CKX-53 inverted microscope (“Olympus”, Japan), magnification ×400.

下载 (385KB)
4. Fig. 3. Concentration of non-protein SH-groups (μmol/mg protein) inside HepG2 cells after exposure to GSNO for 24 (a) and 72 h (b).

下载 (199KB)
5. Fig. 4. The effect of GSNO for 24 h (a, c) and 72 h (b, d) on the relative amount of 3-nitrotyrosine in protein molecules of HepG2 cells: a, b — blotting results; c, d — densitometric analysis results.

下载 (334KB)
6. Fig. 5. Dityrosine concentration (nmol/mg protein) in HepG2 cells exposed to GSNO for 24 h (a) and 72 h (b).

下载 (218KB)
7. Fig. 6. Change in viability (%) of HepG2 cells exposed to GSNO for 24 h (a) and 72 h (b).

下载 (124KB)
8. Fig. 7. The effect of GSNO for 24 h and 72 h on the relative amount of Nrf2 in the nucleus (a, c) and cytoplasm (b, d) in HepG2 cells: a, b — blotting results; c, d — densitometric analysis results.

下载 (508KB)
9. Fig. 8. Glutathione transferase activity (μmol*CDNB/mg protein) in HepG2 cells exposed to GSNO and in combination with inhibitors of sGC (ODQ) and antioxidant response element (AEM1) for 24 h (a) and 72 h (b).

下载 (346KB)
10. Fig. 9. Viability of HepG2 cells after exposure to GSNO together with antioxidant response element inhibitor (AEM1) for 24 h (a) and 72 h (b).

下载 (142KB)
11. Fig. 10. The mechanism of activation of Nrf2 and glutathione transferase in HepG2 cells under the influence of GSNO.

下载 (221KB)

版权所有 © Russian Academy of Sciences, 2025