miRNA-122 as a new player in cardiovascular disease

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Identification of a new significant level of regulation of gene activity using small non-coding molecules of ribonucleic acid — miRNA — can be confidently considered as one of the most outstanding discoveries of modern science It became clear that the suppression of gene expression caused by miRNA is an extremely important universal mechanism widely involved in most intracellular signaling pathways. Current data on the role of miRNA-122 in the development of cardiovascular diseases is included in this review. miRNA-122 is positioned as a promising biological marker in cardiovascular pathology. miRNA-122 promotes inflammation, oxidative stress, and apoptosis in cardiovascular disease. Clinical and experimental studies support the pathophysiological role of miRNA-122 in fibrosis and cardiac dysfunction. Overexpression of miRNA-122 exacerbates the loss of autophagy and enhances angiotensin II-mediated inflammation, apoptosis, fibrosis, and cardiac dysfunction. miRNA-122 should be considered not only as a promising diagnostic and prognostic tool, but also as a target for modern medicine. Inhibition of miRNA-122 results in antifibrotic, antiapoptotic, anti-inflammatory, antioxidant, and pro-autophagic effects. Further study is required to evaluate the real diagnostic and therapeutic potential of miRNA-122.

Full Text

Restricted Access

About the authors

Amina M. Alieva

Pirogov Russian National Research Medical University (Pirogov Medical University)

Author for correspondence.
Email: amisha_alieva@mail.ru
ORCID iD: 0000-0001-5416-8579
SPIN-code: 2749-6427

MD, Cand. Sci. (Med.), associate professor

Russian Federation, 1, Ostrovityanova street, 117997, Moscow

Natalia V. Teplova

Pirogov Russian National Research Medical University (Pirogov Medical University)

Email: teplova.nv@yandex.ru
ORCID iD: 0000-0002-7181-4680
SPIN-code: 9056-1948

MD, Dr. Sci. (Med.), professor

Russian Federation, 1, Ostrovityanova street, 117997, Moscow

Elena V. Reznik

Pirogov Russian National Research Medical University (Pirogov Medical University)

Email: elenaresnik@gmail.com
ORCID iD: 0000-0001-7479-418X
SPIN-code: 3494-9080

MD, Dr. Sci. (Med.), professor

Russian Federation, 1, Ostrovityanova street, 117997, Moscow

Irina E. Baykova

Pirogov Russian National Research Medical University (Pirogov Medical University)

Email: 1498553@mail.ru
ORCID iD: 0000-0003-0886-6290
SPIN-code: 3054-8884

MD, Cand. Sci. (Med.), associate professor

Russian Federation, 1, Ostrovityanova street, 117997, Moscow

Lidiya M. Shnakhova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: shnakhova_l_m@staff.sechenov.ru
ORCID iD: 0000-0003-3000-0987

MD

Russian Federation, Moscow

Gayane G. Totolyan

Pirogov Russian National Research Medical University (Pirogov Medical University)

Email: tgg03@mail.ru
ORCID iD: 0000-0002-9922-5845
SPIN-code: 1441-7740

MD, Cand. Sci. (Med.), associate professor

Russian Federation, 1, Ostrovityanova street, 117997, Moscow

Ramiz K. Valiev

The Loginov Moscow Clinical Scientific Center

Email: radiosurgery@bk.ru
ORCID iD: 0000-0003-1613-3716
SPIN-code: 2855-2867

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Elina A. Skripnichenko

Pirogov Russian National Research Medical University (Pirogov Medical University)

Email: elkaskrip@gmail.com
ORCID iD: 0000-0001-6321-8419

graduate student

Russian Federation, 1, Ostrovityanova street, 117997, Moscow

Irina A. Kotikova

Pirogov Russian National Research Medical University (Pirogov Medical University)

Email: kotikova.ia@mail.ru
ORCID iD: 0000-0001-5352-8499
SPIN-code: 1423-7300

student

Russian Federation, 1, Ostrovityanova street, 117997, Moscow

Igor G. Nikitin

Pirogov Russian National Research Medical University (Pirogov Medical University)

Email: igor.nikitin.64@mail.ru
ORCID iD: 0000-0003-1699-0881

MD, Dr. Sci. (Med.), professor

Russian Federation, 1, Ostrovityanova street, 117997, Moscow

References

  1. Aushev VN. microRNA: small molecules of great significance. Klin Onkogematol. 2015;8(1):1–12. (In Russ).
  2. Alieva AM, Teplova NV, Kislyakov VA, et al. Biomarkers in cardiology: microRNA and heart failure. Therapy. 2022;8(1):60–70. (In Russ). doi: 10.18565/therapy.2022.1.60-70
  3. Beylerli OA, Gareev IF, Beylerli AT. Micro RNAs as new players in control of hypothalamic functions. Creative Surgery and Oncology. 2019;9(2):138–143. (In Russ). doi: 10.24060/2076-3093-2019-9-2-138-143
  4. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–854. doi: 10.1016/0092-8674(93)90529-y
  5. Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–906. doi: 10.1038/35002607
  6. Meijer HA, Smith EM, Bushell M. Regulation of miRNA strand selection: follow the leader? Biochem Soc Trans. 2014;42(4):1135–1140. doi: 10.1042/BST20140142
  7. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–233. doi: 10.1016/j.cell.2009.01.002
  8. Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature. 2011;469(7330):336–342. doi: 10.1038/nature09783
  9. Willeit P, Skroblin P, Kiechl S, et al. Liver microRNAs: potential mediators and biomarkers for metabolic and cardiovascular disease? Eur Heart J. 2016;37(43):3260–3266. doi: 10.1093/eurheartj/ehw146
  10. Krützfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438(7068):685–689. doi: 10.1038/nature04303
  11. Fernandez-Hernando C, Ramirez CM, Goedeke L, Suarez Y. MicroRNAs in metabolic disease. Arterioscler Thromb Vasc Biol. 2013;33(2):178–185. doi: 10.1161/atvbaha.112.300144
  12. Liu Y, Song JW, Lin JY, et al. Roles of microRNA-122 in cardiovascular fibrosis and related diseases. Cardiovasc Toxicol. 2020;20(5):463–473. doi: 10.1007/s12012-020-09603-4
  13. Peterlin A, Pocivavsek K, Petrovic D, Peterlin B. The role of microRNAs in heart failure: a systematic review. Front Cardiovasc Med. 2020;7:161. doi: 10.3389/fcvm.2020.00161
  14. Song JJ, Yang M, Liu Y, et al. MicroRNA-122 aggravates angiotensin II-mediated apoptosis and autophagy imbalance in rat aortic adventitial fibroblasts via the modulation of SIRT6-elabela-ACE2 signaling. Eur J Pharmacol. 2020;883:173374. doi: 10.1016/j.ejphar.2020.173374
  15. Zhao Z, Zhong L, Li P, et al. Cholesterol impairs hepatocyte lysosomal function causing M1 polarization of macrophages via exosomal miR-122-5p. Exp Cell Res. 2020;387(1):111738. doi: 10.1016/j.yexcr.2019.111738
  16. Rivoli L, Vliegenthart AD, de Potter CM, et al. The effect of renal dysfunction and haemodialysis on circulating liver specific miR-122. Br J Clin Pharmacol. 2017;83(3):584–592. doi: 10.1111/bcp.13136
  17. Ma Z, Song JJ, Martin S, et al. The Elabela-APJ axis: a promising therapeutic target for heart failure. Heart Fail Rev. 2021;26(5):1249–1258. doi: 10.1007/s10741-020-09957-5
  18. Pinar AA, Scott TE, Huuskes BM, et al. Targeting the NLRP3 inflammasome to treat cardiovascular fibrosis. Pharmacol Ther. 2020;209:107511. doi: 10.1016/j.pharmthera.2020.107511
  19. Xu R, Zhang ZZ, Chen LJ, et al. Ascending aortic adventitial remodeling and fibrosis are ameliorated with Apelin-13 in rats after TAC via suppression of the miRNA-122 and LGR4-β-catenin signaling. Peptides. 2016;86:85–94. doi: 10.1016/j.peptides.2016.10.005
  20. Song JJ, Ma Z, Wang J, et al. Gender differences in hypertension. J Cardiovasc Transl Res. 2020;13(1):47–54. doi: 10.1007/s12265-019-09888-z
  21. Hu J, Wu H, Wang D, et al. LncRNA ANRIL promotes NLRP3 inflammasome activation in uric acid nephropathy through miR-122-5p/BRCC3 axis. Biochimie. 2019;157:102–110. doi: 10.1016/j.biochi.2018.10.011
  22. Qu XH, Zhang K. MiR-122 regulates cell apoptosis and ROS by targeting DJ-1 in renal ischemic reperfusion injury rat models. Eur Rev Med Pharmacol Sci. 2020;24(13):7197. doi: 10.26355/eurrev_202007_21846
  23. Wang Y, Liang H, Jin F, et al. Injured liver-released miRNA-122 elicits acute pulmonary inflammation via activating alveolar macrophage TLR7 signaling pathway. Proc Natl Acad Sci U S A. 2019;116(13):6162–6171. doi: 10.1073/pnas.1814139116
  24. Hu Y, Du G, Li G, et al. The miR-122 inhibition alleviates lipid accumulation and inflammation in NAFLD cell model. Arch Physiol Biochem. 2021;127(5):385–389. doi: 10.1080/13813455.2019.1640744
  25. Snyder-Talkington BN, Dong C, Sargent LM, et al. mRNAs and miRNAs in whole blood associated with lung hyperplasia, fibrosis, and bronchiolo-alveolar adenoma and adenocarcinoma after multi-walled carbon nanotube inhalation exposure in mice. J Appl Toxicol. 2016;36(1):161–174. doi: 10.1002/jat.3157
  26. Weber GJ, Purkayastha B, Ren L, et al. Hypertension exaggerates renovascular resistance via miR-122-associated stress response in aging. J Hypertens. 2018;36(11):2226–2236. doi: 10.1097/hjh.0000000000001770
  27. Song G, Zhu L, Ruan Z, et al. MicroRNA-122 promotes cardiomyocyte hypertrophy via targeting FoxO3. Biochem Biophys Res Commun. 2019;519(4):682–688. doi: 10.1016/j.bbrc.2019.09.035
  28. Chen LJ, Xu R, Yu HM, et al. The ACE2/Apelin signaling, microRNAs, and hypertension. Int J Hypertens. 2015;2015:896861. doi: 10.1155/2015/896861
  29. Wang Y, Jin P, Liu J, Xie X. Exosomal microRNA-122 mediates obesity-related cardiomyopathy through suppressing mitochondrial ADP-ribosylation factor-like 2. Clin Sci (Lond). 2019;133(17):1871–1881. doi: 10.1042/CS20190558
  30. Liu Y, Dong ZJ, Song JW, et al. MicroRNA-122-5p promotes renal fibrosis and injury in spontaneously hypertensive rats by targeting FOXO3. Exp Cell Res. 2022;411(2):113017. doi: 10.1016/j.yexcr.2022.113017
  31. Zhang ZZ, Cheng YW, Jin HY, et al. The sirtuin 6 prevents angiotensin II-mediated myocardial fibrosis and injury by targeting AMPK-ACE2 signaling. Oncotarget. 2017;8(42):72302–72314. doi: 10.18632/oncotarget.20305
  32. Song J, Zhang Z, Dong Z, et al. MicroRNA-122-5p aggravates angiotensin II-mediated myocardial fibrosis and dysfunction in hypertensive rats by regulating the Elabela/Apelin-APJ and ACE2-GDF15-porimin signaling. J Cardiovasc Transl Res. 2022;15(3):535–547. doi: 10.1007/s12265-022-10214-3
  33. Zhang HG, Zhang QJ, Li BW, et al. The circulating level of miR-122 is a potential risk factor for endothelial dysfunction in young patients with essential hypertension. Hypertens Res. 2020;43(6):511–517. doi: 10.1038/s41440-020-0405-5
  34. Solis-Toro D, Mosquera Escudero M, Garcia-Perdomo H.A. Association between circulating microRNAs and the metabolic syndrome in adult populations: a systematic review. Diabetes Metab Syndr. 2022;16(1):102376. doi: 10.1016/j.dsx.2021.102376
  35. Hutny M, Hofman J, Zachurzok A, Matusik P. MicroRNAs as the promising markers of comorbidities in childhood obesity-A systematic review. Pediatr Obes. 2022;17(6):e12880. doi: 10.1111/ijpo.12880
  36. Streese L, Demougin P, Iborra P, et al. Untargeted sequencing of circulating microRNAs in a healthy and diseased older population. Sci Rep. 2022;12(1):2991. doi: 10.1038/s41598-022-06956-4
  37. Refeat MM, Hassan NA, Ahmad IH, et al. Correlation of circulating miRNA-33a and miRNA-122 with lipid metabolism among Egyptian patients with metabolic syndrome. J Genet Eng Biotechnol. 2021;19(1):147. doi: 10.1186/s43141-021-00246-8
  38. Lischka J, Schanzer A, Hojreh A, et al. Circulating microRNAs 34a, 122, and 192 are linked to obesity-associated inflammation and metabolic disease in pediatric patients. Int J Obes (Lond). 2021;45(8):1763–1772. doi: 10.1038/s41366-021-00842-1
  39. Hess AL, Larsen LH, Udesen PB, et al. Levels of circulating miR-122 are associated with weight loss and metabolic syndrome. Obesity (Silver Spring). 2020;28(3):493–501. doi: 10.1002/oby.22704
  40. Zhang HN, Xu QQ, Thakur A, et al. Endothelial dysfunction in diabetes and hypertension: role of microRNAs and long non-coding RNAs. Life Sci. 2018;213:258–268. doi: 10.1016/j.lfs.2018.10.028
  41. Liang W, Guo J, Li J, et al. Downregulation of miR-122 attenuates hypoxia/reoxygenation (H/R)-induced myocardial cell apoptosis by upregulating GATA-4. Biochem Biophys Res Commun. 2016;478(3):1416–1422. doi: 10.1016/j.bbrc.2016.08.139
  42. Sygitowicz G, Maciejak-Jastrzebska A, Sitkiewicz D. MicroRNAs in the development of left ventricular remodeling and postmyocardial infarction heart failure. Polish Archives of Internal Medicine. 2020;130(1):59–65. doi: 10.20452/pamw.15137
  43. Liao CH, Wang CY, Liu KH, et al. MiR-122 marks the differences between subcutaneous and visceral adipose tissues and associates with the outcome of bariatric surgery. Obes Res Clin Pract. 2018;12(6):570–577. doi: 10.1016/j.orcp.2018.06.005
  44. Martinez-Micaelo N, Beltran-Debon R, Baiges I, et al. Specific circulating microRNA signature of bicuspid aortic valve disease. J Transl Med. 2017;15(1):76. doi: 10.1186/s12967-017-1176-x
  45. Wang YL, Yu W. Association of circulating microRNA-122 with presence and severity of atherosclerotic lesions. Peer J. 2018;6:e5218. doi: 10.7717/peerj.5218
  46. Li Y, Yang N, Dong B, et al. MicroRNA-122 promotes endothelial cell apoptosis by targeting XIAP: therapeutic implication for atherosclerosis. Life Sci. 2019;232:116590. doi: 10.1016/j.lfs.2019.116590
  47. Wu X, Du X, Yang Y, et al. Inhibition of miR-122 reduced atherosclerotic lesion formation by regulating NPAS3-mediated endothelial to mesenchymal transition. Life Sci. 2021;265:118816. doi: 10.1016/j.lfs.2020.118816
  48. Šatrauskienė A, Navickas R, Laucevičius A, et al. MiR-1, miR-122, miR-132, and miR-133 are related to subclinical aortic atherosclerosis associated with metabolic syndrome. Int J Environ Res Public Health. 2021;18(4):1483. doi: 10.3390/ijerph18041483
  49. Badacz R, Kleczynski P, Legutko J, et al. Expression of miR-1-3p, miR-16-5p and miR-122-5p as possible risk factors of secondary cardiovascular events. Biomedicines. 2021;9(8):1055. doi: 10.3390/biomedicines9081055
  50. Barraclough JY, Joan M, Joglekar MV, et al. MicroRNAs as prognostic markers in acute coronary syndrome patients-a systematic review. Cells. 2019;8(12):1572. doi: 10.3390/cells8121572
  51. Ling H, Guo Z, Du S, et al. Serum exosomal miR-122-5p is a new biomarker for both acute coronary syndrome and underlying coronary artery stenosis. Biomarkers. 2020;25(7):539–547. doi: 10.1080/1354750X.2020.1803963
  52. Yao XL, Lu XL, Yan CY, et al. Circulating miR-122-5p as a potential novel biomarker for diagnosis of acute myocardial infarction. Int J Clin Exp Pathol. 2015;8(12):16014–16019.
  53. Wang Y, Chang W, Zhang Y, et al. Circulating miR-22-5p and miR-122-5p are promising novel biomarkers for diagnosis of acute myocardial infarction. J Cell Physiol. 2019;234(4):4778–4786. doi: 10.1002/jcp.27274
  54. Cortez-Dias N, Costa MC, Carrilho-Ferreira P, et al. Circulating miR-122-5p/miR-133b ratio is a specific early prognostic biomarker in acute myocardial infarction. Circ J. 2016;80(10):2183–2191. doi: 10.1253/circj.cj-16-0568
  55. Hänninen M, Jäntti T, Tolppanen H, et al. Association of miR-21-5p, miR-122-5p, and miR-320a-3p with 90-day mortality in cardiogenic shock. Int J Mol Sci. 2020;21(21):7925. doi: 10.3390/ijms21217925
  56. Lin J, Zheng X. Salvianolate blocks apoptosis during myocardial infarction by down regulating miR-122-5p. Curr Neurovasc Res. 2017;14(4):323–329. doi: 10.2174/1567202614666171026114630
  57. Gaddam RR, Dhuri K, Kim YR, et al. γ peptide nucleic acid-based miR-122 inhibition rescues vascular endothelial dysfunction in mice fed a high-fat diet. J Med Chem. 2022;65(4):3332–3342. doi: 10.1021/acs.jmedchem.1c01831
  58. Peterlin A, Počivavšek K, Petrovič D, Peterlin B. The role of microRNAs in heart failure: a systematic review. Front Cardiovasc Med. 2020;7:161. doi: 10.3389/fcvm.2020.00161
  59. Liu X, Meng H, Jiang C, et al. Differential microRNA expression and regulation in the rat model of post-infarction heart failure. PLoS One. 2016;11(8):e0160920. doi: 10.1371/journal.pone.0160920
  60. Andersson P, Gidlöf O, Braun OO, et al. Plasma levels of liver-specific mir-122 is massively increased in a porcine cardiogenic shock model and attenuated by hypothermia. Shock. 2012;37(2):234–238. doi: 10.1097/shk.0b013e31823f1811
  61. Shi Y, Zhang Z, Yin Q, et al. Cardiac-specific overexpression of miR-122 induces mitochondria-dependent cardiomyocyte apoptosis and promotes heart failure by inhibiting Hand2. J Cell Mol Med. 2021;25(11):5326–5334. doi: 10.1111/jcmm.16544
  62. Koyama S, Kuragaichi T, Sato Y, et al. Dynamic changes of serum microRNA-122-5p through therapeutic courses indicates amelioration of acute liver injury accompanied by acute cardiac decompensation. ESC Heart Fail. 2017;4(2):112–121. doi: 10.1002/ehf2.12123
  63. Vogel B, Keller A, Frese KS, et al. Multivariate MiRNA signatures as biomarkers for non-ischaemic systolic heart failure. Eur Heart J. 2013;34(36):2812–2823. doi: 10.1093/eurheartj/eht256
  64. Cakmak HA, Coskunpinar E, Ikitimur B, et al. The prognostic value of circulating micrornas in heart failure: preliminary results from a genome-wide expression study. J Cardiovasc Med (Hagerstown). 2015;16(6):431–437. doi: 10.2459/jcm.0000000000000233
  65. Stojkovic S, Koller L, Sulzgruber P, et al. Liver-specific microRNA-122 as prognostic biomarker in patients with chronic systolic heart failure. Int J Cardiol. 2020;303:80–85. doi: 10.1016/j.ijcard.2019.11.090
  66. Hosen MR, Goody PR, Zietzer A, et al. Circulating microRNA-122-5p is associated with a lack of improvement in left ventricular function after transcatheter aortic valve replacement and regulates viability of cardiomyocytes through extracellular vesicles. Circulation. 2022;122:060258. doi: 10.1161/circulationaha.122.060258
  67. Zhang X, Jing W. Upregulation of miR-122 is associated with cardiomyocyte apoptosis in atrial fibrillation. Mol Med Rep. 2018;18(2):1745–1751. doi: 10.3892/mmr.2018.9124
  68. Chen C, Li R, Ross RS, Manso AM. Integrins and integrin-related proteins in cardiac fibrosis. J Mol Cell Cardiol. 2016;93:162–174. doi: 10.1016/j.yjmcc.2015.11.010
  69. Zhang Z, Li H, Cui Z, et al. Long non-coding RNA UCA1 relieves cardiomyocytes H9c2 injury aroused by oxygen-glucose deprivation via declining miR-122. Artif Cells Nanomed Biotechnol. 2019;47(1):3492–3499. doi: 10.1080/21691401.2019.1652630
  70. Bai C, Liu Y, Zhao Y, et al. Circulating exosome-derived miR-122-5p is a novel biomarker for prediction of postoperative atrial fibrillation. J Cardiovasc Transl Res. 2022;15(6):1393–1405. doi: 10.1007/s12265-022-10267-4

Supplementary files

Supplementary Files
Action
1. Fig. 1. The role of miRNA-122 in cardiovascular disease: NT-proBNP— N-terminal pro b-type natriuretic peptide, ГМК — smooth muscle cells.

Download (306KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 01016 от 19.07.1995 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80632 от 15.03.2021 г
.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies