Efficiency of using the technology of functional electrical stimulation in gait disorder in patients with cerebral palsy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Cerebral palsy is a group of developmental disorders affecting motor skills and postural maintenance, leading to motion defects due to non-progressive damage and/or a developing brain anomaly in the fetus or the newborn child. Leg muscle weakness and spasticity associated with cerebral palsy limit the range of motion in the ankle joint and negatively affect the child’s motor ability. This article reviews scientific studies on an innovative method of functional electrical stimulation of walking in children with cerebral palsy. We searched for information in the Scopus, Web of Science, Medline, The Cochrane Library, PubMed, Pedro, Scholar, eLibrary, and CyberLeninka databases. The efficiency of remedial treatment of motion using functional electrical stimulators was assessed using biomechanical and neurophysiological methods of evidence-based medicine. When children are rehabilitated using electrical stimulation techniques such as functional electrical stimulation, the gait is restored significantly, dorsiflexion is improved, the gait pattern is normalized, stability when walking is increased, the number of falls is decreased, and the need for additional support is reduced. The effect of functional electrical stimulation on the normalization of walking speed, gait kinematics and symmetry, the ability to overcome obstacles, and the range of motion of the ankle joint and foot clearance during walking are discussed. In addition, the work analyzes the effect of functional electrical stimulation on reducing the patient’s energy consumption when walking, normalizing muscle tone, decreasing the risk of falls, and increasing confidence and comfort when walking. As part of this analysis, the speed of adaptation and patient tolerance of the devices for functional electrical stimulation are also discussed. A comparative characteristic of functional electrical stimulation using ankle joint orthoses is provided.

CONCLUSIONS: For many years, movement dynamics have used functional electrical stimulation technologies to rehabilitate neurological patients after stroke and multiple sclerosis. It is only a matter of time before these technologies also become the standard treatment for children with cerebral palsy in rehabilitation programs.

Full Text

Restricted Access

About the authors

Evgeniya A. Guryanova

Institute for Advanced Medical Studies

Author for correspondence.
Email: z-guryanova@bk.ru
ORCID iD: 0000-0003-1519-2319

MD, Dr. Sci. (Med.), Professor

Russian Federation, Cheboksary

Natalya V. Chebanenko

Russian Medical Academy of Continuous Professional Education

Email: nataqwe@yandex.ru
ORCID iD: 0000-0002-7231-0249

MD, Cand. Sci. (Med.), assistant professor

Russian Federation, Moscow

Felix G. Litvak

Ben-Gurion University of the Negev

Email: litvak.felix@gmail.com
SPIN-code: 8435-6912
Israel, Be’er Sheva

Valery P. Zykov

Russian Medical Academy of Continuous Professional Education

Email: childneur@mtu-net.ru
ORCID iD: 0000-0002-1401-5479

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow


  1. Baranov AA, Namazova-Baranova LS, Kurenkov AL, Klochkova OA. Comprehensive assessment of motor functions in patients with cerebral palsy. Moscow: Pediatr; 2014. (In Russ).
  2. Bax M, Goldstein M, Rosenbaum P, et al. Proposed definition and classification of cerebral palsy, April 2005. Dev Med Child Neurol. 2005;47(8):571–576. doi: 10.1017/s001216220500112x
  3. Vitenzon AS, Mironov EM, Petrushanskaja KA, Skoblin AA. The structure of walking in patients with infantile cerebral palsy and its correction by means of phase electrical muscle stimulation. Artificial correction of movements in pathological walking. Moscow: Zerkalo; 1999. (In Russ).
  4. Petrushanskaja KA, Vitenzon AS. Rehabilitation treatment of patients with infantile cerebral palsy through functional electrical muscle stimulation while walking. S.S. Korsakov Journal of Neurology and Psychiatry. 2009;109(1):1–27. (In Russ).
  5. Guryanova EA, Koval'chuk VV, Tihoplav OA, Litvak FG. Functional electrical stimulation in the recovery of walking after a stroke. Review of scientific literature. Physical and rehabilitation medicine, medical rehabilitation. 2020;2(3):244–262. (In Russ).
  6. Guryanova EA, Kiryanova VV. The effectiveness of functional stimulation in multiple sclerosis (literature review). Herald of restorative medicine. 2020;(99):107–119. (In Russ).
  7. Stein RB, Everaert DG, Thompson AK, et al. Long-term therapeutic and orthotic effects of a foot drop stimulator on walking performance in progressive and nonprogressive neurological disorders. Neurorehabil Neural Repair. 2010;24(2):152–167. doi: 10.1177/1545968309347681
  8. Orlin MN, Pierce SR, Stackhouse CL, et al. Immediate effect of percutaneous intramuscular stimulation during gait in children with cerebral palsy: a feasibility study. Dev Med Child Neurol. 2005;47(10):684–690. doi: 10.1017/S0012162205001398
  9. Semyonova KA. Rehabilitation treatment of children with perinatal lesions of the nervous system and infantile cerebral palsy. Moscow: Codex; 2007. (In Russ).
  10. Pierce SR, Laughton CA, Smith BT, et al. Direct effect of percutaneous electric stimulation during gait in children with hemiplegic cerebral palsy: a report of 2 cases. Arch Phys Med Rehabil. 2004;85(2):339–343. doi: 10.1016/s0003-9993(03)00473-8
  11. Kurenkov AI. Assessment of motor disorders in infantile cerebral palsy and other diseases of the nervous system of children [doctoral dissertation]. Moscow, 2005. (In Russ).
  12. Prityko AG, Chebanenko NV, Zykov VP, et al. Experience of using proprioceptive walking modeling in young children with movement disorders. Russian Journal of Child Neurology. 2019;14(3):16–27 (In Russ). doi: 10.17650/2073-8803-2019-14-3-16-27.
  13. Sokolov PL, Chebanenko NV, Prityko AG, et al. Clinical effectiveness of the method of supporting pneumostimulation in the correction of motor deficits in children with cerebral palsy. Rehabilitation for children and adolescents. 2020;1(41):12–17. (In Russ).
  14. Titarenko NY. Optimization of non-invasive methods of treatment of patients with spastic forms of infantile cerebral palsy in the late residual stage [dissertation]. Moscow; 2014. (In Russ).
  15. Liberson WT, Holmquest HJ, Scot D, Dow M. Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil. 1961;42:101–105.
  16. Pool D, Blackmore AM, Bear N, Valentine J. Effects of short-term daily community walk aide use on children with unilateral spastic cerebral palsy. Pediatr Phys Ther. 2014;26(3):308–317. doi: 10.1097/PEP.0000000000000057
  17. Prosser LA, Curatalo LA, Alter KE, Damiano DL. Acceptability and potential effectiveness of a foot drop stimulator in children and adolescents with cerebral palsy. Dev Med Child Neurol. 2012;54(11):1044–1049. doi: 10.1111/j.1469-8749.2012.04401.x
  18. Damiano DL, Prosser LA, Curatalo LA, Alter KE. Muscle plasticity and ankle control after repetitive use of a functional electrical stimulation device for foot drop in cerebral palsy. Neurorehabil Neural Repair. 2013;27(3):200–207. doi: 10.1177/1545968312461716
  19. Meilahn JR. Tolerability and effectiveness of a neuroprosthesis for the treatment of footdrop in pediatric patients with hemiparetic cerebral palsy. PM R. 2013;5(6):503–509. doi: 10.1016/j.pmrj.2012.11.005
  20. Karabay I, Ozturk GT, Malas FU, et al. Short-Term effects of neuromuscular electrical stimulation on muscle architecture of the tibialis anterior and gastrocnemius in children with cerebral palsy: preliminary results of a prospective controlled study. Am J Phys Med Rehabil. 2015;94(9):728–733. doi: 10.1097/PHM.0000000000000238
  21. van der Linden M. Functional electrical stimulation in children and adolescents with cerebral palsy. Dev Med Child Neurol. 2012;54(11):972. doi: 10.1111/j.1469-8749.2012.04419.x
  22. Moll I, Vles JSH, Soudant D, et al. Functional electrical stimulation of the ankle dorsiflexors during walking in spastic cerebral palsy: a systematic review. Dev Med Child Neurol. 2017;59(12):1230–1236. doi: 10.1111/dmcn.13501
  23. Jackman M, Novak I, Lannin N, et al. Effectiveness of Cognitive Orientation to daily Occupational Performance over and above functional hand splints for children with cerebral palsy or brain injury: a randomized controlled trial. BMC Pediatr. 2018;18(1):248. doi: 10.1186/s12887-018-1213-9
  24. Jackman M, Novak I, Lannin N. Effectiveness of hand splints in children with cerebral palsy: a systematic review with meta-analysis. Dev Med Child Neurol. 2014;56(2):138–147. doi: 10.1111/dmcn.12205
  25. Clinicaltrials.gov [internet]. Fatal-Valvski A, Segal I, Alexander M. Effects of functional electrical stimulation on gait in children with hemiplegic and diplegic cerebral palsy: Interventional clinical trial [updated: July 2019; access date: 6 Jun 2021]. Available from: https://clinicaltrials.gov/ct2/show/NCT02462018
  26. Dotsenko VI, Kurenkov AL, Kochetkov AV. Theoretical substantiation and practical use of the technology of functional programmed electrical stimulation in walking in neurological patients. Herald of restorative medicine. 2012;2:21–28 (In Russ).
  27. Seifart A, Unger M, Burger M. Functional electrical stimulation to lower limb muscles after botox in children with cerebral palsy. Pediatr Phys Ther. 2010;22(2):199–206. doi: 10.1097/PEP.0b013e3181dbd806
  28. Pierce SR, Orlin MN, Lauer RT, et al. Comparison of percutaneous and surface functional electrical stimulation during gait in a child with hemiplegic cerebral palsy. Am J Phys Med Rehabil. 2004;83(10):798–805. doi: 10.1097/01.phm.0000137318.92035.8c
  29. van der Linden ML, Hazlewood ME, Hillman SJ, Robb JE. Functional electrical stimulation to the dorsiflexors and quadriceps in children with cerebral palsy. Pediatr Phys Ther. 2008;20(1):23–29. doi: 10.1097/PEP.0b013e31815f39c9
  30. Ho CL, Holt KG, Saltzman E, Wagenaar RC. Functional electrical stimulation changes dynamic resources in children with spastic cerebral palsy. PhysTher. 2006;86:987–1000. doi: 10.1093/ptj/86.7.987
  31. Durham S, Eve L, Stevens C, Ewins D. Effect of functional electrical stimulation on asymmetries in gait of children with hemiplegic cerebral palsy. Physiotherapy. 2004; 90(2):82–90. doi: 10.1016/j.physio.2004.02.003
  32. Danino B, Khamis S, Hemo Y, et al. The efficacy of neuroprosthesis in young hemiplegic patients, measured by three different gait indices: early results. J Child Orthop. 2013;7(6):537–542. doi: 10.1007/s11832-013-0540-5
  33. Carroll MK, Toelle CA, Kim SH, et al. The effect of the walk aide functional electrical stimulation unit on gait asymmetry in a child with cerebral palsy: a case report. Technology and Innovation. 2014;15(4):287–292. doi: 10.3727/194982413X13844488878899
  34. El-Shamy SM, Abdelaal AA. WalkAide Efficacy on Gait and Energy Expenditure in Children with Hemiplegic Cerebral Palsy: A Randomized Controlled Trial. Am J Phys Med Rehabil. 2016;95(9):629–638. doi: 10.1097/PHM.0000000000000514
  35. Daichman J, Johnston TE, Evans K, Tecklin JS. The effects of a neuromuscular electrical stimulation home program on impairments and functional skills of a child with spastic diplegic cerebral palsy: a case report. Pediatr Phys Ther. 2003;15(3):153–158. doi: 10.1097/01.PEP.0000083121.26982.1D
  36. Galen S, Wiggins L, McWilliam R, Granat M. A combination of Botulinum Toxin A therapy and Functional Electrical Stimulation in children with cerebral palsy – a pilot study. Technol Health Care. 2012;20(1):1–9. doi: 10.3233/THC-2011-0648
  37. Kurenkov AI, Fisenko DA, Kuzenkova LM, et al. The effectiveness of combined use of botulinum toxin therapy and functional electrical stimulation in ambulatory patients with spastic forms of cerebral palsy. L.O. Badalyan Neurological Journal. 2020;1(2):80–90 (In Russ).
  38. Mooney JA, Rose J. A Scoping Review of Neuromuscular Electrical Stimulation to Improve Gait in Cerebral Palsy: The Arc of Progress and Future Strategies. Front Neurol. 2019;10:887. doi: 10.3389/fneur.2019.00887

Copyright (c) 2021 Eco-Vector

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 01016 от 19.07.1995 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80632 от 15.03.2021 г

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies