Humus acids are promising compounds for the creation of new antimicrobial drugs

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Infectious diseases are still the leading causes of morbidity and mortality worldwide, which prompts the need to prioritize research and development of new antimicrobial drugs with high pharmacological activity and favorable safety profile. One of the key directions in this field is the study of the potential of natural compounds, such as humus acids. Recent studies have shown that humus acids can exhibit multidirectional activity against various microorganisms and demonstrate synergistic pharmacological interaction with other drugs.

This review aimed to present a generalized and systematic analysis of currently available information on the known pharmacological effects and possible mechanisms of the antibacterial, antiviral, and antifungal activities of humus acids.

Full Text

Restricted Access

About the authors

Nikita S. Benderskii

Rostov State Medical University

Author for correspondence.
Email: cornance@yandex.ru
ORCID iD: 0000-0002-7636-1684
SPIN-code: 5966-0480

resident physician

Russian Federation, 29 Nakhichevansky Lane, 344022 Rostov-on-Don

Zahar S. Popov

Kuban State Medical University

Email: 23zahar@mail.ru
ORCID iD: 0000-0002-5956-1289
SPIN-code: 6574-6076

student

Russian Federation, Krasnodar

Darya A. Popova

Rostov State Medical University

Email: dr.darya_popova@rambler.ru
ORCID iD: 0000-0001-9193-1684

student

Russian Federation, Rostov-on-Don

Elena L. Movchan

Rostov State Medical University

Email: elena.kirgeeva@yandex.ru
ORCID iD: 0009-0007-4838-9165

student

Russian Federation, Rostov-on-Don

Elizabeth A. Anuchina

Rostov State Medical University

Email: anuchina.elizavetaa@mail.ru
ORCID iD: 0009-0007-0156-881X

student

Russian Federation, Rostov-on-Don

Valeria S. Shiryaeva

Rostov State Medical University

Email: valerytokareva@yandex.ru
ORCID iD: 0009-0005-2632-5959

student

Russian Federation, Rostov-on-Don

Julia V. Kozlovtseva

Rostov State Medical University

Email: julia.kozlovtseva@yandex.ru
ORCID iD: 0009-0008-6315-4230

student

Russian Federation, Rostov-on-Don

Maria A. Noskova

Rostov State Medical University

Email: maria08.98@mail.ru
ORCID iD: 0009-0009-6783-0707

student

Russian Federation, Rostov-on-Don

Diana S. Uzdenova

Rostov State Medical University

Email: holmesamanda147@gmail.ru
ORCID iD: 0009-0003-2895-0382

student

Russian Federation, Rostov-on-Don

Elena V. Gantsgorn

Rostov State Medical University

Email: gantsgorn@inbox.ru
ORCID iD: 0000-0003-0627-8372
SPIN-code: 4797-6070

MD, Cand. Sci. (Med.), associate professor

Russian Federation, Rostov-on-Don

Oksana M. Kudelina

Rostov State Medical University

Email: kuomi81@mail.ru
ORCID iD: 0000-0003-3889-345X
SPIN-code: 2750-8743

MD, Cand. Sci. (Med.)

Russian Federation, Rostov-on-Don

References

  1. World Health Organization. World health statistics 2021: monitoring health for the SDGs, sustainable development goals [Internet]. Available from: https://apps.who.int/iris/handle/10665/342703
  2. Institute for Health Metrics and Evaluation. Findings from the Global Burden of Disease Study 2017 [Internet]. Available from: https://www.healthdata.org/policy-report/findings-global-burden-disease-study-2017
  3. Baker RE, Mahmud AS, Miller IF, et al. Infectious disease in an era of global change. Nat Rev Microbiol. 2022;20(4):193–205. doi: 10.1038/s41579-021-00639-z
  4. Tong S, Ebi K, Olsen J. Infectious disease, the climate, and the future. Environ Epidemiol. 2021;5(2):133. doi: 10.1097/EE9.0000000000000133
  5. Polgreen PM, Polgreen EL. Infectious diseases, weather, and climate. Clin Infect Dis. 2018;66(6):815–817. doi: 10.1093/cid/cix1105
  6. Craven M, Sabow A, Van der Veken L, et al., editors. Not the last pandemic: Investing now to reimagine public-health systems [Internet]. New York: McKinsey Report; 2021. [cited 2023 Apr 1]. Available from: https://www.mckinsey.com/industries/public-and-social-sector/our-insights/not-the-last-pandemic-investing-now-to-reimagine-public-health-systems#/
  7. Orlov DS. Humic substances in the biosphere. Soros Educational Journal. 1997;(2):56–63. (In Russ).
  8. Perminova IV. Analiz, klassifikaciya i prognoz svojstv gumusovyh kislot [dissertation]. Moscow; 2000. Available from: http://mgumus.chem.msu.ru/publication/01-titul.pdf (In Russ).
  9. Avvakumova NP. Sostav i biologicheskie svojstva gumusovyh kislot peloidov: fundamental’nye i prikladnye aspekty [dissertation]. Moscow; 2000. Available from: http://dlib.rsl.ru/rsl01002000000/rsl01002606000/rsl01002606904/rsl01002606904.pdf (In Russ).
  10. Danchenko NN. Funkcional’nyj sostav gumusovyh kislot: opredelenie i vzaimosvyaz’ s reakcionnoj sposobnost’yu [dissertation]. Moscow; 1997. Available from: http://www.mgumus.chem.msu.ru/researches/Avtoreferaty/danchenko-diss.pdf (In Russ).
  11. Aleksandrova LN. Organicheskoe veshhestvo pochvy i processy ee transformacii. Leningrad: Nauka. Leningradskoe otdelenie; 1980. (In Russ).
  12. Kononova MM. Problema pochvennogo gumusa i sovremennye zadachi ego izuchenija. Moscow: Izdatel’stvo Akademii nauk SSSR; 1951. (In Russ).
  13. Lishtvan II, Kruglickij NN, Tretinnik VJu. Fiziko-himicheskaja mehanika guminovyh veshhestv. Minsk: Nauka i tehnika; 1976. (In Russ).
  14. Orlov DS. Gumusovye kisloty pochv i obshhaja teorija gumifikacii. Moscow: Izdatel’stvo MGU; 1990. 325 p. (In Russ).
  15. Zhdanova AV. Izuchenie strukturnyh komponentov i fiziko-himicheskih svojstv guminovyh veshchestv nizkomineralizovannyh ilovyh sul’fidnyh gryazej kak istochnika antioksidantnyh lekarstvennyh sredstv [dissertation]. Samara; 2011. Available from: http://dlib.rsl.ru/rsl01004000000/rsl01004846000/rsl01004846945/rsl01004846945.pdf (In Russ).
  16. Avvakumova NP, Glubokova MN, Zhdanova AV, et al. Optimization of humic acids dialysis. Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2009;11(1): 1256–1258. (In Russ).
  17. Tadigieva NZ, Coj EG, Turovskaja SI. Antibakterial’naja aktivnost’ guminovogo preparata iz lechebnoj torfjanoj grjazi Dzhelal. Biologicheskie nauki. 1991;(10):109–113. (In Russ).
  18. Krasnikova ES, Pavlenko VV, Martynov IS. The study of bactericidal and fungicidal activity of feed additives based on humic acids. Uchenye zapiski Kazanskoj gosudarstvennoj akademii veterinarnoj mediciny im. N.Je. Baumana. 2019;239(3):158–160. (In Russ). doi: 10.31588/2413-4201-1883-239-3-158-160
  19. Verrillo M, Salzano M, Savy D, et al. Antibacterial and antioxidant properties of humic substances from composted agricultural biomasses. Chem Biol Technol Agric. 2022;9:28. doi: 10.1186/s40538-022-00291-6
  20. Hassett DJ, Bisesi MS, Hartenstein R. Bactericidal action of humic acids. Soil Biology and Biochemistry. 1987;19(1):111–113. doi: 10.1016/0038-0717(87)90134-9
  21. Khuda F, Anjum M, Khan S, et al. Antimicrobial, anti-inflammatory and antioxidant activities of natural organic matter extracted from cretaceous shales in district Nowshera-Pakistan. Arabian Journal of Chemistry. 2022;15(2):103633.
  22. Litvin VA, Njoh RA. Quercetin as a precursor in the synthesis of analogues of fulvicacids and their antibacterial properties. Voprosy khimii i khimicheskoi tekhnologii. 2021;(2):56–64. doi: 10.32434/0321-4095-2021-135-2-56-64
  23. Van Rensburg CE, Van Straten A, Dekker J. An in vitro investigation of the antimicrobial activity of oxifulvic acid. J Antimicrob Chemother. 2000;46(5):853. doi: 10.1093/jac/46.5.853
  24. Ansorg R, Rochus W. Studies on the antimicrobial effect of natural and synthetic humic acids (author’s transl). Arzneimittelforschung. 1978;28(12):2195–2198.
  25. Gorovaja AI, Orlov DS, Shherbenko OV. Guminovye veshhestva. Kiev: Naukova dumka; 1995. (In Russ).
  26. Popov AI, Zelenkov VN, Teplyakova TV. Biological activity and biochemistry of humic substances. Part 2. Medical and biological aspect. (Literature review). Bulletin of the Russian Academy of Natural Sciences. 2016;(5):9–16. (In Russ).
  27. Man D, Pisarek I, Braczkowski M, et al. The impact of humic and fulvic acids on the dynamic properties of liposome membranes: the ESR method. J Liposome Res. 2014;24(2):106–112. doi: 10.3109/08982104.2013.839998
  28. de Wit H. Proton and metal ion binding to humic substances. Wageningen: Wageningen University and Research; 1992.
  29. de Melo BA, Motta FL, Santana MH. Humic acids: Structural properties and multiple functionalities for novel technological developments. Mater Sci Eng C Mater Biol Appl. 2016;(62):967–974. doi: 10.1016/j.msec.2015.12.001
  30. Mikhnevich TA, Vyatkina AV, Grigorenko VG, et al. Inhibition of class A β-lactamase (TEM-1) by narrow fractions of humic substances. ACS omega. 2021;6(37):23873–23883. doi: 10.1021/acsomega.1c02841
  31. Kravtsova D, Cherkasova T, Rubtsova M, et al. Humic substances potentiate inhibitory activity of sulbactam with respect to β-lactamase TEM-1. In: Perminova I, editors. Fifth International Conference of CIS IHSS on Humic Innovative Technologies «Humic substances and living systems» (HIT-2019); 2019 October 19–23; Moscow, Russia. Moscow: Desktop publishing by Alexander Polyakov; 2019. p. 105.
  32. Klöcking R, Sprössig M. Antiviral properties of humic acids. Experientia. 1972;28(5):607–608. doi: 10.1007/BF01931906
  33. Klöcking R, Helbig B. Medical aspects and applications of humic substances. In: Steinbüchel A, Marchessault RH, editors. Biopolymers for Medical and Pharmaceutical Applications. Weinheim: WILEY-VCH Verlag GmbH & C. KGaA; 2005. p. 3–16.
  34. Socol DC. Clinical review of humic acid as an antiviral: Leadup to translational applications in clinical humeomics. Front Pharmacol. 2022;(13):1–11. doi: 10.3389/fphar.2022.1018904
  35. Hajdrik P, Pályi B, Kis Z, et al. In vitro determination of inhibitory effects of humic substances complexing Zn and Se on SARS-CoV-2 virus replication. Foods. 2022;11(5):694. doi: 10.3390/foods11050694
  36. Nosik DN, Nosik NN, Teplyakova TV, et al. Antiviral activity of extracts of basidiomycetes and humic compounds against human immunodeficiency virus (Retroviridae: Orthoretrovirinae: Lentivirus: Human immunodeficiency virus 1) and Herpes simplex virus (Herpesviridae: Simplexvirus: Human alphaherpesvirus 1). Problems of Virology. 2020;65(5):276–283. (In Russ). doi: 10.36233/0507-4088-2020-65-5-4
  37. Hafez M, Popov AI, Zelenkov VN, et al. Humic substances as an environmental-friendly organic wastes potentially help as natural anti-virus to inhibit COVID-19. Science Archives. 2020;1(2):53–60. doi: 10.47587/SA.2020.1202
  38. Dekker J, Medlen CE, inventor; Enerkom (Proprietary) Limited, assignee. Fulvic acid and its use in the treatment of various conditions. United States Patent US 006569900B1. 2003 May 27.
  39. Zhernov Y. Natural humic substances interfere with multiple stages of the replication cycle of human immunodeficiency virus. Journal of Allergy and Clinical Immunology. 2018;141(2):233. doi: https://doi.org/10.1016/j.jaci.2017.12.737
  40. Spiridonov AM, Zhirnov YV, Avvakumova NP, et al. Antiviral activity of fractions of humic substances of peloids against strains of human immunodeficiency virus type 1. Russian Journal of Infection and Immunity. 2012;2(1):424–424. (In Russ).
  41. Kornilaeva GV, Siniavin AE, Schultz A, et al. The differential Anti-HIV effect of a new humic substance-derived preparation in diverse cells of the immune system. Acta Naturae. 2019;11(2):68–76. doi: 10.32607/20758251-2019-11-2-68-76
  42. Zhernov YV, Konstantinov AI, Zherebker A, et al. Antiviral activity of natural humic substances and shilajit materials against HIV-1: Relation to structure. Environmental Research. 2021;(193):110312. doi: 10.1016/j.envres.2020.110312
  43. Meerbach A, Neyts J, Balzarini J, et al. In vitro activity of polyhydroxycarboxylates against herpesviruses and HIV. Antivir Chem Chemother. 2001;12(6):337–345. doi: 10.1177/095632020101200603
  44. Sherry L, Jose A, Murray C, et al. Carbohydrate derived fulvic acid: an in vitro investigation of a novel membrane active antiseptic agent against Candida albicans biofilms. Front Microbiol. 2012;29(3):116. doi: 10.3389/fmicb.2012.00116
  45. Saleh AA, Yassin M, El-Naggar K, et al. Effect of dietary supplementation of humic acid and lincomycin on growth performance, nutrient digestibility, blood biochemistry, and gut morphology in broilers under clostridium infection. Journal of Applied Animal Research. 2022;50(1):440–452. doi: 10.1080/09712119.2022.2089674
  46. Helbig B, Klöcking R, Wutzler P. Anti-herpes simplex virus type 1 activity of humic acid-like polymers and their o-diphenolic starting compounds. Antivir Chem Chemother. 1997;8(3):265–273.
  47. Gu C, Karthikeyan KG, Sibley SD, Pedersen JA. Complexation of the antibiotic tetracycline with humic acid. Chemosphere. 2007;66(8):1494–1501. doi: 10.1016/j.chemosphere.2006.08.028
  48. Warn P, Leivers SW, inventor; Natracine UK Limited, assignee. Fulvic acid in combination with fluconazole or amphotericin b for the treatment of fungal infections. United States patent US 20120035125A1. 2012 Feb 9.
  49. Leivers SW, Warn P, inventor; Natracine UK Limited, assignee. Fulvic acid and antibiotic combination for the inhibition or treatment of multi-drug resistant bacteria. United States patent US 9265744B2. 2016 Feb 23.
  50. Fernandes AC, Medlen CE, Leivers S, inventor; Pfeinsmith Ltd., assignee. Fulvic acid and antibiotic combination. United States patent US 8445452B2. 2013 May 21.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия  ПИ № ФС 77 - 86296 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80632 от 15.03.2021 г
.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies