The impact of proton pomp inhibitors on the development of dementia in the elderly population



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Dementia is a syndrome characterized by progressive decline in cognitive functions, loss of motor skills, and the ability to perform self-care tasks. The global increase in the number of dementia patients each year is attributed to longer life expectancy and aging populations. Currently, there is no standardized approach to dementia treatment, thus primary prevention aimed at mitigating risk factors is a key focus of healthcare systems.

 Some pharmacological agents have the potential to impact patients' cognitive functions, which should be considered when prescribing them.

Proton pump inhibitors (PPIs) are one of the most commonly prescribed classes of medications for elderly patients prone to gastrointestinal diseases. The polymorbidity of this patient group warrants PPI prescription as gastroprotective therapy alongside other medications affecting gastric secretion (NSAID, anticoagulants, glucocorticoids).

There are numerous examples of undesirable interactions between proton pump inhibitors (PPIs) and other drugs: reduced absorption of antifungal agents and certain cardiac glycosides, alteration of metabolism, mutual enhancement or reduction of the pharmacological effects of PPIs and another prescribed drug against the background of the first, and an increase in mortality among patients taking PPIs and clopidogrel due to the potential reduction of its antiplatelet effect.

The purpose of the work is to analyze and systematize data on the relationship between the use of PPIs and the development of dementia. The potential mechanisms of the influence of PPIs on the cognitive functions of elderly and senile people are considered.

Full Text

Restricted Access

About the authors

Oksana Mikhailovna Bolshakova

Первый Санкт-Петербургский
государственный медицинский
университет им. акад. И.П. Павлова

Author for correspondence.
Email: oxanabolshakowa2015@yandex.ru
ORCID iD: 0009-0008-6899-4052
Russian Federation

Angelina Alexandrovna Krivonos

Первый Санкт-Петербургский
государственный медицинский
университет им. акад. И.П. Павлова

Email: ang.krivonos@gmail.com
ORCID iD: 0009-0004-7435-1695
Russian Federation

Anastasia Rogozina

Первый Санкт-Петербургский
государственный медицинский
университет им. акад. И.П. Павлова

Email: anas.rogozina2015@yandex.ru
ORCID iD: 0009-0006-3101-9304
Russian Federation

Veronika Stanislavovna Lindover

Санкт-Петербургский государственный педиатрический медицинский университет, Санкт-Петербург, Российская Федерация

Email: nika.lindover@yandex.ru
ORCID iD: 0009-0009-0687-1302
SPIN-code: 2721-2690
Russian Federation

Maria Vadimovna Englas

Военно-медицинская академия им. С.М. Кирова

Email: maria.englas@yandex.ru
ORCID iD: 0009-0001-9720-0257
Russian Federation

Kirill Pavlovich Rayevsky

Военно-медицинская академия им. С.М. Кирова

Email: sicarius001@gmail.com
ORCID iD: 0000-0002-9939-3443
SPIN-code: 9133-3802
Russian Federation

References

  1. Lyalukova EA, Tereshchenko YuV, Chernysheva EH, Lyalyukov AV. Choosing a proton pump inhibitor from the standpoint of effectiveness and safety in a particular patient // Attending doctor. 2020. №8. Р. 6-10. (In Russ.) https://doi.org/10.26295/OS.2020.10.41.004.
  2. Kim Y., Seo S.I., Lee K.J. et al. Long-term use of proton-pump inhibitor on Alzheimer's disease: a real-world distributed network analysis of six observational Korean databases using a Common Data Model // Ther Adv Neurol Disord. 2022. Vol. 15. P. 17562864221135700. https://doi.org/10.1177/17562864221135700.
  3. Caetano C, Veloso M, Borda S. Proton pump inhibitors and dementia: what association? // Dement Neuropsychol. 2023. Vol. 17. P. e20220048. https://doi.org/10.1590/1980-5764-DN-2022-0048.
  4. Khomeriki N.M., Khomeriki S.G. Is it possible to optimize the use of proton pump inhibitors in real medical practice? // Almanac of Clinical Medicine. 2022. Vol. 50, N 6. P. 357–366. (In Russ.) https://doi.org/10.18786/2072-0505-2022-50-051.
  5. Zhang H.J., Zhang X.H, Liu J. et al. Effects of genetic polymorphisms on the pharmacokinetics and pharmacodynamics of proton pump inhibitors // Pharmacol Res. 2020. Vol. 152. Р. 104606. https://doi.org/10.1016/j.phrs.2019.104606.
  6. Ostroumova O.D., Pereverzev A.P. Effect of proton pump inhibitors on cognition and risk of dementia // Consilium Medicum. 2019. Vol. 21, N 2. P. 31-36. (In Russ.) https://doi.org/10.26442/20751753.2019.2.180171.
  7. Makunts T, Abagyan R. How can proton pump inhibitors damage central and peripheral nervous systems? // Neural Regen Res. 2020. Vol.15, N 11. P. 2041-2042. https://doi.org/10.4103/1673-5374.282252.
  8. Bakirtzis C, Lima M, De Lorenzo SS, Artemiadis A, Theotokis P, Kesidou E et al. Secondary Central Nervous System Demyelinating Disorders in the Elderly: A Narrative Review // Healthcare. 2023. Vol. 11, N. 15. P. 2126. https://doi.org/10.3390/healthcare11152126.
  9. El-Mezayen N.S., Abd El Moneim R.A., El-Rewini S.H. Vitamin B12 as a cholinergic system modulator and blood brain barrier integrity restorer in Alzheimer's disease // Eur J Pharm Sci. 2022. Vol. 174. P. 106201. https://doi.org/10.1016/j.ejps.2022.10620
  10. Lauer A.A., Grimm H.S., Apel B. et al. Mechanistic Link between Vitamin B12 and Alzheimer's Disease // Biomolecules. 2022. Vol. 12, N. 1. P. 129. https://doi.org/10.3390/biom12010129
  11. Schleicher E., Didangelos T., Kotzakioulafi E. et al. Clinical Pathobiochemistry of Vitamin B12 Deficiency: Improving Our Understanding by Exploring Novel Mechanisms with a Focus on Diabetic Neuropathy // Nutrients. 2023. Vol. 15, N 11. P. 2597. https://doi.org/10.3390/nu15112597
  12. Northuis C.A., Bell E.J., Lutsey P.L. et al. Cumulative Use of Proton Pump Inhibitors and Risk of Dementia: The Atherosclerosis Risk in Communities Study // Neurology. 2023. Vol. 101, N 18. P. e1771-e1778. https://doi.org/10.1212/WNL.0000000000207747
  13. Porter K.M., Hoey L., Hughes C.F. et al. Associations of atrophic gastritis and proton-pump inhibitor drug use with vitamin B-12 status, and the impact of fortified foods, in older adults // Am J Clin Nutr. 2021. Vol. 114, N 4. P. 1286-1294. https://doi.org/10.1093/ajcn/nqab193
  14. Pourhadi N., Janbek J., Jensen-Dahm C. et al. Proton pump inhibitors and dementia: A nationwide population-based study // Alzheimers Dement. 2024. Vol. 20, N 2. P. 837-845. https://doi.org/10.1002/alz.13477
  15. Montecinos-Oliva C., Arrázola M.S., Jara C. et al. Hormetic-Like Effects of L-Homocysteine on Synaptic Structure, Function, and AβAggregation // Pharmaceuticals (Basel). 2020. Vol. 13, N 2. P. 24. https://doi.org/10.3390/ph13020024
  16. Tan B., Venketasubramanian N., Vrooman H. et al. Homocysteine and Cerebral Atrophy: The Epidemiology of Dementia in Singapore Study // J Alzheimers Dis. 2018. Vol. 62, N 2. P. 877-885. https://doi.org/10.3233/jad-170796
  17. Nelson M.E., Andel R., Nedelska Z. et al. The Association Between Homocysteine and Memory in Older Adults // J Alzheimers Dis. 2021. Vol. 81, N 1. P. 413-426. https://doi.org /10.3233/JAD-201558
  18. Xiao Y., Xu W., Niu D. et al. Investigation into the impact of proton pump inhibitors on sertraline transport across the blood-brain barrier // Eur J Pharm Sci. 2024. Vol. 194. P. 106653. https://doi.org/10.1016/j.ejps.2023.106653
  19. Zecca C., Pasculli G., Tortelli R. et al. The Role of Age on Beta-Amyloid1-42 Plasma Levels in Healthy Subjects // Front Aging Neurosci. 2021. Vol. 13. P. 698571. https://doi.org/10.3389/fnagi.2021.698571
  20. Hu J., Wang X. Alzheimer's Disease: From Pathogenesis to Mesenchymal Stem Cell Therapy - Bridging the Missing Link // Front Cell Neurosci. 2022. Vol. 15. P. 811852. https://doi.org/10.3389/fncel.2021.811852
  21. Tsyganova T.V., Melisheva A.N. Alzheimer's disease:Modern views on the pathogenesis of the disease // Kronos. 2022. Vol.7, N 11(73). P. 39-41. (In Russ.) https://doi.org/10.52013/2658-7556-73-11-11
  22. Nichols R.A., Gulisano W., Puzzo D. Editorial: Beta Amyloid: From Physiology to Pathogenesis // Front Mol Neurosci.2022. Vol. 15. P. 876224. http://doi.org/10.3389/fnmol.2022.876224
  23. Ahn N., Wawro N., Baumeister S.E. et al. Time-Varying Use of Proton Pump Inhibitors and Cognitive Impairment and Dementia: A Real-World Analysis from Germany // Drugs Aging. 2023. Vol. 40, N 7. P. 653-663 https://doi.org/10.1007/s40266-023-01031-7
  24. Badiola N., Alcalde V., Pujol A. et al. The proton-pump inhibitor lansoprazole enhances amyloid beta production // PLoS One. 2013. Vol. 8, N 3. P. e58837.http://doi.org/10.1371/journal.pone.0058837
  25. Iliyasu M.O., Musa S.A., Oladele S.B., Iliya A.I. Amyloid-beta aggregation implicates multiple pathways in Alzheimer's disease: Understanding the mechanisms // Front Neurosci. 2023. Vol. 17. P. 1081938. https://doi.org/10.3389/fnins.2023.1081938
  26. Choi H.G., Kim J.H., Kim J.H. et al. Associations between proton pump inhibitors and Alzheimer’s disease: a nested case–control study using a Korean nationwide health screening cohort // Alzheimers Res Ther. 2022. Vol. 14, N 1. P. 91. http://doi.org/10.1186/s13195-022-01032-5
  27. Moayyedi P., Eikelboom J.W., Bosch J. et al. Safety of Proton Pump Inhibitors Based on a Large, Multi-Year, Randomized Trial of Patients Receiving Rivaroxaban or Aspirin // Gastroenterology. 2019. Vol. 157, N 3. P. 682-691.e2. http://doi.org/10.1053/j.gastro.2019.05.056
  28. Montagne A., Nikolakopoulou A.M., Huuskonen M.T. et al. APOE4 accelerates advanced-stage vascular and neurodegenerative disorder in old Alzheimer’s mice via cyclophilin A independently of amyloid-β // Nat Aging. 2021. Vol. 1, N 6. P. 506–520. http://doi.org/10.1038/s43587-021-00073-z
  29. Raulin A.C., Doss S.V., Trottier Z.A. et al. ApoE in Alzheimer's disease: pathophysiology and therapeutic strategies // Mol Neurodegener. 2022. Vol. 17, N 1. P. 72. https://doi.org/10.1186/s13024-022-00574-4
  30. Tcw J., Qian L., Pipalia N.H. et al. Cholesterol and matrisome pathways dysregulated in astrocytes and microglia // Cell. 2022. Vol. 185, N 13. P. 2213-2233.e25. https://doi.org/10.1016/j.cell.2022.05.017
  31. Guo T., Zhang D., Zeng Y. et al. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer's disease // Mol Neurodegener. 2020. Vol. 15, N 1. P. 40. https://doi.org/10.1186/s13024-020-00391-7
  32. Koutsodendris N., Nelson M.R., Rao A., Huang Y. Apolipoprotein E and Alzheimer's Disease: Findings, Hypotheses, and Potential Mechanisms // Annu Rev Pathol. 2022. Vol. 17. P. 73-99. https://doi.org/10.1146/annurev-pathmechdis-030421-112756
  33. Zhang P., Li Z., Chen P. et al. Regular proton pump inhibitor use and incident dementia: population-based cohort study // BMC Med. 2022. Vol. 20, N 1. P. 271.https://doi.org/10.1186/s12916-022-02478-y
  34. Andrade C. Anticholinergic Drug Exposure and the Risk of Dementia: There Is Modest Evidence for an Association but Not for Causality // J Clin Psychiatry. 2019. Vol. 80, N 4. P.19f13000. https://doi.org/10.4088/JCP.19f13000
  35. A Armstrong R. Risk factors for Alzheimer's disease // Folia Neuropathol. 2019. Vol. 57, N 2. P. 87-105. https://doi.org/10.5114/fn.2019.85929
  36. Akpan A., Blaquiere B.D., Nellaya I. et al. Polypharmacy and potentially inappropriate medications (PIMs) in older adults referred to a memory clinic // BJPsych Open. 2021. Vol. 7, N S1. P. s306-s306. https://doi.org/10.1192/bjo.2021.810
  37. Baidya A.T.K., Das B., Devi B. et al. Mechanistic Insight into the Inhibition of Choline Acetyltransferase by Proton Pump Inhibitors // ACS Chem Neurosci. 2023. Vol. 14, N 4. P. 749-765. https://doi.org/10.1021/acschemneuro.2c00738
  38. Kumar R., Kumar A., Nordberg A. et al. Proton pump inhibitors act with unprecedented potencies as inhibitors of the acetylcholine biosynthesizing enzyme-A plausible missing link for their association with incidence of dementia // Alzheimers Dement. 2020. Vol. 16, N 7. P. 1031-1042. https://doi.org/10.1002/alz.12113
  39. Khan Z., Mehan S., Saifi M.A. et al. Proton Pump Inhibitors and Cognitive Health: Review on Unraveling the Dementia Connection and Co-morbid Risks // Curr Alzheimer Res. 2024. https://doi.org/10.2174/0115672050289946240223050737
  40. Esina E.Y., Zuikova A.A., Ostroushko N.I. et al. Mini-Cog and KSHOPS test for screening of cognitive disorders in elderly and elderly people in the practice of a local health care doctor // Preventive medicine. 2020. Vol. 23, N 5. P. 105–110 (In Russ.) https://doi.org/10.17116/profmed202023051105

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия  ПИ № ФС 77 - 86296 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80632 от 15.03.2021 г
.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies