Prospects for overcoming antimicrobial resistance: a review of novel antibacterial agents

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Containing the spread of antimicrobial resistance is one of the key global public health priorities. The availability of effective antimicrobial agents is essential for success in pediatrics, surgery, transplant medicine, oncology, and many other fields. Antimicrobial resistance contributes to increased morbidity, prolonged hospitalization, higher rates of complications and adverse events, and elevated mortality.

New resistance mechanisms continue to emerge and spread worldwide, undermining the ability to treat infectious diseases, delaying recovery, increasing disability, and raising the risk of death. The escalating issue of microbial resistance to antimicrobial agents underscores the urgent need to develop novel antibacterial drugs. Addressing this challenge requires a systematic approach to investigating the mechanisms underlying the emergence and spread of resistance.

The development of new antibacterial agents and the search for alternative strategies for the prevention, treatment, and diagnosis of infectious diseases will enhance infection control and reduce disability and mortality rates. New classes of drugs with fundamentally novel mechanisms of action have been developed, whereas antibiotics from existing classes are being optimized. In addition, various alternative compounds with antibacterial activity in vitro and in vivo are under investigation. Particular attention is being given to agents that directly inhibit the mechanisms underlying antibiotic resistance.

This review discusses antibacterial agents developed and introduced into clinical practice between 2014 and 2024, outlines the main mechanisms of bacterial resistance, and highlights current prospects for combating antibiotic resistance.

Full Text

Restricted Access

About the authors

Svetlana V. Romanova

Centre for Strategic Planning and Management of Biomedical Health Risks

Email: sromanova@cspfmba.ru
ORCID iD: 0009-0005-3367-8883
Russian Federation, Moscow

Anastasia V. Tsypkina

Centre for Strategic Planning and Management of Biomedical Health Risks

Email: atsypkina@cspfmba.ru
ORCID iD: 0000-0001-6117-0984
SPIN-code: 8311-3717

Cand. Sci. (Pharmacy)

Russian Federation, Moscow

Tatiana I. Subbotina

Centre for Strategic Planning and Management of Biomedical Health Risks

Author for correspondence.
Email: tsubbotina@cspfmba.ru
ORCID iD: 0009-0008-5175-4386
Russian Federation, Moscow

Sergey M. Yudin

Centre for Strategic Planning and Management of Biomedical Health Risks

Email: yudin@cspfmba.ru
ORCID iD: 0000-0002-7942-8004
SPIN-code: 9706-5936

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Anton A. Keskinov

Centre for Strategic Planning and Management of Biomedical Health Risks

Email: keskinov@cspfmba.ru
ORCID iD: 0000-0001-7378-983X
SPIN-code: 7178-5020

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Valentin V. Makarov

Centre for Strategic Planning and Management of Biomedical Health Risks

Email: makarov@cspfmba.ru
ORCID iD: 0000-0002-1907-0098
SPIN-code: 7842-8808

Cand. Sci. (Biology)

Russian Federation, Moscow

Angelica V. Zagaynova

Centre for Strategic Planning and Management of Biomedical Health Risks

Email: azagaynova@cspfmba.ru
ORCID iD: 0000-0003-4772-9686
SPIN-code: 6642-7819

Cand. Sci. (Biology)

Russian Federation, Moscow

References

  1. Spellberg B. The future of antibiotics. Crit Care. 2014;18(3):228. doi: 10.1186/cc13948 EDN: PDHTNT
  2. Shafaati M, Salehi M, Zare M. The twin challenges of longevity and climate change in controlling antimicrobial resistance. J Antibiot (Tokyo). 2024;77(7):399–402. doi: 10.1038/s41429-024-00730-6 EDN: ZNOYWS
  3. Piddock LJV, Alimi Y, Anderson J, et al. Advancing global antibiotic research, development and access. Nat Med. 2024;30(9):2432–2443. doi: 10.1038/s41591-024-03218-w EDN: WPBFUZ
  4. Min KH, Kim KH, Ki MR, Pack SP. Antimicrobial peptides and their biomedical applications: a review. Antibiotics (Basel). 2024;13(9):794. doi: 10.3390/antibiotics13090794 EDN: GNIGXR
  5. Halawa EM, Fadel M, Al-Rabia MW, et al. Antibiotic action and resistance: updated review of mechanisms, spread, influencing factors, and alternative approaches for combating resistance. Front Pharmacol. 2024;14:1305294. doi: 10.3389/fphar.2023.1305294 EDN: HETGYV
  6. Premlatha M. Microbial resistance to antibiotics. In: Mandal S, Paul D, editors. Bacterial Adaptation to Co-resistance. Singapore: Springer; 2019. Р. 61–80. doi: 10.1007/978-981-13-8503-2_4
  7. Sodhi KK, Singh CK, Kumar M, Singh DK. Whole-genome sequencing of Alcaligenes sp. strain MMA: insight into the antibiotic and heavy metal resistant genes. Front Pharmacol. 2023;14:1144561. doi: 10.3389/fphar.2023.1144561 EDN: DWPBWZ
  8. Kaur Sodhi K, Singh CK. Recent development in the sustainable remediation of antibiotics: a review. Total Environment Research Themes. 2022;3-4:100008. doi: 10.1016/j.totert.2022.100008 EDN: YGUKRO
  9. Shree P, Singh CK, Kaur Sodhi K, et al. Biofilms: understanding the structure and contribution towards bacterial resistance in antibiotics. Medicine in Microecology. 2023;16:100084. doi: 10.1016/j.medmic.2023.100084 EDN: RGTZRG
  10. Džidić S, Šušković J, Kos B. Antibiotic resistance mechanisms in bacteria: biochemical and genetic aspects. Food Technology & Biotechnology. 2008;46(1):11.
  11. Li W, Liu M, Oikonomou P, et al. The genetic landscape of antibiotic sensitivity in Staphylococcus aureus. Preprint. bioRxiv. 2024;2024.08.15.608136. doi: 10.1101/2024.08.15.608136
  12. Bonomo RA, Perez F, Hujer AM, et al. The real crisis in antimicrobial resistance: failure to anticipate and respond. Clin Infect Dis. 2024;78(6):1429–1433. doi: 10.1093/cid/ciad758
  13. Egorov AM, Ulyashova MM, Rubtsova MY. Inhibitors of β-lactamases. New life of β-lactam antibiotics. Biokhimiya. 2020;85(11):1519–1539. doi: 10.31857/S0320972520110020 EDN: GMMOFM
  14. Lewis K, Lee RE, Brötz-Oesterhelt H, et al. Sophisticated natural products as antibiotics. Nature. 2024;632(8023):39–49. doi: 10.1038/s41586-024-07530-w EDN: KLFFAZ
  15. Smailova G. A new anti-tuberculosis drug Pretomanid for the treatment of drug-resistant TB (review). Actual Problems of Theoretical and Clinical Medicine. 2023;(1):65–72. doi: 10.24412/2790-1289-2023-1-65-72
  16. Abouelkhair AA, Seleem MN. Exploring novel microbial metabolites and drugs for inhibiting Clostridioides difficile. mSphere. 2024;9(7):e0027324. doi: 10.1128/msphere.00273-24
  17. Quan M, Zhang X, Fang Q, et al. Fighting against Clostridioides difficile infection: Current medications. Int J Antimicrob Agents. 2024;64(1):107198. doi: 10.1016/j.ijantimicag.2024.107198 EDN: XCTQAA
  18. Li B, Liu Y, Luo J, et al. Contezolid, a novel oxazolidinone antibiotic, may improve drug-related thrombocytopenia in clinical antibacterial treatment. Front Pharmacol. 2023;14:1157437. doi: 10.3389/fphar.2023.1157437 EDN: QKIOUU
  19. Nemtsov LM, Yupatau GI. Therapy and prevention of diarrhea associated with clostridium difficile infection during the COVID-19 pandemia. Vitebsk Medical Journal. 2022;21(4):20–28. doi: 10.22263/2312-4156.2022.4.20 EDN: FRBIDK
  20. Larkin E, Hager C, Chandra J, et al. The emerging pathogen candida auris: growth phenotype, virulence factors, activity of antifungals, and effect of SCY-078, a novel glucan synthesis inhibitor, on growth morphology and biofilm formation. Antimicrob Agents Chemother. 2017;61(5):e02396–e02316. doi: 10.1128/AAC.02396-16
  21. Anahtar MN, Yang JH, Kanjilal S. Applications of machine learning to the problem of antimicrobial resistance: an emerging model for translational research. J Clin Microbiol. 2021;59(7):e0126020. doi: 10.1128/JCM.01260-20 EDN: FGYQBE
  22. Livermore DM, Mushtaq S, Warner M, et al. In vitro activity of cefepime/zidebactam (WCK 5222) against Gram-negative bacteria. J Antimicrob Chemother. 2017;72(5):1373–1385. doi: 10.1093/jac/dkw593
  23. Nevezhina AV. Carbapenemases as factors of resistance to antibacterial drugs. Acta Biomedica Scientifica. 2020;5(6):95–105. doi: 10.29413/ABS.2020-5.6.11 EDN: YXMEQO
  24. Chervinets YuV, Belyaev V, Timonina AYu, Stepanova KS. Advanced approaches to antibiotic therapy using new classes of antibacterial drugs. West Kazakhstan Medical Journal. 2023;(3):145–155. doi: 10.24412/2707-6180-2023-65-145-155 EDN: EWVADA
  25. Hameed PS, Kotakonda H, Sharma S, et al. BWC0977, a broad-spectrum antibacterial clinical candidate to treat multidrug resistant infections. Nat Commun. 2025;16(1):2082. doi: 10.1038/s41467-025-57400-w Erratum for: Nat Commun. 2024;15(1):8202. doi: 10.1038/s41467-024-52557-2
  26. Wang B, Zhao Q, Yin W, et al. In-vitro characterisation of a novel antimicrobial agent, TNP-2092, against Helicobacter pylori clinical isolates. Swiss Med Wkly. 2018;148:w14630. doi: 10.4414/smw.2018.14630 EDN: ZZWPMK
  27. Dale GE, Halabi A, Petersen-Sylla M, et al. Pharmacokinetics, tolerability, and safety of murepavadin, a novel antipseudomonal antibiotic, in subjects with mild, moderate, or severe renal function impairment. Antimicrob Agents Chemother. 2018;62(9):e00490–e00418. doi: 10.1128/AAC.00490-18
  28. Zampaloni C, Mattei P, Bleicher K, et al. A novel antibiotic class targeting the lipopolysaccharide transporter. Nature. 2024;625(7995):566–571. doi: 10.1038/s41586-023-06873-0 Erratum in: Nature. 2024;631(8022):E17. doi: 10.1038/s41586-024-07641-4 EDN: PUCBAP
  29. Lim JS, Chai YY, Ser WX, et al. Novel drug candidates against antibiotic-resistant microorganisms: A review. Iran J Basic Med Sci. 2024;27(2):134–150. doi: 10.22038/IJBMS.2023.71672.15593
  30. Aslan AT, Akova M, Paterson DL. Next-generation polymyxin class of antibiotics: a ray of hope illuminating a dark road. Antibiotics (Basel). 2022;11(12):1711. doi: 10.3390/antibiotics11121711 EDN: RXNPFK
  31. Kopylov AT, Stepanov AA, Butkova TV, et al. Consolidation of metabolomic, proteomic, and GWAS data in connective model of schizophrenia. Sci Rep. 2023;13(1):2139. doi: 10.1038/s41598-023-29117-7 EDN: IGIDDM
  32. Mandel S, Michaeli J, Nur N, et al. OMN6 a novel bioengineered peptide for the treatment of multidrug resistant Gram negative bacteria. Sci Rep. 2021;11(1):6603. doi: 10.1038/s41598-021-86155-9 EDN: EUSCJK
  33. François B, Mercier E, Gonzalez C, et al. Safety and tolerability of a single administration of AR-301, a human monoclonal antibody, in ICU patients with severe pneumonia caused by Staphylococcus aureus: first-in-human trial. Intensive Care Med. 2018;44(11):1787–1796. doi: 10.1007/s00134-018-5229-2 EDN: EALCDU
  34. Huang DB, Gaukel E, Kerzee N, et al. Efficacy of Antistaphylococcal lysin LSVT-1701 in combination with daptomycin in experimental left-sided infective endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2021;65(8):e0050821. doi: 10.1128/AAC.00508-21 EDN: AUTISV
  35. Mirzoeva S, Paunesku T, Wanzer MB, et al. Single administration of p2TA (AB103), a CD28 antagonist peptide, prevents inflammatory and thrombotic reactions and protects against gastrointestinal injury in total-body irradiated mice. PLoS One. 2014;9(7):e101161. doi: 10.1371/journal.pone.0101161
  36. Hengzhuang W, Song Z, Ciofu O, et al. OligoG CF-5/20 disruption of mucoid pseudomonas aeruginosa biofilm in a murine lung infection model. Antimicrob Agents Chemother. 2016;60(5):2620–2626. doi: 10.1128/AAC.01721-15
  37. Lepak AJ, Parhi A, Madison M, et al. In vivo pharmacodynamic evaluation of an FtsZ inhibitor, TXA-709, and its active metabolite, TXA-707, in a murine neutropenic thigh infection model. Antimicrob Agents Chemother. 2015;59(10):6568–6574. doi: 10.1128/AAC.01464-15
  38. Safronova VN, Bolosov IA, Panteleev PV, et al. Therapeutic potential and application prospects of antimicrobial peptides in the era of global spread of antibiotic resistance. Bioorganicheskaya khimiya. 2023;49(3):243–258. doi: 10.31857/S0132342323030181 EDN: PEADRY
  39. Pahil KS, Gilman MSA, Baidin V, et al. A new antibiotic traps lipopolysaccharide in its intermembrane transporter. Nature. 2024;625(7995):572–577. doi: 10.1038/s41586-023-06799-7 Erratum in: Nature. 2024;625(7996):E27. doi: 10.1038/s41586-024-07035-6 Erratum in: Nature. 2024;631(8022):E18. doi: 10.1038/s41586-024-07645-0 EDN: ZZJLIG

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия  ПИ № ФС 77 - 86296 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80632 от 15.03.2021 г
.