Interaction of the Endocrine and Exocrine Parts of the Pancreas
- 作者: Mostafa A.1, Gantsova E.A.2, Serova O.V.3, Mohammad T.4, Deyev I.E.3
-
隶属关系:
- GIGA Research Centre, Université de Liège
- Рeoples’ Friendship University of Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences Russian Academy of Sciences
- Moscow Institute of Physics and Technology
- 期: 卷 110, 编号 4 (2024)
- 页面: 515-526
- 栏目: REVIEW
- URL: https://medjrf.com/0869-8139/article/view/651650
- DOI: https://doi.org/10.31857/S0869813924040019
- EDN: https://elibrary.ru/COMRXL
- ID: 651650
如何引用文章
详细
The pancreas plays a key role in the endocrine system of animals and in the digestion and absorption of nutrients. The exocrine and endocrine pancreas are structurally separate from each other, but numerous studies suggest anatomical and functional connections between these parts. Previously, less attention was paid to these interactions, but the pancreas is now viewed as a single organ consisting of functionally related components that coordinates endocrine and exocrine responses. Our review examines the latest data indicating the functional connection and mutual influence of the endocrine and exocrine parts of the pancreas. In addition, we will also look at the impact of SARS-CoV-2 infection on pancreatic function.
关键词
全文:

作者简介
A. Mostafa
GIGA Research Centre, Université de Liège
Email: deyevie@gmail.com
比利时, Liège
E. Gantsova
Рeoples’ Friendship University of Russia
Email: deyevie@gmail.com
Research Institute of Molecular and Cellular Medicine
俄罗斯联邦, MoscowO. Serova
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences Russian Academy of Sciences
Email: deyevie@gmail.com
俄罗斯联邦, Moscow
T. Mohammad
Moscow Institute of Physics and Technology
Email: deyevie@gmail.com
俄罗斯联邦, Moscow
I. Deyev
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences Russian Academy of Sciences
编辑信件的主要联系方式.
Email: deyevie@gmail.com
俄罗斯联邦, Moscow
参考
- Da Silva Xavier G (2018) The Cells of the Islets of Langerhans. J Clin Med 7(3): 54. https://doi.org/10.3390/JCM7030054
- Pandiri AR (2014) Overview of exocrine pancreatic pathobiology. Toxicol Pathol 42: 207–216. https://doi.org/10.1177/0192623313509907
- Zhou Q, Melton DA (2018) Pancreas regeneration. Nature 557: 351–358. https://doi.org/10.1038/S41586-018-0088-0
- Hegyi P, Petersen OH (2013) The exocrine pancreas: the acinar-ductal tango in physiology and pathophysiology. Rev Physiol Biochem Pharmacol 165: 1–30. https://doi.org/10.1007/112_2013_14
- Bonner-Weir S, Sullivan BA, Weir GC (2015) Human Islet Morphology Revisited: Human and Rodent Islets Are Not So Different After All. J Histochem Cytochem 63: 604–612. https://doi.org/10.1369/0022155415570969
- Dunning BE, Gerich JE (2007) The role of alpha-cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications. Endocr Rev 28: 253–283. https://doi.org/10.1210/ER.2006-0026
- Wierup N, Svensson H, Mulder H, Sundler F (2002) The ghrelin cell: A novel developmentally regulated islet cell in the human pancreas. Regul Pept 107: 63–69. https://doi.org/10.1016/S0167-0115(02)00067-8
- Gilbert JM, Adams MT, Sharon N, Jayaraaman H, Blum B (2021) Morphogenesis of the Islets of Langerhans Is Guided by Extraendocrine Slit2 and Slit3 Signals. Mol Cell Biol 41. https://doi.org/10.1128/MCB.00451-20
- Guo J, Fu W (2020) Immune regulation of islet homeostasis and adaptation. J Mol Cell Biol 12: 764–774. https://doi.org/10.1093/JMCB/MJAA009
- Bertelli E, Bendayan M (2005) Association between endocrine pancreas and ductal system. More than an epiphenomenon of endocrine differentiation and development? J Histochem Cytochem 53: 1071–1086.
- Hayden MR, Patel K, Habibi J, Gupta D, Tekwani SS, Whaley-Connell A, Sowers JR (2008) Attenuation of endocrine-exocrine pancreatic communication in type 2 diabetes: pancreatic extracellular matrix ultrastructural abnormalities. J Cardiometab Syndr 3: 234–243. https://doi.org/10.1111/J.1559-4572.2008.00024.X
- Suda K, Hosokawa Y, Kuroda J, Yuminamochi T, Ishii Y, Nakazawa K (1994) Pancreatic acinar cells in adult human islets of Langerhans. Pancreas 9: 563–565. https://doi.org/10.1097/00006676-199409000-00004
- Murray HE, Paget MB, Bailey CJ, Downing R (2009) Sustained insulin secretory response in human islets co-cultured with pancreatic duct-derived epithelial cells within a rotational cell culture system. Diabetologia 52: 477–485. https://doi.org/10.1007/S00125-008-1247-X
- Piciucchi M, Capurso G, Archibugi L, Delle Fave MM, Capasso M, Delle Fave G (2015) Exocrine pancreatic insufficiency in diabetic patients: prevalence, mechanisms, and treatment. Int J Endocrinol 2015: 595–649. https://doi.org/10.1155/2015/595649
- Wang TC, Bonner-Weir S, Oates PS, Chulak M, Simon B, Merlino GT, Schmidt EV, Brand SJ (1993) Pancreatic gastrin stimulates islet differentiation of transforming growth factor alpha-induced ductular precursor cells. J Clin Invest 92: 1349–1356. https://doi.org/10.1172/JCI116708
- Wang RN, Klöppel G, Bouwens L (1995) Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats. Diabetologia 38: 1405–1411. https://doi.org/10.1007/BF00400600
- Deyev IE, Popova NV, Serova OV, Zhenilo SV, Regoli M, Bertelli E, Petrenko AG (2017) Alkaline pH induces IRR-mediated phosphorylation of IRS-1 and actin cytoskeleton remodeling in a pancreatic beta cell line. Biochimie 138. https://doi.org/10.1016/j.biochi.2017.04.002
- Serova OV, Gantsova EA, Deyev IE, Petrenko AG (2020) The Value of pH Sensors in Maintaining Homeostasis of the Nervous System. Russ J Bioorg Chem 46: 506–519. https://doi.org/10.1134/S1068162020040196
- Masini M, Marselli L, Himpe E, Martino L, Bugliani M, Suleiman M, Boggi U, Filipponi F, Occhipinti M, Bouwens L, De Tata V, Marchetti P (2017) Co-localization of acinar markers and insulin in pancreatic cells of subjects with type 2 diabetes. PLoS One 12. https://doi.org/10.1371/JOURNAL.PONE.0179398
- Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S (2020) SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181: 271–280. https://doi.org/10.1016/J.CELL.2020.02.052
- Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, Geng Q, Auerbach A, Li F (2020) Structural basis of receptor recognition by SARS-CoV-2. Nature 581: 221–224. https://doi.org/10.1038/S41586-020-2179-Y
- Hikmet F, Méar L, Edvinsson Å, Micke P, Uhlén M, Lindskog C (2020) The protein expression profile of ACE2 in human tissues. Mol Syst Biol 16. https://doi.org/10.15252/MSB.20209610
- Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 203: 631–637. https://doi.org/10.1002/PATH.1570
- Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z (2020) Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 323: 1061–1069. https://doi.org/10.1001/JAMA.2020.1585
- Zhan T, Tang Y, Han Z, Zhu Q, Tan J, Liu M, Cai Y, Huang M, Chen X, Cheng X, Deng J, Huang X, Tian X (2021) Clinical Characteristics of 195 Cases of COVID-19 with Gastrointestinal Symptoms COVID-19 with Gastrointestinal Symptoms. Turk J Gastroenterol 32: 148–154. https://doi.org/10.5152/TJG.2021.20379
- Schettino M, Pellegrini L, Picascia D, Saibeni S, Bezzio C, Bini F, Omazzi BF, Devani M, Arena I, Bongiovanni M, Manes G, Della Corte CMR (2021) Clinical Characteristics of COVID-19 Patients With Gastrointestinal Symptoms in Northern Italy: A Single-Center Cohort Study. Am J Gastroenterol 116: 306–310. https://doi.org/10.14309/AJG.0000000000000965
- Tabesh E, Soheilipour M, Sami R, Mansourian M, Tabesh F, Soltaninejad F, Dehghan M, Nikgoftar N, Gharavinia A, Ghasemi K, Adibi P (2022) Gastrointestinal manifestations in patients with coronavirus disease-2019 (COVID-19): Impact on clinical outcomes. J Res Med Sci 27: 32. https://doi.org/10.4103/JRMS.JRMS_641_21
- Bacaksız F, Ebik B, Ekin N, Kılıc J (2021) Pancreatic damage in COVID-19: Why? How? Int J Clin Pract 75. https://doi.org/10.1111/IJCP.14692
- Yang F, Xu Y, Dong Y, Huang Y, Fu Y, Li T, Sun C, Pandanaboyana S, Windsor JA, Fu D (2022) Prevalence and prognosis of increased pancreatic enzymes in patients with COVID-19: A systematic review and meta-analysis. Pancreatology 22: 539–546. https://doi.org/10.1016/J.PAN.2022.03.014
- Kiyak M, Düzenli T (2022) Lipase elevation on admission predicts worse clinical outcomes in patients with COVID-19. Pancreatology 22: 665–670. https://doi.org/10.1016/J.PAN.2022.04.012
- Clausen CL, Leo-Hansen C, Faurholt-Jepsen D, Krogh-Madsen R, Ritz C, Kirk O, Jørgensen HL, Benfield T, Almdal TP, Snorgaard O (2022) Glucometabolic changes influence hospitalization and outcome in patients with COVID-19: An observational cohort study. Diabetes Res Clin Pract 187. https://doi.org/10.1016/J.DIABRES.2022.109880
- Dennis JM, Mateen BA, Sonabend R, Thomas NJ, Patel KA, Hattersley AT, Denaxas S, McGovern AP, Vollmer SJ (2021) Type 2 Diabetes and COVID-19-Related Mortality in the Critical Care Setting: A National Cohort Study in England, March-July 2020. Diabetes Care 44: 50–57. https://doi.org/10.2337/DC20-1444
- Birabaharan M, Kaelber DC, Pettus JH, Smith DM (2022) Risk of new-onset type 2 diabetes in 600 055 people after COVID-19: A cohort study. Diabetes Obes Metab 24: 1176–1179. https://doi.org/10.1111/DOM.14659
- Ambati S, Mihic M, Rosario DC, Sanchez J, Bakar A (2022) New-Onset Type 1 Diabetes in Children With SARS-CoV-2 Infection. Cureus 14. https://doi.org/10.7759/CUREUS.22790
- Montefusco L, Ben Nasr M, D’Addio F, Loretelli C, Rossi A, Pastore I, Daniele G, Abdelsalam A, Maestroni A, Dell’Acqua M, Ippolito E, Assi E, Usuelli V, Seelam AJ, Fiorina RM, Chebat E, Morpurgo P, Lunati ME, Bolla AM, Finzi G, Abdi R, Bonventre JV, Rusconi S, Riva A, Corradi D, Santus P, Nebuloni M, Folli F, Zuccotti GV, Galli M, Fiorina P (2021) Acute and long-term disruption of glycometabolic control after SARS-CoV-2 infection. Nat Metab 3: 774–785. https://doi.org/10.1038/S42255-021-00407-6
- Khunti K, Del Prato S, Mathieu C, Kahn SE, Gabbay RA, Buse JB (2021) COVID-19, Hyperglycemia, and New-Onset Diabetes. Diabetes Care 44: 2645–2655. https://doi.org/10.2337/DC21-1318
- Coate KC, Cha J, Shrestha S, Wang W, Gonçalves LM, Almaça J, Kapp ME, Fasolino M, Morgan A, Dai C, Saunders DC, Bottino R, Aramandla R, Jenkins R, Stein R, Kaestner KH, Vahedi G, Brissova M, Powers AC (2020) SARS-CoV-2 Cell Entry Factors ACE2 and TMPRSS2 Are Expressed in the Microvasculature and Ducts of Human Pancreas but Are Not Enriched in β Cells. Cell Metab 32: 1028–1040. https://doi.org/10.1016/J.CMET.2020.11.006
- Kusmartseva I, Wu W, Syed F, Van Der Heide V, Jorgensen M, Joseph P, Tang X, Candelario-Jalil E, Yang C, Nick H, Harbert JL, Posgai AL, Paulsen JD, Lloyd R, Cechin S, Pugliese A, Campbell-Thompson M, Vander Heide RS, Evans-Molina C, Homann D, Atkinson MA (2020) Expression of SARS-CoV-2 Entry Factors in the Pancreas of Normal Organ Donors and Individuals with COVID-19. Cell Metab 32: 1041–1051. https://doi.org/10.1016/J.CMET.2020.11.005
- Fignani D, Licata G, Brusco N, Nigi L, Grieco GE, Marselli L, Overbergh L, Gysemans C, Colli ML, Marchetti P, Mathieu C, Eizirik DL, Sebastiani G, Dotta F (2020) SARS-CoV-2 Receptor Angiotensin I-Converting Enzyme Type 2 (ACE2) Is Expressed in Human Pancreatic β-Cells and in the Human Pancreas Microvasculature. Front Endocrinol (Lausanne) 11. https://doi.org/10.3389/FENDO.2020.596898
- Müller JA, Groß R, Conzelmann C, Krüger J, Merle U, Steinhart J, Weil T, Koepke L, Bozzo CP, Read C, Fois G, Eiseler T, Gehrmann J, van Vuuren J, Wessbecher IM, Frick M, Costa IG, Breunig M, Grüner B, Peters L, Schuster M, Liebau S, Seufferlein T, Stenger S, Stenzinger A, MacDonald PE, Kirchhoff F, Sparrer KMJ, Walther P, Lickert H, Barth TFE, Wagner M, Münch J, Heller S, Kleger A (2021) SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat Metab 3: 149–165. https://doi.org/10.1038/S42255-021-00347-1
- Steenblock C, Richter S, Berger I, Barovic M, Schmid J, Schubert U, Jarzebska N, von Mässenhausen A, Linkermann A, Schürmann A, Pablik J, Dienemann T, Evert K, Rodionov RN, Semenova NY, Zinserling VA, Gainetdinov RR, Baretton G, Lindemann D, Solimena M, Ludwig B, Bornstein SR (2021) Viral infiltration of pancreatic islets in patients with COVID-19. Nat Commun 12. https://doi.org/10.1038/S41467-021-23886-3
- Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, van der Meer F, Kallio K, Kaya T, Anastasina M, Smura T, Levanov L, Szirovicza L, Tobi A, Kallio-Kokko H, Österlund P, Joensuu M, Meunier FA, Butcher SJ, Winkler MS, Mollenhauer B, Helenius A, Gokce O, Teesalu T, Hepojoki J, Vapalahti O, Stadelmann C, Balistreri G, Simons M (2020) Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370. https://doi.org/10.1126/SCIENCE.ABD2985
- Wu CT, Lidsky PV, Xiao Y, Lee IT, Cheng R, Nakayama T, Jiang S, Demeter J, Bevacqua RJ, Chang CA, Whitener RL, Stalder AK, Zhu B, Chen H, Goltsev Y, Tzankov A, Nayak JV, Nolan GP, Matter MS, Andino R, Jackson PK (2021) SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment. Cell Metab 33: 1565–1576. https://doi.org/10.1016/J.CMET.2021.05.013
- Tang X, Uhl S, Zhang T, Xue D, Li B, Vandana JJ, Acklin JA, Bonnycastle LL, Narisu N, Erdos MR, Bram Y, Chandar V, Chong ACN, Lacko LA, Min Z, Lim JK, Borczuk AC, Xiang J, Naji A, Collins FS, Evans T, Liu C, tenOever BR, Schwartz RE, Chen S (2021) SARS-CoV-2 infection induces beta cell transdifferentiation. Cell Metab 33: 1577–1591. https://doi.org/10.1016/J.CMET.2021.05.015
- Xie Y, Al-Aly Z (2022) Risks and burdens of incident diabetes in long COVID: a cohort study. Lancet Diabetes Endocrinol 10: 311–321. https://doi.org/10.1016/S2213-8587(22)00044-4
- Steenblock C, Hassanein M, Khan EG, Yaman M, Kamel M, Barbir M, Lorke DE, Rock JA, Everett D, Bejtullah S, Heimerer A, Tahirukaj E, Beqiri P, Bornstein SR (2022) Diabetes and COVID-19: Short- and Long-Term Consequences. Horm Metab Res 54: 503–509. https://doi.org/10.1055/A-1878-9566
- Mittal J, Ghosh A, Bhatt SP, Anoop S, Ansari IA, Misra A (2021) High prevalence of post COVID-19 fatigue in patients with type 2 diabetes: A case-control study. Diabetes Metab Syndr 15. https://doi.org/10.1016/J.DSX.2021.102302
补充文件
