Prospects for overcoming antimicrobial resistance: a review of novel antibacterial agents
- Authors: Romanova S.V.1, Tsypkina A.V.1, Subbotina T.I.1, Yudin S.M.1, Keskinov A.A.1, Makarov V.V.1, Zagaynova A.V.1
-
Affiliations:
- Centre for Strategic Planning and Management of Biomedical Health Risks
- Issue: Vol 31, No 2 (2025)
- Pages: 177-186
- Section: Reviews
- Submitted: 30.10.2024
- Accepted: 12.11.2024
- Published: 27.04.2025
- URL: https://medjrf.com/0869-2106/article/view/640802
- DOI: https://doi.org/10.17816/medjrf640802
- ID: 640802
Cite item
Abstract
Containing the spread of antimicrobial resistance is one of the key global public health priorities. The availability of effective antimicrobial agents is essential for success in pediatrics, surgery, transplant medicine, oncology, and many other fields. Antimicrobial resistance contributes to increased morbidity, prolonged hospitalization, higher rates of complications and adverse events, and elevated mortality.
New resistance mechanisms continue to emerge and spread worldwide, undermining the ability to treat infectious diseases, delaying recovery, increasing disability, and raising the risk of death. The escalating issue of microbial resistance to antimicrobial agents underscores the urgent need to develop novel antibacterial drugs. Addressing this challenge requires a systematic approach to investigating the mechanisms underlying the emergence and spread of resistance.
The development of new antibacterial agents and the search for alternative strategies for the prevention, treatment, and diagnosis of infectious diseases will enhance infection control and reduce disability and mortality rates. New classes of drugs with fundamentally novel mechanisms of action have been developed, whereas antibiotics from existing classes are being optimized. In addition, various alternative compounds with antibacterial activity in vitro and in vivo are under investigation. Particular attention is being given to agents that directly inhibit the mechanisms underlying antibiotic resistance.
This review discusses antibacterial agents developed and introduced into clinical practice between 2014 and 2024, outlines the main mechanisms of bacterial resistance, and highlights current prospects for combating antibiotic resistance.
Full Text

About the authors
Svetlana V. Romanova
Centre for Strategic Planning and Management of Biomedical Health Risks
Email: sromanova@cspfmba.ru
ORCID iD: 0009-0005-3367-8883
Russian Federation, Moscow
Anastasia V. Tsypkina
Centre for Strategic Planning and Management of Biomedical Health Risks
Email: atsypkina@cspfmba.ru
ORCID iD: 0000-0001-6117-0984
SPIN-code: 8311-3717
Cand. Sci. (Pharmacy)
Russian Federation, MoscowTatiana I. Subbotina
Centre for Strategic Planning and Management of Biomedical Health Risks
Author for correspondence.
Email: tsubbotina@cspfmba.ru
ORCID iD: 0009-0008-5175-4386
Russian Federation, Moscow
Sergey M. Yudin
Centre for Strategic Planning and Management of Biomedical Health Risks
Email: yudin@cspfmba.ru
ORCID iD: 0000-0002-7942-8004
SPIN-code: 9706-5936
MD, Dr. Sci. (Medicine), Professor
Russian Federation, MoscowAnton A. Keskinov
Centre for Strategic Planning and Management of Biomedical Health Risks
Email: keskinov@cspfmba.ru
ORCID iD: 0000-0001-7378-983X
SPIN-code: 7178-5020
MD, Cand. Sci. (Medicine)
Russian Federation, MoscowValentin V. Makarov
Centre for Strategic Planning and Management of Biomedical Health Risks
Email: makarov@cspfmba.ru
ORCID iD: 0000-0002-1907-0098
SPIN-code: 7842-8808
Cand. Sci. (Biology)
Russian Federation, MoscowAngelica V. Zagaynova
Centre for Strategic Planning and Management of Biomedical Health Risks
Email: azagaynova@cspfmba.ru
ORCID iD: 0000-0003-4772-9686
SPIN-code: 6642-7819
Cand. Sci. (Biology)
Russian Federation, MoscowReferences
- Spellberg B. The future of antibiotics. Crit Care. 2014;18(3):228. doi: 10.1186/cc13948 EDN: PDHTNT
- Shafaati M, Salehi M, Zare M. The twin challenges of longevity and climate change in controlling antimicrobial resistance. J Antibiot (Tokyo). 2024;77(7):399–402. doi: 10.1038/s41429-024-00730-6 EDN: ZNOYWS
- Piddock LJV, Alimi Y, Anderson J, et al. Advancing global antibiotic research, development and access. Nat Med. 2024;30(9):2432–2443. doi: 10.1038/s41591-024-03218-w EDN: WPBFUZ
- Min KH, Kim KH, Ki MR, Pack SP. Antimicrobial peptides and their biomedical applications: a review. Antibiotics (Basel). 2024;13(9):794. doi: 10.3390/antibiotics13090794 EDN: GNIGXR
- Halawa EM, Fadel M, Al-Rabia MW, et al. Antibiotic action and resistance: updated review of mechanisms, spread, influencing factors, and alternative approaches for combating resistance. Front Pharmacol. 2024;14:1305294. doi: 10.3389/fphar.2023.1305294 EDN: HETGYV
- Premlatha M. Microbial resistance to antibiotics. In: Mandal S, Paul D, editors. Bacterial Adaptation to Co-resistance. Singapore: Springer; 2019. Р. 61–80. doi: 10.1007/978-981-13-8503-2_4
- Sodhi KK, Singh CK, Kumar M, Singh DK. Whole-genome sequencing of Alcaligenes sp. strain MMA: insight into the antibiotic and heavy metal resistant genes. Front Pharmacol. 2023;14:1144561. doi: 10.3389/fphar.2023.1144561 EDN: DWPBWZ
- Kaur Sodhi K, Singh CK. Recent development in the sustainable remediation of antibiotics: a review. Total Environment Research Themes. 2022;3-4:100008. doi: 10.1016/j.totert.2022.100008 EDN: YGUKRO
- Shree P, Singh CK, Kaur Sodhi K, et al. Biofilms: understanding the structure and contribution towards bacterial resistance in antibiotics. Medicine in Microecology. 2023;16:100084. doi: 10.1016/j.medmic.2023.100084 EDN: RGTZRG
- Džidić S, Šušković J, Kos B. Antibiotic resistance mechanisms in bacteria: biochemical and genetic aspects. Food Technology & Biotechnology. 2008;46(1):11.
- Li W, Liu M, Oikonomou P, et al. The genetic landscape of antibiotic sensitivity in Staphylococcus aureus. Preprint. bioRxiv. 2024;2024.08.15.608136. doi: 10.1101/2024.08.15.608136
- Bonomo RA, Perez F, Hujer AM, et al. The real crisis in antimicrobial resistance: failure to anticipate and respond. Clin Infect Dis. 2024;78(6):1429–1433. doi: 10.1093/cid/ciad758
- Egorov AM, Ulyashova MM, Rubtsova MY. Inhibitors of β-lactamases. New life of β-lactam antibiotics. Biokhimiya. 2020;85(11):1519–1539. doi: 10.31857/S0320972520110020 EDN: GMMOFM
- Lewis K, Lee RE, Brötz-Oesterhelt H, et al. Sophisticated natural products as antibiotics. Nature. 2024;632(8023):39–49. doi: 10.1038/s41586-024-07530-w EDN: KLFFAZ
- Smailova G. A new anti-tuberculosis drug Pretomanid for the treatment of drug-resistant TB (review). Actual Problems of Theoretical and Clinical Medicine. 2023;(1):65–72. doi: 10.24412/2790-1289-2023-1-65-72
- Abouelkhair AA, Seleem MN. Exploring novel microbial metabolites and drugs for inhibiting Clostridioides difficile. mSphere. 2024;9(7):e0027324. doi: 10.1128/msphere.00273-24
- Quan M, Zhang X, Fang Q, et al. Fighting against Clostridioides difficile infection: Current medications. Int J Antimicrob Agents. 2024;64(1):107198. doi: 10.1016/j.ijantimicag.2024.107198 EDN: XCTQAA
- Li B, Liu Y, Luo J, et al. Contezolid, a novel oxazolidinone antibiotic, may improve drug-related thrombocytopenia in clinical antibacterial treatment. Front Pharmacol. 2023;14:1157437. doi: 10.3389/fphar.2023.1157437 EDN: QKIOUU
- Nemtsov LM, Yupatau GI. Therapy and prevention of diarrhea associated with clostridium difficile infection during the COVID-19 pandemia. Vitebsk Medical Journal. 2022;21(4):20–28. doi: 10.22263/2312-4156.2022.4.20 EDN: FRBIDK
- Larkin E, Hager C, Chandra J, et al. The emerging pathogen candida auris: growth phenotype, virulence factors, activity of antifungals, and effect of SCY-078, a novel glucan synthesis inhibitor, on growth morphology and biofilm formation. Antimicrob Agents Chemother. 2017;61(5):e02396–e02316. doi: 10.1128/AAC.02396-16
- Anahtar MN, Yang JH, Kanjilal S. Applications of machine learning to the problem of antimicrobial resistance: an emerging model for translational research. J Clin Microbiol. 2021;59(7):e0126020. doi: 10.1128/JCM.01260-20 EDN: FGYQBE
- Livermore DM, Mushtaq S, Warner M, et al. In vitro activity of cefepime/zidebactam (WCK 5222) against Gram-negative bacteria. J Antimicrob Chemother. 2017;72(5):1373–1385. doi: 10.1093/jac/dkw593
- Nevezhina AV. Carbapenemases as factors of resistance to antibacterial drugs. Acta Biomedica Scientifica. 2020;5(6):95–105. doi: 10.29413/ABS.2020-5.6.11 EDN: YXMEQO
- Chervinets YuV, Belyaev V, Timonina AYu, Stepanova KS. Advanced approaches to antibiotic therapy using new classes of antibacterial drugs. West Kazakhstan Medical Journal. 2023;(3):145–155. doi: 10.24412/2707-6180-2023-65-145-155 EDN: EWVADA
- Hameed PS, Kotakonda H, Sharma S, et al. BWC0977, a broad-spectrum antibacterial clinical candidate to treat multidrug resistant infections. Nat Commun. 2025;16(1):2082. doi: 10.1038/s41467-025-57400-w Erratum for: Nat Commun. 2024;15(1):8202. doi: 10.1038/s41467-024-52557-2
- Wang B, Zhao Q, Yin W, et al. In-vitro characterisation of a novel antimicrobial agent, TNP-2092, against Helicobacter pylori clinical isolates. Swiss Med Wkly. 2018;148:w14630. doi: 10.4414/smw.2018.14630 EDN: ZZWPMK
- Dale GE, Halabi A, Petersen-Sylla M, et al. Pharmacokinetics, tolerability, and safety of murepavadin, a novel antipseudomonal antibiotic, in subjects with mild, moderate, or severe renal function impairment. Antimicrob Agents Chemother. 2018;62(9):e00490–e00418. doi: 10.1128/AAC.00490-18
- Zampaloni C, Mattei P, Bleicher K, et al. A novel antibiotic class targeting the lipopolysaccharide transporter. Nature. 2024;625(7995):566–571. doi: 10.1038/s41586-023-06873-0 Erratum in: Nature. 2024;631(8022):E17. doi: 10.1038/s41586-024-07641-4 EDN: PUCBAP
- Lim JS, Chai YY, Ser WX, et al. Novel drug candidates against antibiotic-resistant microorganisms: A review. Iran J Basic Med Sci. 2024;27(2):134–150. doi: 10.22038/IJBMS.2023.71672.15593
- Aslan AT, Akova M, Paterson DL. Next-generation polymyxin class of antibiotics: a ray of hope illuminating a dark road. Antibiotics (Basel). 2022;11(12):1711. doi: 10.3390/antibiotics11121711 EDN: RXNPFK
- Kopylov AT, Stepanov AA, Butkova TV, et al. Consolidation of metabolomic, proteomic, and GWAS data in connective model of schizophrenia. Sci Rep. 2023;13(1):2139. doi: 10.1038/s41598-023-29117-7 EDN: IGIDDM
- Mandel S, Michaeli J, Nur N, et al. OMN6 a novel bioengineered peptide for the treatment of multidrug resistant Gram negative bacteria. Sci Rep. 2021;11(1):6603. doi: 10.1038/s41598-021-86155-9 EDN: EUSCJK
- François B, Mercier E, Gonzalez C, et al. Safety and tolerability of a single administration of AR-301, a human monoclonal antibody, in ICU patients with severe pneumonia caused by Staphylococcus aureus: first-in-human trial. Intensive Care Med. 2018;44(11):1787–1796. doi: 10.1007/s00134-018-5229-2 EDN: EALCDU
- Huang DB, Gaukel E, Kerzee N, et al. Efficacy of Antistaphylococcal lysin LSVT-1701 in combination with daptomycin in experimental left-sided infective endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2021;65(8):e0050821. doi: 10.1128/AAC.00508-21 EDN: AUTISV
- Mirzoeva S, Paunesku T, Wanzer MB, et al. Single administration of p2TA (AB103), a CD28 antagonist peptide, prevents inflammatory and thrombotic reactions and protects against gastrointestinal injury in total-body irradiated mice. PLoS One. 2014;9(7):e101161. doi: 10.1371/journal.pone.0101161
- Hengzhuang W, Song Z, Ciofu O, et al. OligoG CF-5/20 disruption of mucoid pseudomonas aeruginosa biofilm in a murine lung infection model. Antimicrob Agents Chemother. 2016;60(5):2620–2626. doi: 10.1128/AAC.01721-15
- Lepak AJ, Parhi A, Madison M, et al. In vivo pharmacodynamic evaluation of an FtsZ inhibitor, TXA-709, and its active metabolite, TXA-707, in a murine neutropenic thigh infection model. Antimicrob Agents Chemother. 2015;59(10):6568–6574. doi: 10.1128/AAC.01464-15
- Safronova VN, Bolosov IA, Panteleev PV, et al. Therapeutic potential and application prospects of antimicrobial peptides in the era of global spread of antibiotic resistance. Bioorganicheskaya khimiya. 2023;49(3):243–258. doi: 10.31857/S0132342323030181 EDN: PEADRY
- Pahil KS, Gilman MSA, Baidin V, et al. A new antibiotic traps lipopolysaccharide in its intermembrane transporter. Nature. 2024;625(7995):572–577. doi: 10.1038/s41586-023-06799-7 Erratum in: Nature. 2024;625(7996):E27. doi: 10.1038/s41586-024-07035-6 Erratum in: Nature. 2024;631(8022):E18. doi: 10.1038/s41586-024-07645-0 EDN: ZZJLIG
Supplementary files
