Influence of chitosanon on the ability of LPS to interact with cells of the immune system
- 作者: Davydova V.N.1, Volodko A.V.1, Gorbach I.V.1, Chusovitina S.V.2, Solovyeva T.F.1, Ermak I.M.1
-
隶属关系:
- Pacific G.B. Elyakov Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences
- Institute of Automation and Control Processes, Far Eastern Branch of Russian Academy of Sciences
- 期: 卷 60, 编号 2 (2024)
- 页面: 158-166
- 栏目: Articles
- URL: https://medjrf.com/0555-1099/article/view/674564
- DOI: https://doi.org/10.31857/S0555109924020051
- EDN: https://elibrary.ru/GAWNZC
- ID: 674564
如何引用文章
详细
Complexes of lipopolysaccharide (LPS) from the bacterium Escherichia coli and chitosan (CN) with a molecular weight of 5 kDa were obtained and their supramolecular organization was studied. Using atomic force microscopy, it was shown that during the formation of complexes there is a transition from the micellar structure of the original LPS to linear network structures uniformly distributed over the surface of mica. The stability of LPS-CN complexes of various stoichiometries in biological media in the presence of serum proteins was investigated. It was shown that complexes with an LPS : CN ratio of 1 : 1 in the presence of serum proteins lost their surface charge and tended to aggregate; while complexes with maximum saturation of CN (1 : 5) did not aggregate under these conditions and maintained their surface charge. The effect of CNs of different molecular weights on the ability of LPS to interact with neutrophils in human whole blood was studied. It was observed that LPS-CN complexes were capable of binding to neutrophils and entering the cell, and this ability was enhanced in the presence of serum proteins. Chitosan exhibited the ability to suppress the synthesis of the proinflammatory cytokine TNF-α, induced by LPS, not only as part of the complex but also when cells were pretreated with a polycation.
全文:

作者简介
V. Davydova
Pacific G.B. Elyakov Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences
编辑信件的主要联系方式.
Email: vikdavidova@yandex.ru
俄罗斯联邦, 690022, Vladivostok
A. Volodko
Pacific G.B. Elyakov Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences
Email: vikdavidova@yandex.ru
俄罗斯联邦, 690022, Vladivostok
I. Gorbach
Pacific G.B. Elyakov Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences
Email: vikdavidova@yandex.ru
俄罗斯联邦, 690022, Vladivostok
S. Chusovitina
Institute of Automation and Control Processes, Far Eastern Branch of Russian Academy of Sciences
Email: vikdavidova@yandex.ru
俄罗斯联邦, 690041, Vladivostok
T. Solovyeva
Pacific G.B. Elyakov Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences
Email: vikdavidova@yandex.ru
俄罗斯联邦, 690022, Vladivostok
I. Ermak
Pacific G.B. Elyakov Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences
Email: vikdavidova@yandex.ru
俄罗斯联邦, 690022, Vladivostok
参考
- Meng Q., Sun Y., Cong H., Hu H., Xu F. J. A // Drug Deliv. Translat. Res. 2021. V. 11. № 4. P. 1340−1351.
- Li J., Zhuang S. // Eur. Polym. J. 2020. V. 138. P. 109984.
- Solov’eva T.F., Davydova V.N., Krasikova I.N., Yermak I.M. // Mar. Drugs. 2013. V. 11. № 6. P. 2216−2229.
- Brandenburg K., Wiese A. // Curr. Top. Med. Chem. 2005. V. 4. № 11. P. 1127−1146.
- Triantafilou M., Triantafilou K. // J. Endotox. Res. 2005. V. 11. № 1. P. 5−11.
- Gioannini T. L., Weiss J. P. // J. Immunol. Res. 2007. V. 39. № 1–3. P. 249−260.
- Ulevitch R. // Annu. Rev. Immunol. 1995. V. 13. № 1. P. 437−457.
- Müller M., Scheel O., Lindner B., Gutsmann T., Seydel U. // J. Endotox. Res. 2003. V. 9. № 3. P. 181−186.
- Rathinam V.A.K., Fitzgerald K.A. // Nature. 2013. V. 501. № 7466. P. 173−175.
- Mazgaeen L., Gurung P. // Int. J. Mol. Sci. 2020. V. 21. № 2. P. 379. https://doi.org/10.1111/1750-3841.1400210.3390/ijms21020379
- Davydova V.N., Volod’ko A.V., Sokolova E.V., Chusovitin E.A., Balagan S.A., Gorbach V.I. et al. // Carbohydr. Polym. 2015. V. 123. P. 115−121.
- Yermak I.M., Davidova V.N., Gorbach V.I., Luk’yanov P.A., Solov’eva T.F., Ulmer A.J. et al. // Biochimie. 2006. V. 88. № 1. P. 23−30.
- Быкова В.М., Немцев С.В. Сырьевые источники и способы получения хитина и хитозана. М.: Наука, 2002. C. 16−19.
- Domszy J., Roberts G. // Makromol. Chem. Phys. 1985. V. 186. № 8. P. 1671−1677.
- Давыдова В.Н., Набережных Г.А., Ермак И.М., Горбач В.И., Соловьева Т.Ф. // Биохимия. 2006. Т. 71. № 3. С. 417−425.
- Triantafilou M., Triantafilou K., Fernandez N. // Eur. J. Biochem. 2000. V. 267. № 8. P. 2218−2226.
- Harding S.E. // Prog. Biophys. Mol. Biol. 1997. V. 67. № 2. P. 207−262.
- Park J.T., Johnson M.J. // J. Biol. Chem. 1949. V. 181. № 1. P. 149−151.
- Henry D.C. // Proc. R. Soc. A Math. Phys. Eng. Sci. 1931. V. 387. № 1792. P. 133−146.
- Lehmann A.K., Sørnes S., Halstensen A. // J. Immunol. Meth. 2000. V. 243. № 1–2. P. 229−242.
- Volod’ko A.V., Davydova V.N., Chusovitin E., Sorokina I.V., Dolgikh M.P., Tolstikova T.G. et al. // Carbohydr. Polym. 2014. V. 101. № 1. P. 1087−1093.
- Tenzer S., Docter D., Kuharev J., Musyanovych A., Fetz V., Hecht R. et al // Nat. Nanotechnol. 2013. V. 8. № 10. P. 772−781.
- Wright S.D. // Curr. Opin. Immunol. 1991. V. 3. № 1. P. 83−90.
- Зубарева А.А., Свирщевская Е.В. // Прикл. биохимия и микробиология. 2016. Т. 52. № 5. С. 448−454.
- Thornberry N.A. // Cell Death and Differentiation. 1999. V. 6. № 11. P. 1023−1027.
- Otterlei M., Varum K.M., Ryan L., Espevik T. // Vaccine. 1994. V. 12. № 9. P. 825–832.
补充文件
