Parkinson’s disease: epidemiology and pathogenesis

Cover Page

Abstract

This review presents data on the etiology, epidemiology, and pathogenesis of Parkinson’s disease from National Center for Biotechnology Information (NCBI), eLibrary, CyberLeninka, and from monographs and textbooks. The prevalence, classification, genetic variability, main pathogenetic links, and potential disease development mechanisms are described. Both classic Parkinson’s disease and variable manifestations of parkinsonism are considered. The factors that contribute to disease progression and inhibit its development are described. The main hypotheses of the pathogenetic mechanisms of Parkinson’s disease are presented. These are protein misfolding, mitochondrial dysfunction, impaired protein purification systems, neuroinflammation, and pathology of the gut-brain axis.

Full Text

Restricted Access

About the authors

Denis A. Borozdenko

N.I. Pirogov Russian National Research Medical University

Author for correspondence.
Email: borozdenko@phystech.edu
ORCID iD: 0000-0002-6797-9722
Russian Federation, 1 Ostrovityanova str., 117997, Moscow

Vladislava I. Bogorodova

N.I. Pirogov Russian National Research Medical University

Email: BogorodovaVI@yandex.ru
Russian Federation, 1 Ostrovityanova str., 117997, Moscow

Nina M. Kiseleva

N.I. Pirogov Russian National Research Medical University

Email: kiseleva67@mail.ru
ORCID iD: 0000-0003-1754-9051

MD, Dr. Sci. (Biol.), Professor

Russian Federation, 1 Ostrovityanova str., 117997, Moscow

Vadim V. Negrebetsky

N.I. Pirogov Russian National Research Medical University

Email: nmr_rsmu@yahoo.com
ORCID iD: 0000-0001-6852-8942

MD, Cand. Sci. (Chem.), Professor

Russian Federation, 1 Ostrovityanova str., 117997, Moscow

References

  1. Feigin VL, Nichols E, Alam T, et al. Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet Neurology. 2017;16(11):877-897.
  2. Razdorskaya VV, Voskresenskaya ON, Yudina GK. Parkinson’s disease in Russia: prevalence and incidence. Saratov Journal of Medical Scientific Research. 2016;12(3):379–384. (In Russ).
  3. Golubev VL. Atypical parkinsonism. Medical Аdvice. 2015;(10): 45-49. (in Russ)
  4. Kumar V, Abbas AK, Aster JC. Robbins. Pathologic Basis of Disease. 9th Edition. United States: Saunders; 2015.
  5. Vaughan CL, Goetz CG. Progressive Supranuclear Palsy. In: Encyclopedia of the Neurological Sciences. 2014:987–988. doi: 10.1016/B978-0-12-385157-4.00031-2
  6. Saranza GM, Whitwell JL, Kovacs GG, Lang AE. Corticobasal degeneration. Int Rev Neurobiol. 2019;149:87–136. doi: 10.1016/bs.irn.2019.10.014
  7. Fanciulli A, Stankovic I, Krismer F, et al. Multiple system atrophy. International Review of Neurobiology. 2019;149:137–192.
  8. Walker Z, Possin KL, Boeve BF, Aarsland D. Lewy body dementias. The Lancet. 2015;386:1683–1697.
  9. Sanford AM. Lewy Body Dementia. Clin Geriatr Med. 2018;34(4):603–615. doi: 10.1016/j.cger.2018.06.007
  10. Brudek T. Inflammatory Bowel Diseases and Parkinson's Disease. J Parkinsons Dis. 2019;9:S331–S344. doi: 10.3233/JPD-191729
  11. Levin OS, Fedorova NV. Parkinson’s disease. Moscow: MEDpress-inform; 2019. (In Russ).
  12. Yakhno NN, Shtul'mana DR. Diseases of the nervous system. Moscow: Medicine; 2001. (In Russ).
  13. Wirdefeldt K, Weibull CE, Chen H, et al. Parkinson’s disease and cancer: A register-based family study. American Journal of Epidemiology. 2014;179(1):85–94. doi: 10.1093/aje/kwt232
  14. Hu G, Jousilahti P, Nissinen A, et al. Body mass index and the risk of Parkinson disease. Neurology. 2006;67:1955–1959. doi: 10.1212/01.wnl.0000247052.18422.e5
  15. Abbott RD, Ross GW, White LR, et al. Midlife adiposity and the future risk of Parkinson's disease. Neurology. 2002;59(7):1051–1057. doi: 10.1212/wnl.59.7.1051
  16. Kim SC, Liu J, Solomon DH. Risk of incident diabetes in patients with gout: a cohort study. Arthritis & Rheumatology. 2015;67(1):273–280. doi: 10.1002/art.38918
  17. Petersen KF, Dufour S, Befroy D, et al. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. The New England Journal of Medicine. 2004;350(7):664–671. doi: 10.1056/NEJMoa031314
  18. Eriksson AK, Löfving S, Callaghan RC, Allebeck P. Alcohol use disorders and risk of Parkinson’s disease: findings from a Swedish national cohort study 1972–2008. BMC Neurology. 2013;13(1):1–6.
  19. Zhang D, Jiang H, Xie J. Alcohol intake and risk of Parkinson’s disease: A meta-analysis of observational studies. Movement Disorders: Official Journal of the Movement Disorder Society. 2014;29(6):819–822.
  20. Curtin K, Fleckenstein AE, Robison RJ, et al. Methamphetamine/amphetamine abuse and risk of Parkinson's disease in Utah: a population-based assessment. Drug and Alcohol Dependence. 2015;146:30–38. doi: 10.1016/j.drugalcdep.2014.10.027
  21. Ascherio A, Schwarzschild MA. The epidemiology of Parkinson's disease: risk factors and prevention. The Lancet Neurology. 2016;15:1257–1272. doi: 10.1016/S1474-4422(16)30230-7
  22. Choi HK, Atkinson K, Karlson EW, et al. Purine-rich foods, dairy and protein intake, and the risk of gout in men. New England Journal of Medicine. 2004;350:1093–1103. doi: 10.1056/NEJMoa035700
  23. Tanner CM, Kamel F, Ross GW, et al. Rotenone, paraquat, and Parkinson’s disease. Environmental Health Perspectives. 2011;119:866–872. doi: 10.1289/ehp.1002839
  24. Marras C, Hincapié CA, Kristman VL, et al. Systematic review of the risk of Parkinson's disease after mild traumatic brain injury: results of the International Collaboration on Mild Traumatic Brain Injury Prognosis. Archives of Physical Medicine and Rehabilitation. 2014;95:S238–44. doi: 10.1016/j.apmr.2013.08.298
  25. Quik M, O’Neill M, Perez XA. Nicotine neuroprotection against nigrostriatal damage: importance of the animal model. Trends in Pharmacological Sciences. 2007;28:229–235. doi: 10.1016/j.tips.2007.03.001
  26. Trinh K, Andrews L, Krause J, et al. Decaffeinated coffee and nicotine-free tobacco provide neuroprotection in Drosophila models of Parkinson's disease through an NRF2-dependent mechanism. Journal of Neuroscience. 2010;30(16):5525–5532. doi: 10.1523/JNEUROSCI.4777-09.2010
  27. Postuma RB, Lang AE, Munhoz RP, et al. Caffeine for treatment of Parkinson disease: a randomized controlled trial. Neurology. 2012;79(7):651–658. doi: 10.1212/WNL.0b013e318263570d
  28. Chen H, Zhang SM, Hernán MA, et al. Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Archives of Neurology. 2003;60(8):1059–1064. doi: 10.1001/archneur.60.8.1059
  29. Phillips MC, Murtagh DK, Gilbertson LJ, et al. Low-fat versus ketogenic diet in Parkinson's disease: A pilot randomized controlled trial. Movement Disorders. 2018;33(8):1306–1314. doi: 10.1002/mds.27390
  30. DL Nelson, AL Lehninger, MM Cox. Principles of Biochemistry, 7th Edition. North American Edition. 2017:430–436.
  31. Kouli A, Torsney KM, Kuan WL. Parkinson’s disease: etiology, neuropathology, and pathogenesis. Exon Publications. 2018:3–26. doi: 10.17305/bjbms.2020.5181
  32. Vickers NJ. Animal communication: when i’m calling you, will you answer too? Current Biology. 2017;27(14):R713–R715. doi: 10.1016/j.cub.2017.05.064
  33. Devi L, Raghavendran V, Prabhu BM, et al. Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. Journal of Biological Chemistry. 2008;283(14):9089–9100. doi: 10.1074/jbc.M710012200
  34. Luth ES, Stavrovskaya IG, Bartels T, et al. Soluble, prefibrillar α-synuclein oligomers promote complex I-dependent, Ca2+-induced mitochondrial dysfunction. Journal of Biological Chemistry. 2014;289(31):21490–21507. doi: 10.1074/jbc.M113.545749
  35. Briston T, Amy R Hicks. Mitochondrial dysfunction and neurodegenerative proteinopathies: mechanisms and prospects for therapeutic intervention. Biochemical Society Transactions. 2018;46(4):829–842. doi: 10.1042/BST20180025
  36. Bender A, Krishnan KJ, Morris CW et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nature Genetics. 2006;38:515–517. doi: 10.1038/ng1769
  37. Reeve AK, Grady JP, Cosgrave EM, et al. Mitochondrial dysfunction within the synapses of substantia nigra neurons in Parkinson’s disease. NPJ Parkinson's Disease. 2018;4:9. doi: 10.1038/s41531-018-0044-6
  38. Pan T, Kondo S, Le W, Jankovic J. The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease. Brain. 2008;131:1969–1978. doi: 10.1093/brain/awm318
  39. Seth AK, Barrett AB, Barnett L. Granger causality analysis in neuroscience and neuroimaging. Journal of Neuroscience. 2015;35(8):3293–3297. doi: 10.1523/JNEUROSCI.4399-14.2015
  40. McKinnon C, Tabrizi SJ. The ubiquitin-proteasome system in neurodegeneration. Antioxidants & Redox Signaling. 2014;21(17):2302–2321. doi: 10.1089/ars.2013.5802
  41. McNaught KS, Jenner P. Proteasomal function is impaired in substantia nigra in Parkinson's disease. Neuroscience Letters. 2001;297(3):191–194. doi: 10.1016/S0304-3940(00)01701-8
  42. Nishikawa K, Li H, Kawamura R, et al. Alterations of structure and hydrolase activity of parkinsonism-associated human ubiquitin carboxyl-terminal hydrolase L1 variants. Biochemical and Biophysical Research Communications. 2003;304(1):176–183. doi: 10.1016/S0006-291X(03)00555-2
  43. Zeng BY, Iravani MM, Lin ST, et al. MPTP treatment of common marmosets impairs proteasomal enzyme activity and decreases expression of structural and regulatory elements of the 26S proteasome. European Journal of Neuroscience. 2006;23(7):1766–1774. doi: 10.1111/j.1460-9568.2006.04718.x
  44. Bedford L, Hay D, Devoy A, et al. Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. Journal of Neuroscience. 2008;28(33):8189–8198. doi: 10.1523/JNEUROSCI.2218-08.2008
  45. Tanji K, Mori F, Kakita A, et al. Alteration of autophagosomal proteins (LC3, GABARAP and GATE-16) in Lewy body disease. Neurobiology of Disease. 2011.43(3):690–697. doi: 10.1016/j.nbd.2011.05.022. Available from: https://pubmed.ncbi.nlm.nih.gov/21684337/
  46. Williams DR, Hadeed A, al Din AS, et al. Kufor Rakeb disease: autosomal recessive, levodopa-responsive parkinsonism with pyramidal degeneration, supranuclear gaze palsy, and dementia. Movement Disorders: Official Journal of the Movement Disorder Society. 2005;20(10):1264–1271. doi: 10.1002/mds.20511
  47. Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron. 2015;85(2):257–273. doi: 10.1016/j.neuron.2014.12.007
  48. Liu B, Gao HM, Hong JS. Parkinson's disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation. Environmental Health Perspectives. 2003;111(8):1065–1073. doi: 10.1289/ehp.6361
  49. Benkler M, Agmon-Levin N, Hassin-Baer S, et al. Immunology, autoimmunity, and autoantibodies in Parkinson’s disease. Clinical Reviews in Allergy & Immunology. 2012;42(2):164–171. doi: 10.1007/s12016-010-8242-y
  50. Double KL, Rowe DB, Carew-Jones FM, et al. Anti-melanin antibodies are increased in sera in Parkinson's disease. Experimental Neurology. 2009;217(2):297–301. doi: 10.1016/j.expneurol.2009.03.002
  51. Papachroni KK, Ninkina N, Papapanagiotou A, et al. Autoantibodies to alpha-synuclein in inherited Parkinson’s disease. Journal of Neurochemistry. 2007;101(3):749–756. doi: 10.1111/j.1471-4159.2006.04365.x
  52. Hunot S, Dugas N, Faucheux B, et al. FcεRII/CD23 is expressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-α in glial cells. Journal of Neuroscience. 1999;19(9):3440-7. doi: 10.1523/JNEUROSCI.19-09-03440
  53. Loeffler DA, Camp DM, Conant SB. Complement activation in the Parkinson's disease substantia nigra: an immunocytochemical study. Journal of Neuroinflammation. 2006;3(1):1–8. doi: 10.1186/1742-2094-3-29
  54. Hirsch EC, Hunot S. Neuroinflammation in Parkinson's disease: a target for neuroprotection? The Lancet Neurology. 2009;8(4):382–397. doi: 10.1038/npp.2012.255
  55. Edison P, Ahmed I, Fan Z, et al. Microglia, amyloid, and glucose metabolism in Parkinson’s disease with and without dementia. Neuropsychopharmacology. 2013;38(6):938–949.
  56. Gao X, Chen H, Schwarzschild MA, Ascherio A. Use of ibuprofen and risk of Parkinson disease. Neurology. 2011;76(10):863–869. doi: 10.1212/WNL.0b013e31820f2d79
  57. Williams-Gray CH, Wijeyekoon R, Yarnall AJ, et al. Serum immune markers and disease progression in an incident Parkinson’s disease cohort (ICICLE-PD). Movement Disorders. 2016;31(7):995–1003. doi: 10.1002/mds.26563
  58. Horsager J, Andersen KB, Knudsen K, et al. Brain-first versus body-first Parkinson’s disease: a multimodal imaging case-control study. Brain. 2020;143(10):3077–3088. doi: 10.1093/brain/awaa238
  59. Kim S, Kwon SH, Kam TI, et al. Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. Neuron. 2019;103(4):627–641. doi: 10.1016/j.neuron.2019.05.035

Supplementary files

Supplementary Files
Action
1. Figure 1. Risk factors of Parkinson’s disease.

Download (151KB)
2. Figure 2. Models for the development of two types of Parkinson’s disease [58].

Download (504KB)

Statistics

Views

Abstract: 202

PDF (Russian): 2

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.

Copyright (c) 2021 Eco-Vector



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies