Comparison of HydSl Hydrogenase of Thiocapsa bogorovii and its Modification with Truncated C-terminus of HydS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Native HydSL hydrogenase of Thiocapsa bogorovii and its modification with truncated C-terminus of HydS (delta54HydS) were shown to be similar in specific activity, thermostability and temperature dependence of activity. It supports the suggestion that C-terminus of HydS does not participate in stabilization of the enzyme structure. Ag+ ions irreversibly inactivated both hydrogenases but delta54HydS was more sensitive to this inhibitor. In the presence of Ag+ the absorption peak at 410 nm was bleached indicating the destruction of FeS clusters. Protein globule was also destructed by Ag+. Prolonged incubation of hydrogenase with Ag+ ions led to disappearance of CO and CN peaks in IR spectra indicating NiFe center impairment. Data suggest that the first target of Ag+ ions is distal FeS cluster, and C-terminus of HydS interacts with Ag+ decreasing local ion concentration near the distal FeS cluster.

作者简介

A. Starodubov

Institute of Basic Biological Problems of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: alexkex3@mail.ru
Russia, 142290, Moscow region, Pushchino

M. Khasimov

Institute of Basic Biological Problems of the Russian Academy of Sciences

Email: alexkex3@mail.ru
Russia, 142290, Moscow region, Pushchino

A. Khusnutdinova

Institute of Basic Biological Problems of the Russian Academy of Sciences

Email: alexkex3@mail.ru
Russia, 142290, Moscow region, Pushchino

N. Zorin

Institute of Basic Biological Problems of the Russian Academy of Sciences

Email: alexkex3@mail.ru
Russia, 142290, Moscow region, Pushchino

A. Tsygankov

Institute of Basic Biological Problems of the Russian Academy of Sciences

Email: alexkex3@mail.ru
Russia, 142290, Moscow region, Pushchino

参考

  1. Vignais P., Billoud B. // Chem. Rev. 2007. V. 107. P. 4206–4272.
  2. Greening C., Biswas A., Carere C.R., Jackson C.J., Taylor M.C., Stott M.B., Cook G.M., Morales S.E. // Isme J. 2016. V. 10. № 3. P. 761–777.
  3. Турова Т.П., Кеппен О.И., Ковалева О.Л., Слободова Н.В., Берг И.A., Ивановский Р.Н. // Микробиология 2009. Т. 78. С. 339–349.
  4. Гоготов И.Н., Зорин Н.А., Кондратьева Е.Н. // Биохимия 1976. Т. 41. № 5. С. 836–841.
  5. Khasimov M.K., Petushkova E.P., Khusnutdinova A.N., Zorin N.A., Batyrova K.A., Yakunin A.F., Tsygankov A.A. // Biochim. Biophys. Acta Bioenerg. 2021. V. 1862. № 12. P. 148492.
  6. Rakhely G., Colbeau A., Garin J., Vignais P.M., Kovacs K.L. // J. Bacteriol. 1998. V. 180. № 6. P. 1460–1465.
  7. Богоров Л.В. // Микробиология. 1974. Т. 43. № 2. С. 326–330.
  8. Зорин Н.А., Стародубов А.С., Цыганков А.А. // Прикл. биохимия и микробиология. 2020. V. 56. № 2. С. 135–140.
  9. Zorin N.A., Zabelin A.A., Shkuropatov A.Y., Tsygankov A.A. // J. Inorganic Biochemistry. 2017. V. 177. P. 190–197.
  10. Gruen L.C. // Biochim. Biophys. Acta. 1975. V. 386. № 1. P. 270–274.
  11. Betts H.D., Whitehead C., Harris H.H. // Metallomics. 2021. V. 13. № 1. P. 1–12.
  12. Martic M., Jakab-Simon I.N., Haahr L.T., Hagen W.R., Christensen H.E. // J. Biol. Inorg. Chem. 2013. V. 18. № 2. P. 261–276.
  13. Диксон М., Уэбб Э. Ферменты 2. / Ред. Л.М. Гинодман, М.И. Левянт, В.К. Антонова, А.Е. Браунштейн. М.: Мир, 1998. 530 с.
  14. Abdullatypov A.V., Tsygankov A.A. // Photosynthesis Research. 2015. V. 125. № 1–2. P. 341–353.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (58KB)
3.

下载 (51KB)
4.

下载 (126KB)
5.

下载 (134KB)
6.

下载 (50KB)

版权所有 © А.С. Стародубов, М.Х. Хасимов, А.Н. Хустнутдинова, Н.А. Зорин, А.А. Цыганков, 2023