Efficacy of radiotherapy vs. The combination of radio- and immunotherapy: a systematic review and meta-analysis

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction and objectives. The combination of radiotherapy and immune checkpoint inhibitors has demonstrated antitumor activity in numerous preclinical studies and is currently being investigated in the clinical setting. This study aims to compare the efficacy of radiotherapy alone (RT) vs. the combination of radio- and immunotherapy (IT-RT) and identify the treatment regimen associated with maximal efficacy by using a meta-analysis.

Materials and methods. A systematic literature search was performed using the PubMed database and materials of the key oncology congresses. Studies reporting 1-year overall survival (OS) of patients with brain metastases undergoing IT-RT treatment were included in the analysis. Information about 1-year OS, individual patients’ characteristics, and treatment regimens for both IT-RT and control RT arms was extracted. Identification of the optimal treatment regimen was performed using a mixed meta-regression modeling approach. Analysis was performed using the R statistical environment (metafoR package).

Results. In total, 30 studies were identified, of which 13 reported outcomes for the control RT groups. The analysis revealed that IT inclusion into RT is associated with a significant increase in 1-year OS; given simultaneously, IT and RT demonstrated the highest efficacy with a 1-year OS of 68% (95% confidence interval (CI): 60%–75%), followed by a sequential regimen: 1-year OS = 54% (95% CI: 47%–61%) and RT alone: 1-year OS = 32% (95% CI: 25–39%).

Conclusion. The current study demonstrates the superiority of combined IT-RT over RT alone; simultaneous IT and RT treatment is associated with the highest efficacy.

Full Text

Restricted Access

About the authors

Veronika M. Voronova

“I.M. Sechenov First Moscow State Medical University”; “M&S Decisions LLC”

Author for correspondence.
Email: Veronika.Voronova@msdecisions.ru

aspirant of the Institute of pharmacy; research scientist 

Russian Federation, Moscow

Svetlana A. Lebedeva

“I.M. Sechenov First Moscow State Medical University”

Email: Veronika.Voronova@msdecisions.ru

PhD, professor of the Institute of pharmacy 

Russian Federation, Moscow

Marina I. Sekacheva

“I.M. Sechenov First Moscow State Medical University”

Email: Veronika.Voronova@msdecisions.ru

PhD, professor, director of the Center of personalized oncology 

Russian Federation, Moscow

Gabriel Helmlinger

AstraZeneca

Email: Veronika.Voronova@msdecisions.ru

PhD, executive director of the quantitative clinical pharmacology group, department of clinical pharmacology

United States, MA02451, Boston

Kirill V. Peskov

“I.M. Sechenov First Moscow State Medical University”; “M&S Decisions” LLC

Email: Veronika.Voronova@msdecisions.ru

executive director of the “Computational oncology” group of the Center of personalized oncology; PhD, chief executive officer 

Russian Federation, Moscow

References

  1. Bang A., Schoenfeld J.D. Immunotherapy and radiotherapy for metastatic cancers. Ann Palliat Med. 2019; 8(3): 312-25. doi: 10.21037/apm.2018.07.10.
  2. Galluzzi L., Chan T.A., Kroemer G., Wolchok J.D., López-Soto A. The hallmarks of successful anticancer immunotherapy. Sci Transl Med. 2018; 10(459): eaat7807. doi: 10.1126/scitranslmed.aat7807.
  3. Deng L., Liang H., Xu M., Yang X., Burnette B., Arina A. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I Interferon-dependent antitumor immunity in immunogenic tumors. Immunity. 2014; 41(5): 843-52. doi: 10.1016/j.immuni.2014.10.019.
  4. Demaria S., Ng B., Devitt M.L., Babb J.S., Kawashima N., Liebes L. et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int. J. Radiat. Oncol. Biol. Phys. 2004; 58(3): 862-70. doi: 10.1016/j.ijrobp.2003.09.012.
  5. Gunderson A.J., Young K.H. Exploring optimal sequencing of radiation and immunotherapy combinations. Adv Radiat Oncol. 2018; 3(4): 494-505. doi: 10.1016/j.adro.2018.07.005.
  6. Tang J., Shalabi A., Hubbard-Lucey V.M. Comprehensive analysis of the clinical immuno-oncology landscape. Ann. Oncol. 2018; 29(1): 84-91. doi: 10.1093/annonc/mdx755.
  7. Kosinsky Y., Dovedi S.J., Peskov K., Voronova V., Chu L., Tomkinson H. et al. Radiation and PD-(L)1 treatment combinations: immune response and dose optimization via a predictive systems model. J Immunother Cancer [Internet]. 2018 Dec [cited 2018 Sep 19]; 6(1): 17. Available from: https://jitc.biomedcentral.com/articles/10.1186/s40425-018-0327-9 doi: 10.1186/s40425-018-0327-9.
  8. Moher D., Liberati A., Tetzlaff J., Altman D.G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009; 62(10): 1006-12. doi: 10.1016/j.jclinepi.2009.06.005.
  9. Longoria T.C., Tewari K.S. Evaluation of the pharmacokinetics and metabolism of pembrolizumab in the treatment of melanoma. Expert Opin Drug Metab Toxicol. 2016; 12(10): 1247-53. doi: 10.1080/17425255.2016.1216976.
  10. Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw [Internet]. 2010 Aug [cited 2019 Apr 1]; 36(3). Available from: http://www.jstatsoft.org/v36/i03/ doi: 10.18637/jss.v036.i03.
  11. Acharya S., Mahmood M., Mullen D., Yang D., Tsien C.I., Huang J. et al. Distant intracranial failure in melanoma brain metastases treated with stereotactic radiosurgery in the era of immunotherapy and targeted agents. Adv Radiat Oncol. 2017; 2(4): 572-80. doi: 10.1016/j.adro.2017.07.003.
  12. Ahmed K.A., Stallworth D.G., Kim Y., Johnstone P.A., Harrison L.B., Caudell J.J. et al. Clinical outcomes of melanoma brain metastases treated with stereotactic radiation and anti-PD-1 therapy. Ann. Oncol. 2016; 27(3): 434-41. doi: 10.1093/annonc/mdv622.
  13. Ahmed K.A., Kim S., Arrington J., Naghavi A.O., Dilling T.J., Creelan B.C. et al. Outcomes targeting the PD-1/PD-L1 axis in conjunction with stereotactic radiation for patients with non-small cell lung cancer brain metastases. J. Neurooncol. 2017; 133(2): 331-8. doi: 10.1007/s11060-017-2437-5.
  14. An Y., Jiang W., Kim B.Y., Qian J.M., Tang C., Fang P. et al. Stereotactic radiosurgery of early melanoma brain metastases after initiation of anti-CTLA-4 treatment is associated with improved intracranial control. Radiother Oncol. 2017; 125(1): 80-8. doi: 10.1016/j.radonc.2017.08.009.
  15. Chen L., Douglass J., Kleinberg L., Ye X., Marciscano A.E., Forde P.M. et al. Concurrent immune checkpoint inhibitors and stereotactic radiosurgery for brain metastases in non-small cell lung cancer, melanoma, and renal cell carcinoma. Int. J. Radiat. Oncol. 2018; 100(4): 916-25. doi: 10.1016/j.ijrobp.2017.11.041.
  16. Choong E.S., Lo S., Drummond M., Fogarty G.B., Menzies A.M., Guminski A., et al. Survival of patients with melanoma brain metastasis treated with stereotactic radiosurgery and active systemic drug therapies. Eur J Cancer. 2017; 75: 169-78. doi: 10.1016/j.ejca.2017.01.007.
  17. Cohen-Inbar O., Shih H-H., Xu Z., Schlesinger D., Sheehan J.P. The effect of timing of stereotactic radiosurgery treatment of melanoma brain metastases treated with ipilimumab. J Neurosurg. 2017; 127(5): 1007-14. doi: 10.3171/2016.9.JNS161585.
  18. Diao K., Bian S.X., Routman D.M., Yu C., Ye J.C., Wagle N.A., et al. Stereotactic radiosurgery and ipilimumab for patients with melanoma brain metastases: clinical outcomes and toxicity. J Neurooncol. 2018; 139(2): 421-9. doi: 10.1007/s11060-018-2880-y.
  19. Du Four S., Janssen Y., Michotte A., Van Binst A-M., Van den Begin R., Duerinck J. et al. Focal radiation necrosis of the brain in patients with melanoma brain metastases treated with pembrolizumab. Cancer Med. 2018; 7(10): 4870-9. doi: 10.1002/cam4.1726.
  20. Gabani P., Fischer-Valuck B.W., Johanns T.M., Hernandez-Aya L.F., Keller J.W., Rich K.M. et al. Stereotactic radiosurgery and immunotherapy in melanoma brain metastases: patterns of care and treatment outcomes. Radiother Oncol. 2018; 128(2): 266-73. doi: 10.1016/j.radonc.2018.06.017.
  21. Gaudy-Marqueste C., Dussouil A.S., Carron R., Troin L., Malissen N., Loundou A. et al. Survival of melanoma patients treated with targeted therapy and immunotherapy after systematic upfront control of brain metastases by radiosurgery. Eur J Cancer. 2017; 84: 44-54. doi: 10.1016/j.ejca.2017.07.017.
  22. Goel A., Kumar R.J., Linam J.M., Huang A.J., Abendroth R.E., Lee J.W. et al. Impact of Anti-PD-1 treatment in patients with metastatic melanoma brain lesions treated with stereotactic radiosurgery. Int. J. Radiat. Oncol. 2017; 99(2): E75. doi: 10.1016/j.ijrobp.2017.06.771.
  23. Johnson C.B., Postow M.A., Chapman P., Wolchok J.D., Brennan C.W., Tabar V.S. et al. Safety and clinical outcomes of ipilimumab and nivolumab plus concurrent stereotactic radiosurgery for brain metastases. Int J Radiat Oncol. 2018; 102(3, Suppl): e228. doi: 10.1016/j.ijrobp.2018.07.778.
  24. Kaidar-Person O., Zagar T.M., Deal A., Moschos S.J., Ewend M.G., Sasaki-Adams D. et al. The incidence of radiation necrosis following stereotactic radiotherapy for melanoma brain metastases: the potential impact of immunotherapy. Anticancer Drugs. 2017; 28(6): 669-75. doi: 10.1097/CAD.0000000000000497.
  25. Kiess A.P., Wolchok J.D., Barker C.A., Postow M.A., Tabar V., Huse J.T. et al. Stereotactic radiosurgery for melanoma brain metastases in patients receiving ipilimumab: safety profile and efficacy of combined treatment. Int. J. Radiat. Oncol. 2015; 92(2): 368-75. doi: 10.1016/j.ijrobp.2015.01.004.
  26. Knisely J.P., Yu J.B., Flanigan J., Sznol M., Kluger H.M., Chiang V.L. Radiosurgery for melanoma brain metastases in the ipilimumab era and the possibility of longer survival. J Neurosurg. 2012; 117(2): 227-33. doi: 10.3171/2012.5.JNS111929.
  27. Nardin C., Mateus C., Texier M., Lanoy E., Hibat-Allah S., Ammari S. et al. Tolerance and outcomes of stereotactic radiosurgery combined with anti-programmed cell death-1 (pembrolizumab) for melanoma brain metastases. Melanoma Res. 2018; 28(2): 111-9. doi: 10.1097/CMR.0000000000000413.
  28. Olson A.C., Patel K., Mowery Y.M., Wynne J., Ready N., Kirkpatrick J.P. et al. Anti-PD-1 therapy and stereotactic radiation for melanoma and non-small cell lung cancer patients with brain metastases: a 2-institution series. Int. J. Radiat. Oncol. 2016; 96(2): E97-8. doi: 10.1016/j.ijrobp.2016.06.837.
  29. Parakh S., Park J.J., Mendis S., Rai R., Xu W., Lo S. et al. Efficacy of anti-PD-1 therapy in patients with melanoma brain metastases. Br. J. Cancer. 2017; 116(12): 1558-63. doi: 10.1038/bjc.2017.142.
  30. Patel K.R., Shoukat S., Oliver D.E., Chowdhary M., Rizzo M., Lawson D.H. et al. Ipilimumab and stereotactic radiosurgery versus stereotactic radiosurgery alone for newly diagnosed melanoma brain metastases. Am. J. Clin. Oncol. 2017; 40(5): 444-50. doi: 10.1097/COC.0000000000000199.
  31. Qian J.M., Yu J.B., Kluger H.M., Chiang V.L.S. Timing and type of immune checkpoint therapy affect the early radiographic response of melanoma brain metastases to stereotactic radiosurgery. Cancer. 2016; 22(19): 3051-8. doi: 10.1002/cncr.30138.
  32. Rahman R., Niemierko A., Cortes A., Oh K.S., Flaherty K.T., Lawrence D.P. et al. The use of Anti-PD1 therapy in melanoma patients with known brain metastases: survival, durable intracranial progression free survival and radionecrosis. Int. J. Radiat. Oncol. 2018; 102(3): e275. doi: 10.1016/j.ijrobp.2018.07.887.
  33. Robin T.P., Breeze R.E., Smith D.E., Rusthoven C.G., Lewis K.D., Gonzalez R. et al. Immune checkpoint inhibitors and radiosurgery for newly diagnosed melanoma brain metastases. J. Neurooncol. 2018; 140(1): 55-62. doi: 10.1007/s11060-018-2930-5.
  34. Schapira E., Hubbeling H., Yeap B.Y., Mehan W.A., Shaw A.T., Oh K. et al. Improved overall survival and locoregional disease control with concurrent PD-1 pathway inhibitors and stereotactic radiosurgery for lung cancer patients with brain metastases. Int. J. Radiat. Oncol. 2018 l; 101(3): 624-9. doi: 10.1016/j.ijrobp.2018.02.175.
  35. Silk A.W., Bassetti M.F., West B.T., Tsien C.I., Lao C.D. Ipilimumab and radiation therapy for melanoma brain metastases. Cancer Med. 2013; 2(6): 899-906. doi: 10.1002/cam4.140.
  36. Skrepnik T., Sundararajan S., Cui H., Stea B. Improved time to disease progression in the brain in patients with melanoma brain metastases treated with concurrent delivery of radiosurgery and ipilimumab. Oncoimmunology. 2017; 6(3): e1283461. doi: 10.1080/2162402X.2017.1283461.
  37. Stokes W.A., Binder D.C., Jones B.L., Oweida A.J., Liu A.K., Rusthoven C.G. et al. Impact of immunotherapy among patients with melanoma brain metastases managed with radiotherapy. J. Neuroimmunol. 2017; 313: 118-22. doi: 10.1016/j.jneuroim.2017.10.006.
  38. Tazi K., Hathaway A., Chiuzan C., Shirai K. Survival of melanoma patients with brain metastases treated with ipilimumab and stereotactic radiosurgery. Cancer Med. 2015; 4(1): 1-6. doi: 10.1002/cam4.315
  39. Williams N.L., Wuthrick E.J., Kim H., Palmer J.D., Garg S., Eldredge-Hindy H. et al. Phase 1 study of ipilimumab combined with whole brain radiation therapy or radiosurgery for melanoma patients with brain metastases. Int. J. Radiat. Oncol. 2017; 99(1): 22-30. doi: 10.1016/j.ijrobp.2017.05.028.
  40. Yusuf M.B., Amsbaugh M.J., Burton E., Chesney J., Woo S. Peri-SRS administration of immune checkpoint therapy for melanoma metastatic to the brain: investigating efficacy and the effects of relative treatment timing on lesion response. World Neurosurg. 2017; 100: 632-640.e4. doi: 10.1016/j.wneu.2017.01.101.

Supplementary files

Supplementary Files
Action
1. Fig. 1. Block diagram of data collection.

Download (137KB)
2. Fig. 2. "Forest" is a diagram of group analysis of OOB. The squares correspond to the observations of individual CIs, the size of the squares reflects the number of patients in the cohort, error bars correspond to 95% CI for the corresponding observations; the magnitude of the generalized effect is shown by the vertical line, 95% CI by the gray area.

Download (278KB)
3. Fig. 3. Funnel-shaped scattering diagram for the selected meta-regression model.

Download (55KB)

Copyright (c) 2020 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 01016 от 19.07.1995 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80632 от 15.03.2021 г
.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies