Effects of Dihydroquercetin on the Intensity of Oxydative Stress in Rat Liver Mitochondria at Hypothermia

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A decrease in body temperature in homeothermic animals can cause a state of the body called hypothermic. It is accompanied by the development of a number of pathological processes, many of which are associated with mitochondrial dysfunction and the development of oxidative stress. In connection with the widespread introduction of hypothermia into medical practice, the question of the possibility of a regulatory influence on the proxidant-antioxidant status of mitochondria at low body temperatures remains relevant. In recent years, plant polyphenols, in particular dihydroquercetin (DHQ), have gained wide popularity as therapeutic agents with antioxidant and membrane protective effects. In this work, we investigated the effects of DHQ on the intensity of oxidative stress in rat liver mitochondria under moderate hypothermia. It was found that a course (5 days) oral administration of DHA at a dose of 100 mg/kg significantly reduces the levels of LPO and OMP products in the liver mitochondria of control rats, increasing the content of non-enzymatic components of the thiol-disulfide antioxidant system`s. DHQ effectively protects liver mitochondria from the development of oxidative stress during hypothermia, as evidenced by a significant decrease (and in some cases, complete normalization) in the levels of diene conjugates, MDA, Schiff bases and carbonyl groups in a group of animals subjected to hypothermia with prior administration of this polyphenol. At the same time, DHQ significantly increases the levels of glutathione and vitamin E, and also normalizes the content of thiol groups in mitochondrial proteins. In vitro, DHQ exhibits a dose-dependent antioxidant effect, suppressing OMB in mitochondria incubated in Fenton's medium (IC50 = 0.160 mg/ml).

全文:

受限制的访问

作者简介

R. Khalilov

Dagestan State University

Email: albina19764@mail.ru
俄罗斯联邦, Makhachkala

A. Dzhafarova

Dagestan State University

编辑信件的主要联系方式.
Email: albina19764@mail.ru
俄罗斯联邦, Makhachkala

Z. Rabadanova

Dagestan State University

Email: albina19764@mail.ru
俄罗斯联邦, Makhachkala

M. Dzhafarov

Astrakhan State Medical University

Email: albina19764@mail.ru
俄罗斯联邦, Astrakhan

参考

  1. Polderman KH (2009) Mechanisms of action, physiological effects, and complications of hypothermia. Critical Care Med 37 (7): 186–202. https://doi.org/10.1097/CCM.0b013e3181aa5241
  2. Alva N, Palomeque J, Teresa C (2013) Oxidative stress and antioxidant activity in hypothermia and rewarming: can RONS modulate the beneficial effects of therapeutic hypothermia. Oxidative Med. Cel. Longevity. Article ID957054: 10. https://doi.org/10.1155/2013/957054
  3. Konno T (2021) Intracellular Sources of ROS/H2O2 in health and Neurodegeneration: Spotlight on Endoplasmic Reticulum. Cells 10(2): 233. https://doi.org/10.3390/cells10020233
  4. Hernansanz-Agustín P (2021) Generation of Reactive Oxygen Species by Mitochondria. Antioxidants 10: 415.
  5. Zinchuk VV, Hlutkin SV (2015) Blood oxygen transport and prooxidant-antioxidant balance in rats under hypothermia and rewarming combined with modification of L-arginine-NO pathway. Asian J Pharmacy Nursing Med Sci 3(2): 55–63.
  6. Халилов РА, Джафарова АМ, Хизриева СИ, Абдуллаев ВР (2019) Интенсивность свободно – радикальных процессов в митохондриях печени крыс при умеренной гипотермии различной длительности. Цитология 91(7): 1–12. [Khalilov RA, Dzhafarova AM, Khizrieva SI, Abdullaev VR (2019) The intensity of free radical processes in rat liver mitochondria under moderate hypothermia of various durations. Cytology 91(7): 1–12. (In Russ)]. https://doi.org/10.1134/S1990519X1906004X
  7. Klichkhanov NK, Dzhafarovа AM (2021) The Blood Prooxidant-Antioxidant Balance and Osmotic Fragility of Red Blood Cells Depend on the Duration of Moderate. In: Advances in Health and Disea: 31. Ed. Lowell T. Duncan. New York: Nova Sci Publ: 261.
  8. Халилов РА, Хизриева СИ, Джафарова АМ, Абдуллаев ВР (2020) Респираторные характеристики митохондрий печени крыс зависят от длительности умеренной гипотермии. Бюл эксп биол мед 169(1): 33–38. [Khalilov RA, Khizrieva SI, Dzhafarova AM, Abdullaev VR (2020) Respiratory characteristics of rat liver mitochondria depend on the duration of moderate hypothermia. Bull Exp Biol Med 169(1): 33–38. (In Russ)]. https://rucont.ru/efd/712358
  9. Хизриева СИ, Халилов РА, Джафарова АМ, Абдуллаев ВР (2023) Кальций-аккумулирующая способность митохондрий печени крыс при гипотермии различной длительности. Журн эвол биохим физиол 59(4): 311–319. [Khizrieva SI, Khalilov RA, Dzhafarova AM, Abdullaev VR (2023) Calcium_Accumulating Ability of Rat Liver Mitochondria in Hypothermia of Various Duration. J Evol Biochem Physiol 59(4): 311–319. (In Russ)]. https://doi.org/10.31857/S0044452923040046
  10. Fraga CG, Croft KD, Kennedy DO, Tomás – Barberán FA (2019) The effects of polyphenols and other bioactives on human health. Food Funct 10(2): 514–528. https://doi.org/10.1039/c8fo01997e
  11. Дергачева ДИ, Кляйн О И, Мариничев АА, Гесслер НН, Теплова ВВ, Исакова ЕП, Дерябина ЮИ (2020) Антиоксидантное действие природных полифенолов на митохондрии печени крыс с токсическим гепатитом. Биол мембр 37(3): 197–207. [Dergacheva DI, Klein OI, Marinichev AA, Gessler NN, Teplova VV, Isakova EP, Deryabina YI (2020) Antioxidant effect of natural polyphenols on liver mitochondria of rats with toxic hepatitis. Biol Membr 37(3): 197–207. (In Russ)].
  12. Venditti P, Rosa RD, Meo SD (2004) Effect of cold – induced hyperthyriodism on H2O2 production and susceptibility of stress conditions of rat liver mitochondria. Free Rad Biol Med 36(3): 348–358. https://doi.org/10.1016/j.freeradbiomed.2003.11.012
  13. Enns G M (2017) Glutathione as a redox biomarker in mitochondrial disease-implications for therapy. J Clin Med 6(5): 50. https://doi.org/10.3390/jcm6050050
  14. Jones DP, Go YM (2010) Redox compartmentalization and cellular stress. Diabetes Obes Metab 2: 116–125. https://doi.org/10.1111/j.1463–1326.2010.01266.x
  15. Кулинский ВИ, Ольховский ИА (1992) Две адаптационные стратегии в неблагоприятных условиях – резистентная и толерантная. Роль гормонов и рецепторов. Успехи совр биол 112(56): 697–714. [Kulinsky VI, Olkhovsky IA (1992) Two adaptation strategies in unfavorable conditions – resistant and tolerant. The role of hormones and receptors. Success modern times biol 112(56): 697–714. (In Russ)].
  16. Маяхи МТД, Кличханов НК (2012) Влияние даларгина на содержание гормонов гипофизарно – надпочечникового и гипофизарно – тиреоидного эндокринного комплексов в крови крыс при гипотермии. Изв Самарск научн центра РАН 14: 273–277. [Mayakhi MTD, Klichkhanov NK (2012) The effect of dalargin on the content of hormones of the pituitary – adrenal and pituitary – thyroid endocrine complexes in the blood of rats during hypothermia. Proc Samara Scient Center Russ Acad Sci 14: 273–277. (In Russ)].
  17. Meo SD, Venditti P (2020) Evolution of the Knowledge of Free Radicals and Other Oxidants. Oxidative Med Cell Longev, ID9829176: 32. https://doi.org/10.1155/2020/9829176
  18. Lennicke C, Cochemé HM (2021) Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell 81(18): 3691–3707. https://doi.org/10.1016/j.molcel.2021.08.018. PMID: 34547234
  19. Calabrese G, Morgan B, Riemer J (2017) Mitochondrial Glutathione: Regulation and Functions. Antioxid Redox Signal 27(15): 1162–1177. https://doi.org/10.1089/ars.2017.7121
  20. Бобрышева ТН, Анисимов ГС, Золоторева МС, Бобрышев ДВ, Будкевич РО, Москалев АА (2023) Полифенолы как перспективные биологически активные соединения. Вопр питания 92(1): 92–107. [Bobrysheva TN, Anisimov GS, Zolotoreva MS, Bobryshev DV, Budkevich RO, Moskalev AA (2023) Polyphenols as promising biologically active compounds. Nutrit Issues 92(1): 92–107. (In Russ)].
  21. Liu Y, Shi X, Tian Y, Zhai S, Liu Y, Xiong Z, Chu S (2023) An insight into novel therapeutic potentials of taxifolin. Front Pharmacol 14: 1173855. https://doi.org/10.3389/fphar.2023.1173855
  22. Sunil C, Xu B (2019) An insight into the health – promoting effects of taxifolin (dihydroquercetin). Phytochemistry 166: 112066. https://doi.org/10.1016/j.phytochem.2019.112066
  23. Cao X, Bi R, Hao J, Wang S, Huo Y, Demoz RM, Banda R, Tian S, Xin C, Fu M, Pi J, Liu J (2020) A study on the protective effects of taxifolin on human umbilical vein endothelial cells and THP-1 cells damaged by hexavalent chromium: a probable mechanism for preventing cardiovascular disease induced by heavy metals. Food Funct 11(5): 3851–3859. https://doi.org/10.1039/d0fo00567c
  24. Das A, Baidya R, Chakraborty T, Samanta AK, Roy S (2021) Pharmacological basis and new insights of taxifolin: A comprehensive review. Biomed Pharmacother 142: 112004. https://doi.org/10.1016/j.biopha

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Correlations between the level of glutathione and the content of sulfhydryl groups in rat liver mitochondrial proteins under various physiological conditions (control, course DHA, short-term hypothermia, moderate hypothermia against the background of course administration of DHA). r = 0.88, p < 0.05.

下载 (169KB)
3. Fig. 2. The kinetic curve of the dependence of Si/Co (%) on the concentration of DHA (Si is the concentration of carbonyl groups at a given concentration of DHA, Co is the concentration of carbonyl groups in a medium without DHA). The dotted line shows the concentration of DHA, which causes a 50% suppression (IC50) of the intensity of OMB during incubation of isolated mitochondria in the Fenton medium.

下载 (110KB)

版权所有 © Russian Academy of Sciences, 2024