Influence of chitosanon on the ability of LPS to interact with cells of the immune system

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Complexes of lipopolysaccharide (LPS) from the bacterium Escherichia coli and chitosan (CN) with a molecular weight of 5 kDa were obtained and their supramolecular organization was studied. Using atomic force microscopy, it was shown that during the formation of complexes there is a transition from the micellar structure of the original LPS to linear network structures uniformly distributed over the surface of mica. The stability of LPS-CN complexes of various stoichiometries in biological media in the presence of serum proteins was investigated. It was shown that complexes with an LPS : CN ratio of 1 : 1 in the presence of serum proteins lost their surface charge and tended to aggregate; while complexes with maximum saturation of CN (1 : 5) did not aggregate under these conditions and maintained their surface charge. The effect of CNs of different molecular weights on the ability of LPS to interact with neutrophils in human whole blood was studied. It was observed that LPS-CN complexes were capable of binding to neutrophils and entering the cell, and this ability was enhanced in the presence of serum proteins. Chitosan exhibited the ability to suppress the synthesis of the proinflammatory cytokine TNF-α, induced by LPS, not only as part of the complex but also when cells were pretreated with a polycation.

Full Text

Restricted Access

About the authors

V. N. Davydova

Pacific G.B. Elyakov Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences

Author for correspondence.
Email: vikdavidova@yandex.ru
Russian Federation, 690022, Vladivostok

A. V. Volodko

Pacific G.B. Elyakov Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences

Email: vikdavidova@yandex.ru
Russian Federation, 690022, Vladivostok

I. V. Gorbach

Pacific G.B. Elyakov Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences

Email: vikdavidova@yandex.ru
Russian Federation, 690022, Vladivostok

S. V. Chusovitina

Institute of Automation and Control Processes, Far Eastern Branch of Russian Academy of Sciences

Email: vikdavidova@yandex.ru
Russian Federation, 690041, Vladivostok

T. F. Solovyeva

Pacific G.B. Elyakov Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences

Email: vikdavidova@yandex.ru
Russian Federation, 690022, Vladivostok

I. M. Ermak

Pacific G.B. Elyakov Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences

Email: vikdavidova@yandex.ru
Russian Federation, 690022, Vladivostok

References

  1. Meng Q., Sun Y., Cong H., Hu H., Xu F. J. A // Drug Deliv. Translat. Res. 2021. V. 11. № 4. P. 1340−1351.
  2. Li J., Zhuang S. // Eur. Polym. J. 2020. V. 138. P. 109984.
  3. Solov’eva T.F., Davydova V.N., Krasikova I.N., Yermak I.M. // Mar. Drugs. 2013. V. 11. № 6. P. 2216−2229.
  4. Brandenburg K., Wiese A. // Curr. Top. Med. Chem. 2005. V. 4. № 11. P. 1127−1146.
  5. Triantafilou M., Triantafilou K. // J. Endotox. Res. 2005. V. 11. № 1. P. 5−11.
  6. Gioannini T. L., Weiss J. P. // J. Immunol. Res. 2007. V. 39. № 1–3. P. 249−260.
  7. Ulevitch R. // Annu. Rev. Immunol. 1995. V. 13. № 1. P. 437−457.
  8. Müller M., Scheel O., Lindner B., Gutsmann T., Seydel U. // J. Endotox. Res. 2003. V. 9. № 3. P. 181−186.
  9. Rathinam V.A.K., Fitzgerald K.A. // Nature. 2013. V. 501. № 7466. P. 173−175.
  10. Mazgaeen L., Gurung P. // Int. J. Mol. Sci. 2020. V. 21. № 2. P. 379. https://doi.org/10.1111/1750-3841.1400210.3390/ijms21020379
  11. Davydova V.N., Volod’ko A.V., Sokolova E.V., Chusovitin E.A., Balagan S.A., Gorbach V.I. et al. // Carbohydr. Polym. 2015. V. 123. P. 115−121.
  12. Yermak I.M., Davidova V.N., Gorbach V.I., Luk’yanov P.A., Solov’eva T.F., Ulmer A.J. et al. // Biochimie. 2006. V. 88. № 1. P. 23−30.
  13. Быкова В.М., Немцев С.В. Сырьевые источники и способы получения хитина и хитозана. М.: Наука, 2002. C. 16−19.
  14. Domszy J., Roberts G. // Makromol. Chem. Phys. 1985. V. 186. № 8. P. 1671−1677.
  15. Давыдова В.Н., Набережных Г.А., Ермак И.М., Горбач В.И., Соловьева Т.Ф. // Биохимия. 2006. Т. 71. № 3. С. 417−425.
  16. Triantafilou M., Triantafilou K., Fernandez N. // Eur. J. Biochem. 2000. V. 267. № 8. P. 2218−2226.
  17. Harding S.E. // Prog. Biophys. Mol. Biol. 1997. V. 67. № 2. P. 207−262.
  18. Park J.T., Johnson M.J. // J. Biol. Chem. 1949. V. 181. № 1. P. 149−151.
  19. Henry D.C. // Proc. R. Soc. A Math. Phys. Eng. Sci. 1931. V. 387. № 1792. P. 133−146.
  20. Lehmann A.K., Sørnes S., Halstensen A. // J. Immunol. Meth. 2000. V. 243. № 1–2. P. 229−242.
  21. Volod’ko A.V., Davydova V.N., Chusovitin E., Sorokina I.V., Dolgikh M.P., Tolstikova T.G. et al. // Carbohydr. Polym. 2014. V. 101. № 1. P. 1087−1093.
  22. Tenzer S., Docter D., Kuharev J., Musyanovych A., Fetz V., Hecht R. et al // Nat. Nanotechnol. 2013. V. 8. № 10. P. 772−781.
  23. Wright S.D. // Curr. Opin. Immunol. 1991. V. 3. № 1. P. 83−90.
  24. Зубарева А.А., Свирщевская Е.В. // Прикл. биохимия и микробиология. 2016. Т. 52. № 5. С. 448−454.
  25. Thornberry N.A. // Cell Death and Differentiation. 1999. V. 6. № 11. P. 1023−1027.
  26. Otterlei M., Varum K.M., Ryan L., Espevik T. // Vaccine. 1994. V. 12. № 9. P. 825–832.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Rice. 1. AFM images of the original samples: a – LPS (0.1 mg/ml); b – ChN-5 (0.1 mg/ml); c – XN-5 (0.5 mg/ml).

Download (234KB)
3. Fig. 2. AFM images of LPS:KHN-5 complexes – 1:1 (a) and 1:5 (b).

Download (272KB)
4. Fig. 3. Particle size distribution of the complex LPS: CN-110 1:7 (a) and LPS: CN-5 1:5 (b) in water (1) and in the presence of serum (2).

Download (95KB)
5. Fig. 4. Interaction of E. coli LPS (1), LPS: CN complexes with human blood neutrophils (2), and LPS with neutrophils preincubated with CN (3): a, c – incubation of neutrophils with samples (30 min); b, d – the same with the addition of human blood serum (30 min). I – total fluorescence of FITC-LPS (TIF) reacted with a neutrophil; II – fluorescence of FITC-LPS absorbed by a neutrophil. TIF of FITC-LPS (1) reacted with neutrophils was taken as 100%. (*The difference between samples 2, 3 and LPS is statistically significant, p < 0.05).

Download (340KB)
6. Fig. 5. Production of TNF-α by human whole blood cells stimulated by LPS (1), CN (2), LPS: CN complexes (3), and LPS after preincubation (10 min) of cells with CN (4): a – CN-110; b – CN-5 (concentration: LPS – 100 ng/ml, CN – 100 ng/ml (I), CN-110 – 700 ng/ml, CN-5 – 500 ng/ml (II). (*The difference between samples and LPS is statistically significant, p < 0.05).

Download (106KB)

Copyright (c) 2024 Russian Academy of Sciences