Neurological and psychological manifestations and consequences of an acute severe acute respiratory syndrome coronavirus 2 infection

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Vital activity restoration in patients with fatigue syndrome after coronavirus disease-2019 and myalgic encephalomyelitis/chronic fatigue syndrome is a priority in the medical rehabilitation of this category of patients. This study aimed to review the literature using Russian and international sources and present data from contemporary studies on symptoms, possible pathophysiology and proposed treatment for neurological manifestations of consequences after an acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The recovery level of vital activity after acute infection with SARS-CoV-2 is low, and neurological symptoms persist in many patients. Chronic fatigue syndrome gradually develops in patients with a history of the disease, which subsequently leads to mental disorders, due to decreased physical activity.

Full Text

Restricted Access

About the authors

Evgeniya A. Guryanova

I.N. Ulyanov Chuvash State University; Postgraduate Doctors’ Training Institute

Author for correspondence.
ORCID iD: 0000-0003-1519-2319
SPIN-code: 1234-3410

MD, Dr. Sci. (Med.), Professor

Russian Federation, Cheboksary; Cheboksary

Evgeniy S. Deomidov

I.N. Ulyanov Chuvash State University

ORCID iD: 0000-0001-8107-3671
SPIN-code: 9811-9509

MD, Cand. Sci. (Med.), Assistant Professor

Russian Federation, Cheboksary

Maria K. Ilina

I.N. Ulyanov Chuvash State University

ORCID iD: 0000-0001-7942-1710
Russian Federation, Cheboksary


  1. Leung TYM, Chan AYL, Chan EW, et al. Short- and potential long-term adverse health outcomes of COVID-19: a rapid review. Emerg Microbes Infect. 2020;9(1):2190–2199. doi: 10.1080/22221751.2020.1825914
  2. Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601–615. doi: 10.1038/s41591-021-01283-z
  3. Mansueto G. COVID-19: Brief check through the pathologist's eye (autopsy archive). Pathol Res Pract. 2020;216(11):153195. doi: 10.1016/j.prp.2020.153195
  4. Divani AA, Andalib S, Di Napoli M, et al. Coronavirus Disease 2019 and Stroke: Clinical Manifestations and Pathophysiological Insights. J Stroke Cerebrovasc Dis. 2020;29(8):104941. doi: 10.1016/j.jstrokecerebrovasdis.2020.104941
  5. Andalib S, Biller J, Di Napoli M, et al. Peripheral Nervous System Manifestations Associated with COVID-19. Curr Neurol Neurosci Rep. 2021;21(3):9. doi: 10.1007/s11910-021-01102-5
  6. Divani AA, Andalib S, Biller J, et al. Central Nervous System Manifestations Associated with COVID-19. Curr Neurol Neurosci Rep. 2020;20(12):60. doi: 10.1007/s11910-020-01079-7
  7. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5
  8. Wu D, Wu T, Liu Q, Yang Z. The SARS-CoV-2 outbreak: What we know. Int J Infect Dis. 2020;94:44–48. doi: 10.1016/j.ijid.2020.03.004
  9. Mao L, Wang M, Chen S, et al. Neurological Manifestations of Hospitalized Patients with COVID-19 in Wuhan, China: A Retrospective Case Series Study. JAMA Neurol. 2020;77(6):683–690. doi: 10.1001/jamaneurol.2020.1127
  10. Helms J, Kremer S, Merdji H, et al. Neurologic Features in Severe SARS-CoV-2 Infection. N Engl J Med. 2020;382(23):2268–2270. doi: 10.1056/NEJMc2008597
  11. Eliezer M, Hautefort C, Hamel AL, et al. Sudden and Complete Olfactory Loss of Function as a Possible Symptom of COVID-19. JAMA Otolaryngol Head Neck Surg. 2020;146(7):674–675. doi: 10.1001/jamaoto.2020.0832
  12. Spinato G, Fabbris C, Polesel J, et al. Alterations in Smell or Taste in Mildly Symptomatic Outpatients With SARS-CoV-2 Infection. JAMA. 2020;323(20):2089–2090. doi: 10.1001/jama.2020.6771
  13. Suwanwongse K, Shabarek N. Rhabdomyolysis as a Presentation of 2019 Novel Coronavirus Disease. Cureus. 2020;12(4):e7561. doi: 10.7759/cureus.7561
  14. Zhao H, Shen D, Zhou H, et al. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol. 2020;19(5):383–384. doi: 10.1016/s1474-4422(20)30109-5
  15. Toscano G, Palmerini F, Ravaglia S, et al. Guillain-Barre Syndrome Associated with SARS-CoV-2. N Engl J Med. 2020;382(26):2574–2576. doi: 10.1056/NEJMc2009191
  16. Li Y, Wang M, Zhou Y, et al. Acute Cerebrovascular Disease Following COVID-19: A Single Center, Retrospective, Observational Study. Stroke Vasc Neurol. 2020;5(3):279–284. doi: 10.1136/svn-2020-000431.
  17. Oxley TJ, Mocco J, Majidi S, et al. Large-Vessel Stroke as a Presenting Feature of Covid-19 in the Young. N Engl J Med. 2020;382(20):e60. doi: 10.1056/NEJMc2009787
  18. Sharifi-Razavi A, Karimi N, Rouhani N. COVID-19 and intracerebral haemorrhage: causative or coincidental? New Microbes New Infect. 2020;35:100669. doi: 10.1016/j.nmni.2020.100669
  19. Zhao K, Huang J, Dai D, et al. Acute myelitis after SARS-CoV-2 infection: A case report. Med Rxiv. 2020. doi: 10.1101/2020.03.16.20035105
  20. [Internat]. Xinhua. Beijing Hospital Confirms Nervous System Infections by Novel Coronavirus [cited 02 October 2021]. Available from:
  21. Karimi N, Sharifi Razavi A, Rouhani N. Frequent Convulsive Seizures in an Adult Patient with COVID-19: A Case Report. Iranian Red Crescent Medical Journal. 2020;22(3). doi: 10.5812/ircmj.102828
  22. Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 2020;94:55–58. doi: 10.1016/j.ijid.2020.03.062
  23. Poyiadji N, Shahin G, Noujaim D, et al. COVID-19-associated Acute Hemorrhagic Necrotizing Encephalopathy: Imaging Features. Radiology. 2020;296(2):E119–E120. doi: 10.1148/radiol.2020201187
  24. Zhang T, Rodricks M, Hirsh, E. COVID-19-associated acute disseminated encephalomyelitis: A case report. Med Rxiv. doi: 10.1101/2020.04.16.20068148
  25. Zhou L., Zhang M., Wang J., Gao J. Sars-Cov-2: Underestimated damage to nervous system // Travel Medicine and Infectious Disease. 2020. Vol. 36, N. P. 101642. doi: 10.1016/j.tmaid.2020.101642
  26. Xiang P, Xu X, Gao L, et al. First case of 2019 novel coronavirus disease with encephalitis. China Xiv. 2020.
  27. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034. doi: 10.1016/S0140-6736(20)30628-0
  28. Wan Y, Shang J, Graham R, et al. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020;94(7). doi: 10.1128/JVI.00127-20
  29. Kany S, Vollrath JT, Relja B. Cytokines in Inflammatory Disease. Int J Mol Sci. 2019;20(23). doi: 10.3390/ijms20236008
  30. Wrapp D, Wang N, Corbett KS, et al. Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation. bioRxiv. 2020. doi: 10.1101/2020.02.11.944462
  31. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92(6):552–555. doi: 10.1002/jmv.25728
  32. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem Neurosci. 2020;11(7):995–998. doi: 10.1021/acschemneuro.0c00122
  33. Guo J, Huang Z, Lin L, Lv J. Coronavirus Disease 2019 (COVID-19) and Cardiovascular Disease: A Viewpoint on the Potential Influence of Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers on Onset and Severity of Severe Acute Respiratory Syndrome Coronavirus 2 Infection. J Am Heart Assoc. 2020;9(7):e016219. doi: 10.1161/JAHA.120.016219
  34. Wang HY, Li XL, Yan ZR, et al. Potential neurological symptoms of COVID-19. Ther Adv Neurol Disord. 2020;13:1756286420917830. doi: 10.1177/1756286420917830
  35. Guo YR, Cao QD, Hong ZS, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil Med Res. 2020;7(1):11. doi: 10.1186/s40779-020-00240-0
  36. Gutierrez-Ortiz C, Mendez-Guerrero A, Rodrigo-Rey S, et al. Miller Fisher syndrome and polyneuritis cranialis in COVID-19. Neurology. 2020;95(5):e601-e605. doi: 10.1212/WNL.0000000000009619
  37. Goertz YMJ, Van Herck M, Delbressine JM, et al. Persistent symptoms 3 months after a SARS-CoV-2 infection: the post- COVID-19 syndrome? ERJ Open Res. 2020;6(4). doi: 10.1183/23120541.00542-2020
  38. Tenforde MW, Kim SS, Lindsell CJ, et al. Symptom Duration and Risk Factors for Delayed Return to Usual Health Among Outpatients with COVID-19 in a Multistate Health Care Systems Network – United States, March-June 2020. MMWR Morb Mortal Wkly Rep. 2020;69(30):993-998. doi: 10.15585/mmwr.mm6930e1
  39. Ministerstvo zdravookhraneniya RF. Vremennye metodicheskie rekomendatsii "Profilaktika, diagnostika i lechenie novoi koronavirusnoi infektsii (COVID-19) Versiya 11" (utv. Ministerstvom zdravookhraneniya RF 7 maya 2021 g.). Ministerstvo zdravookhraneniya RF; 2021. (In Russ).
  40. Moghimi N, Di Napoli M, Biller J, et al. The Neurological Manifestations of Post-Acute Sequelae of SARS-CoV-2 infection. Curr Neurol Neurosci Rep. 2021;21(9):44. doi: 10.1007/s11910-021-01130-1
  41. Carfi A, Bernabei R, Landi F, Gemelli Against C-P-ACSG. Persistent Symptoms in Patients After Acute COVID-19. JAMA. 2020;324(6):603–605. doi: 10.1001/jama.2020.1260
  42. Mandal S, Barnett J, Brill SE, et al. 'Long-COVID': a cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax. 2021;76(4):396–398. doi: 10.1136/thoraxjnl-2020-215818
  43. Davis HE, Assaf GS, McCorkell L, et al. Characterizing long covid in an international cohort: 7 months of symptoms and their impact. Med Rxiv. 2020. doi: 10.1101/2020.12.24.20248802.
  44. Townsend L, Dowds J, O'Brien K, et al. Persistent Poor Health after COVID-19 Is Not Associated with Respiratory Complications or Initial Disease Severity. Ann Am Thorac Soc. 2021;18(6):997–1003. doi: 10.1513/AnnalsATS.202009-1175OC
  45. Huang C, Huang L, Wang Y, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021;397(10270):220–232. doi: 10.1016/s0140-6736(20)32656-8
  46. Chopra V, Flanders SA, O'Malley M, et al. Sixty-Day Outcomes Among Patients Hospitalized With COVID-19. Ann Intern Med. 2021;174(4):576–578. doi: 10.7326/M20-5661
  47. Carvalho-Schneider C, Laurent E, Lemaignen A, et al. Follow-up of adults with noncritical COVID-19 two months after symptom onset. Clin Microbiol Infect. 2021;27(2):258–263. doi: 10.1016/j.cmi.2020.09.052
  48. Halpin SJ, McIvor C, Whyatt G, et al. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: A cross-sectional evaluation. J Med Virol. 2021;93(2):1013–1022. doi: 10.1002/jmv.26368
  49. Garrigues E, Janvier P, Kherabi Y, et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J Infect. 2020;81(6):e4–e6. doi: 10.1016/j.jinf.2020.08.029
  50. Wostyn P. COVID-19 and chronic fatigue syndrome: Is the worst yet to come? Med Hypotheses. 2021;146:110469. doi: 10.1016/j.mehy.2020.110469
  51. Fukuda K, Straus SE, Hickie I, et al. The chronic fatigue syndrome: a comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann Intern Med. 1994;121(12):953–959. doi: 10.7326/0003-4819-121-12-199412150-00009
  52. Reeves WC, Lloyd A, Vernon SD, et al. Identification of ambiguities in the 1994 chronic fatigue syndrome research case definition and recommendations for resolution. BMC Health Serv Res. 2003;3(1):25. doi: 10.1186/1472-6963-3-25
  53. Carruthers BM, van de Sande MI, De Meirleir KL, et al. Myalgic encephalomyelitis: International Consensus Criteria. J Intern Med. 2011;270(4):327–338. doi: 10.1111/j.1365-2796.2011.02428.x
  54. Moss-Morris R, Deary V, Castell B. Chronic fatigue syndrome. Handb Clin Neurol. 2013;110:303–314. doi: 10.1016/B978-0-444-52901-5.00025-3
  55. Stefano GB. Historical Insight into Infections and Disorders Associated with Neurological and Psychiatric Sequelae Similar to Long COVID. Med Sci Monit. 2021;27:e931447. doi: 10.12659/MSM.931447
  56. Moldofsky H, Patcai J. Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case-controlled study. BMC Neurol. 2011;11:37. doi: 10.1186/1471-2377-11-37
  57. Buszko M, Nita-Lazar A, Park JH, et al. Lessons learned: new insights on the role of cytokines in COVID-19. Nat Immunol. 2021;22(4):404–411. doi: 10.1038/s41590-021-00901-9
  58. van der Voort PHJ, Moser J, Zandstra DF, et al. Leptin levels in SARS-CoV-2 infection related respiratory failure: A cross-sectional study and a pathophysiological framework on the role of fat tissue. Heliyon. 2020;6(8):e04696. doi: 10.1016/j.heliyon.2020.e04696
  59. Wang J, Xu Y, Zhang X, et al. Leptin correlates with monocytes activation and severe condition in COVID-19 patients. J Leukoc Biol. 2021;110(1):9–20. doi: 10.1002/JLB.5HI1020-704R
  60. Ministerstvo zdravookhraneniya RF. Vremennye metodi cheskie rekomendatsii meditsinskaya reabilitatsiya pri novoi koronavirusnoi infektsii (COVID-19) versiya 2 (31.07.2020). Ministerstvo zdravookhraneniya RF; 2021.
  61. Guryanova EA, Tikhoplav OA, Tyurnikova SR. Klinicheskii sluchai reabilitatsii posle pnevmonii, assotsiirovannoi s COVID-19. Russian Journal of Rehabilitation Medicine. 2020;(4):22–35. (In Russ).
  62. Tolle M, Freitag H, Antelmann M, et al. Myalgic Encephalomye litis/Chronic Fatigue Syndrome: Efficacy of Repeat Immunoadsorption. J Clin Med. 2020;9(8):2443. doi: 10.3390/jcm9082443

Copyright (c) 2021 Eco-Vector

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies