Theoretical background of hypoxytherapy

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review discusses the structure and physiology of the oxygen supply functional system and its self-regulatory potential and role in maintaining the body’s optimal metabolic homeostasis level of blood gases. Up-to-date data on the functioning of peripheral (arterial) and central (medullary) chemoreceptors, molecular mechanisms of the oxygen and carbon dioxide content and pH perception, and their association with afferent nerve endings are presented. The paths and centers of the chemosensory reflex in various brain regions, effector elements, and reverse afferentation mechanisms are shown. Response patterns to exogenous and endogenous hypoxic stimuli from the various elements of the oxygen supply system are described. The role of intracellular HIF-dependent and HIF-independent pathways in adaptive reactions for maintaining an optimal intracellular metabolism is demonstrated. Cell mechanisms with adaptive roles in hypoxia/reoxygenation under the conditions of interval normobaric hypoxic therapy are discussed.

The review of current concepts and analysis of research results on the physiology of the oxygen supply functional system, its structural and functional status, and its molecular regulation under exogenous hypoxic conditions will draw attention to the expediency of further randomized clinical trials on interval normobaric hypoxytherapy as a rehabilitation method for patients with chronic cardiovascular diseases

Full Text

Restricted Access

About the authors

Grigoriy A. Ignatenko

Maxim Gorky Donetsk National Medical University

Author for correspondence.
Email: secretary@dnmu.ru
ORCID iD: 0000-0003-3611-1186
SPIN-code: 3893-0662
Scopus Author ID: 57223894993
ResearcherId: Q-2716-2017

MD, Dr. Sci. (Med.), professor

Donetsk People's Republic, 16 Ilyich Avenue, 283003 Donetsk

References

  1. Sayutina EV, Osadchuk MA, Romanov BK, et al. Cardiac rehabilitation and secondary prevention after acute myocardial infarction: a modern view on the problem. Medical Journal of the Russian Federationn Journal. 2021;27(6):571–587. (In Russ). doi: 10.17816/0869-2106-2021-27-6-571-587
  2. Mc Namara K, Alzubaidi H, Jackson JK. Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? Integr Pharm Res Pract. 2019;8:1–11. doi: 10.2147/IPRP.S133088
  3. Timmis A, Vardas P, Townsend N, et al. European Society of Cardiology: cardiovascular disease statistics 2021. Eur Heart J. 2022;43(8):716–799. doi: 10.1093/eurheartj/ehab892
  4. Kim IV, Bochkareva EV, Varakin YuYa. The unity of approaches to preventing coronary heart disease and cerebrovascular diseases. The Russian Journal of Preventive Medicine. 2015;18(6):24–33. (In Russ). doi: 10.17116/profmed201518624-33
  5. Glushchenko VA, Irklienko EK. Cardiovascular morbidity — one of the most vital problems of modern health care. Medicine and Health Care Organization. 2019;4(1):56–63. (In Russ).
  6. Tolpygina SN, Martsevich SYu. Investigation of CHD PROGNOSIS: new long-term follow-up data. The Russian Journal of Preventive Medicine. 2016;19(1):30–36. (In Russ). doi: 10.17116/profmed201619130-36
  7. Medina-Leyte DJ, Zepeda-García O, Domínguez-Pérez M, et al. Endothelial dysfunction, inflammation and coronary artery disease: potential biomarkers and promising therapeutical approaches. Int J Mol Sci. 2021;22(8):3850. doi: 10.3390/ijms22083850
  8. Bubnova MG, Aronov DM. Cardiac rehabilitation: stages, principles and international classification of functioning (ICF). The Russian Journal of Preventive Medicine. 2020;23(5):40–49. (In Russ). doi: 10.17116/profmed20202305140
  9. Aronov DM. Cardiac rehabilitation basics. Cardiology: news, opinions, training. 2016;(3):104–110. (In Russ).
  10. Pupyreva ED, Balykin MV. Mechanism of oxygen supply in sportsmen at the rest and maximal physical exercises. Ulyanovsk Medico-biological Journal. 2013;(1):124–130. (In Russ).
  11. Alekseeva TM, Kovzelev PD, Topuzova MP, et al. Hypercapnic-hypoxic respiratory training as a method of post-conditioning in stroke suvivors. Arterial’naya gipertenziya. 2019;25(2):134–142. (In Russ). doi: 10.18705/1607-419X-2019-25-2-134-142
  12. Nikolaeva AG. Ispol’zovanie adaptacii k gipoksii v medicine i sporte. Vitebsk: VGMU; 2015. (In Russ).
  13. Ignatenko GA, Mukhin IV, Tumanova SV. Antihypertensive effectiveness of interval normobaric hypoxytherapy in patients with chronic glomerulonephritis and angina pectoris. Nephrology (Saint-Petersburg). 2007;11(3):64–69. (In Russ).
  14. Ignatenko GA, Denisova EM, Sergienko NV. Hypoxytherapy as a prospective method of increasing the effectiveness of complex treatment of comorbid pathology. Vestnik neotlozhnoj i vosstanovitel’’noj hirurgii. 2021;6(4):73–80. (In Russ).
  15. Borukaeva IKh, Abazova ZKh, Ivanov AB, Shkhagumov KYu. The role of interval hypoxytherapy and enteral oxygen therapy in the rehabilitation of the patients presenting with chronic obstructive pulmonary disease. Problems of Balneology, Physiotherapy and Exercise Therapy. 2019;96(2):27–32. (In Russ). doi: 10.17116/kurort20199602127
  16. Glazachev OS, Geppe NA, Timofeev YuS, et al. Indicators of individual hypoxia resistance — a way to optimize hypoxic training for children. Russian Bulletin of Perinatology and Pediatrics. 2020;65(4):78–84. (In Russ). doi: 10.21508/1027-4065-2020-65-4-78-84
  17. Ignatenko GA, Mukhin IV, Zubritskiy KS, et al. Influence of different therapy modes on the manifestation of arythmic syndrome in patients with type 2 diabetes mellitus. Mediko-social’nye problemy sem’i. 2021;26(4):49–56. (In Russ).
  18. Zaletova TS. Interval hypoxic therapy in cardiology and dietetics. Medicine. Sociology. Philosophy. Applied research. 2022;4:32–34. (In Russ).
  19. Ignatenko GA, Dubovaya AV, Naumenko YuV. Treatment potential of normobaric hypoxic therapy in therapeutic and pediatric practice. Russian Bulletin of Perinatology and Pediatrics. 2022;67(6):46–53. (In Russ). doi: 10.21508/1027-4065-2022-67-6-46-53
  20. Navarrete-Opazo A, Mitchell GS. Recruitment and plasticity in diaphragm, intercostal, and abdominal muscles in unanesthetized rats. J Appl Physiol (1985). 2014;117(2):180–188. doi: 10.1152/japplphysiol.00130.2014
  21. Rozova EV, Mankovskaya IN, Mironova GD. Structural and dynamic changes in mitochondria of rat myocardium under acute hypoxic hypoxia: role of mitochondrial ATP-dependent potassium channel. Biochemistry (Mosc). 2015;80(8):994–1000. doi: 10.1134/S0006297915080040
  22. Vogtel M, Michels A. Role of intermittent hypoxia in the treatment of bronchial asthma and chronic obstructive pulmonary disease. Curr Opin Allergy Clin Immunol. 2010;10(3):206–213. doi: 10.1097/ACI.0b013e32833903a6
  23. https://libmonster.com/index.php [Internet]. Sudakov K. Functional systems of the organism. London: Libmonster; 2018 [cited: 2023 May 11]. Available from: https://libmonster.com/m/articles/view/FUNCTIONAL-SYSTEMS-OF-THE-ORGANISM/
  24. Injarabian L, Scherlinger M, Devin A, et al. Ascorbate maintains a low plasma oxygen level. Sci Rep. 2020;10(1):10659. doi: 10.1038/s41598-020-67778-w
  25. Iturriaga R, Alcayaga J, Chapleau MW, Somers VK. Carotid body chemoreceptors: physiology, pathology, and implications for health and disease. Physiol Rev. 2021;101(3):1177–1235. doi: 10.1152/physrev.00039.2019
  26. Milloy KM, White MG, Chicilo JOC, et al. Assessing central and peripheral respiratory chemoreceptor interaction in humans. Exp Physiol. 2022;107(9):1081–1093. doi: 10.1113/EP089983
  27. Prabhakar NR, Peng YJ, Yuan G, Nanduri J. Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia. Cell Tissue Res. 2018;372(2):427–431. doi: 10.1007/s00441-018-2807-0
  28. Prabhakar NR, Semenza GL. Regulation of carotid body oxygen sensing by hypoxia-inducible factors. Pflugers Arch. 2016;468(1): 71–75. doi: 10.1007/s00424-015-1719-z
  29. Semenza GL, Prabhakar NR. The role of hypoxia-inducible factors in carotid body (patho) physiology. J Physiol. 2018;596(15): 2977–2983. doi: 10.1113/JP275696
  30. López-Barneo J. Neurobiology of the carotid body. Handb Clin Neurol. 2022;188:73–102. doi: 10.1016/B978-0-323-91534-2.00010-2
  31. Guyenet PG, Stornetta RL, Souza GMR, et al. The retrotrapezoid nucleus: central chemoreceptor and regulator of breathing automaticity. Trends Neurosci. 2019;42(11):807–824. doi: 10.1016/j.tins.2019.09.002
  32. Gorodeckaya IV. Fiziologiya dyhaniya. Vitebsk: VGMU; 2012. (In Russ).
  33. Safonov VA. Regulyaciya vneshnego dyhaniya. Surgut State University Journal. 2009;(2):25–34. (In Russ).
  34. Prikhodko VA, Selizarova NO, Okovityi SV. Molecular mechanisms for hypoxia development and adaptation to it. Part I. Arkhiv Patologii. 2021;83(2):52–61. (In Russ). doi: 10.17116/patol20218302152
  35. López-Barneo J, Ortega-Sáenz P. Mitochondrial acute oxygen sensing and signaling. Crit Rev Biochem Mol Biol. 2022;57(2): 205–225. doi: 10.1080/10409238.2021.2004575
  36. Iturriaga R, Del Rio R, Alcayaga J. Carotid body inflammation: role in hypoxia and in the anti-inflammatory reflex. Physiology (Bethesda). 2022;37(3):128–140. doi: 10.1152/physiol.00031.2021
  37. Zera T, Moraes DJA, da Silva MP, et al. The logic of carotid body connectivity to the brain. Physiology (Bethesda). 2019;34(4):264–282. doi: 10.1152/physiol.00057.2018
  38. Iturriaga R. Translating carotid body function into clinical medicine. J Physiol. 2018;596(15):3067–3077. doi: 10.1113/JP275335
  39. Morin R, Goulet N, Mauger JF, Imbeault P. Physiological responses to hypoxia on triglyceride levels. Front Physiol. 2021;23(12):730935. doi: 10.3389/fphys.2021.730935
  40. Salvagno M, Coppalini G, Taccone FS, et al. The normobaric oxygen paradox-hyperoxic hypoxic paradox: a novel expedient strategy in hematopoiesis clinical issues. Int J Mol Sci. 2023;24(1):82. doi: 10.3390/ijms24010082
  41. Bondarenko NN, Khomutov EV, Ryapolova TL, et al. Molecular and cellular mechanisms of hypoxic response. Ulyanovsk Medico-biological Journal. 2023;(2):6–29. (In Russ). doi: 10.34014/2227-1848-2023-2-6-29
  42. Prabhakar NR, Semenza GL. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev. 2012;92(3):967–1003. doi: 10.1152/physrev.00030.2011
  43. Choudhry H, Harris AL. Advances in hypoxia-inducible factor biology. Cell Metab. 2018;27(2):281–298. doi: 10.1016/j.cmet.2017.10.005
  44. Liu Z, Wu Z, Fan Y, Fang Y. An overview of biological research on hypoxia-inducible factors (HIFs). Endokrynol Pol. 2020;71(5):432–440. doi: 10.5603/EP.a2020.0064
  45. Zhang L, Cao Y, Guo X, et al. Hypoxia-induced ROS aggravate tumor progression through HIF-1α-SERPINE1 signaling in glioblastoma. J Zhejiang Univ Sci B. 2023;24(1):32–49. doi: 10.1631/jzus.B2200269
  46. Puri Sh, Panza G, Mateika JH. A comprehensive review of respiratory, autonomic and cardiovascular responses to intermittent hypoxia in humans. Exp Neurol. 2021;341:113709. doi: 10.1016/j.expneurol.2021.113709
  47. Cai M, Chen X, Shan J, et al. intermittent hypoxic preconditioning: a potential new powerful strategy for COVID-19 rehabilitation. Front Pharmacol. 2021;12:643619. doi: 10.3389/fphar.2021.643619
  48. Prabhakar NR, Peng YJ, Nanduri J. Adaptive cardiorespiratory changes to chronic continuous and intermittent hypoxia. Handb Clin Neurol. 2022;188:103–123. doi: 10.1016/B978-0-323-91534-2.00009-6
  49. Mansfield KD, Guzy RD, Pan Y, et al. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab. 2005;1(6):393–399. doi: 10.1016/j.cmet.2005.05.003
  50. Reiterer M, Eakin A, Johnson RS, Branco CM. Hyperoxia reprogrammes microvascular endothelial cell response to hypoxia in an organ-specific manner. Cells. 2022;11(16):2469. doi: 10.3390/cells11162469
  51. Sprick JD, Mallet RT, Przyklenk K, Rickards CA. Ischaemic and hypoxic conditioning: potential for protection of vital organs. Exp Physiol. 2019;104(3):278–294. doi: 10.1113/EP087122
  52. Ashagre SM, Borukaeva IH. Effect of reduced oxygen content in inhaled air in a hypoxic test on hypertensive patients. Modern problems of science and education. 2022;(3):99. (In Russ). doi: 10.17513/spno.31725
  53. Brugniaux JV, Coombs GB, Barak OF, et al. Highs and lows of hyperoxia: physiological, performance, and clinical aspects. Am J Physiol Regul Integr Comp Physiol. 2018;315(1):R1–R27. doi: 10.1152/ajpregu.00165.2017
  54. Kutepov DE, Zhigalova MS, Pasechnik IN. Pathogenesis of ischemia/reperfusion syndrome. Kazan Medical Journal. 2018;99(4):640–644. (In Russ). doi: 10.17816/KMJ2018-640
  55. Soares ROS, Losada DM, Jordani MC, et al. Ischemia/reperfusion injury revisited: an overview of the latest pharmacological strategies. Int J Mol Sci. 2019;20(20):5034. doi: 10.3390/ijms20205034
  56. Neimark MI. Ischemia-reperfusion syndrome. Pirogov Russian Journal of Surgery. 2021;(9):71–76. (In Russ). doi: 10.17116/hirurgia202109171
  57. Minakina LN, Goldapel EG, Usov LA. The influence of adenosine receptor ligands and hypoxic preconditioning on the metabolism of the brain tissue in the experiment. S.S. Korsakov Journal of Neurology and Psychiatry. 2018;118(7):54–58. (In Russ). doi: 10.17116/jnevro20181187154
  58. Ma C, Zhao Y, Ding X, Gao B. Hypoxic training ameliorates skeletal muscle microcirculation vascular function in a Sirt3-dependent manner. Front Physiol. 2022;13:921763. doi: 10.3389/fphys.2022.921763
  59. Lukyanova LD, Kirova YI. Mitochondria-controlled signaling mechanisms of brain protection in hypoxia. Front Neurosci. 2015;9:320. doi: 10.3389/fnins.2015.00320
  60. Hess ML, Manson NH. Molecular oxygen: friend and foe. The role of the oxygen free radical system in the calcium paradox, the oxygen paradox and ischemia/reperfusion injury. J Mol Cell Cardiol. 1984;16(11):969–985. doi: 10.1016/s0022-2828(84)80011-5
  61. Milliken AS, Nadtochiy SM, Brookes PS. Inhibiting succinate release worsens cardiac reperfusion injury by enhancing mitochondrial reactive oxygen species generation. J Am Heart Assoc. 2022;11(13):e026135. doi: 10.1161/JAHA.122.026135
  62. Prag HA, Gruszczyk AV, Huang MM, et al. Mechanism of succinate efflux upon reperfusion of the ischaemic heart. Cardiovasc Res. 2021;117(4):1188–1201. doi: 10.1093/cvr/cvaa148

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия  ПИ № ФС 77 - 86296 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80632 от 15.03.2021 г
.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies