Effect of Estradiol on Carbohydrate-Fat Metabolism and FGF21 System Activity in Female C57BL/6 Mice with Short-Term Consumption of the Cafeteria Diet
- Autores: Jakovleva T.V.1, Kazantseva A.Y.1, Mamontova K.Y.1,2, Bazhan N.M.1,2
-
Afiliações:
- Institute of Cytology and Genetics
- Novosibirsk State University
- Edição: Volume 110, Nº 4 (2024)
- Páginas: 573-589
- Seção: EXPERIMENTAL ARTICLES
- URL: https://medjrf.com/0869-8139/article/view/651654
- DOI: https://doi.org/10.31857/S0869813924040054
- EDN: https://elibrary.ru/CNRTPT
- ID: 651654
Citar
Resumo
The cafeteria diet contributes to the development of obesity and metabolic syndrome, reduces insulin sensitivity and glucose tolerance. Hepatic hormone fibroblast growth factor 21 (FGF21) promotes adaptation to the consumption of sweet and fatty foods. Female mice are less sensitive to the damaging effects of the cafeteria diet than males, which may be due to the effect of estradiol on the activity of the FGF21 system: on the hepatic expression of the Fgf21 gene, on the blood level of hormone, or on the levels of receptors and coreceptors beta-clotho, which determine the sensitivity of tissues to FGF21. The purpose of this work was to verify this assumption. The effect of estradiol (10 mg/animal once every three days) was evaluated in ovariectomized female C57BL/6 mice who consumed a cafeteria diet (standard food, lard and cookies) for two weeks. Indicators of carbohydrate-fat metabolism, taste preferences, and activity of the FGF21 system were determined. Ovariectomy increased body weight and subcutaneous adipose tissue weight, fat intake, Pomc expression in the hypothalamus, decreased expression of estradiol receptors in the liver and cookie consumption. Estradiol did not have a significant effect on these parameters. In ovariectomized females with estradiol deficiency, blood cholesterol levels and liver expression of the glucose-6-phosphatase gene were lower than in sham operated females, and estradiol normalized these parameters. Ovariectomy lowered, and the administration of estradiol increased the level of coreceptor beta-clotho (Klb) mRNA in the liver and in the hypothalamus. These results suggest that at the initial stages of consumption of sweet and fatty foods, estradiol increases the sensitivity of the liver and hypothalamus to FGF21 and thereby enhances the contribution of the FGF21 system to the processes of adaptation to the cafeteria diet.
Palavras-chave
Texto integral

Sobre autores
T. Jakovleva
Institute of Cytology and Genetics
Autor responsável pela correspondência
Email: tatyanajakovleva@yandex.ru
Rússia, Novosibirsk
A. Kazantseva
Institute of Cytology and Genetics
Email: tatyanajakovleva@yandex.ru
Rússia, Novosibirsk
K. Mamontova
Institute of Cytology and Genetics; Novosibirsk State University
Email: tatyanajakovleva@yandex.ru
Rússia, Novosibirsk; Novosibirsk
N. Bazhan
Institute of Cytology and Genetics; Novosibirsk State University
Email: tatyanajakovleva@yandex.ru
Rússia, Novosibirsk; Novosibirsk
Bibliografia
- Gadde KM, Martin CK, Berthoud HR, Heymsfield SB (2018) Obesity: Pathophysiology and Management. J Am Coll Cardiol 71(1): 69–84. https://doi.org/10.1016/j.jacc.2017.11.011
- Bruder-Nascimento T, Ekeledo OJ, Anderson R, Le HB, Belin de Chantemèle EJ (2017) Long Term High Fat Diet Treatment: An Appropriate Approach to Study the Sex-Specificity of the Autonomic and Cardiovascular Responses to Obesity in Mice. Front Physiol 8: 32. https://doi.org/10.3389/fphys.2017.00032
- Hwang LL, Wang CH, Li TL, Chang SD, Lin LC, Chen CP, Chen CT, Liang KC, Ho IK, Yang WS, Chiou LC (2010) Sex differences in high-fat diet-induced obesity, metabolic alterations and learning, and synaptic plasticity deficits in mice. Obesity (Silver Spring) 18(3): 463–469. https://doi.org/10.1038/oby.2009.273
- Bazhan NM, Iakovleva TV, Dubinina AD, Makarova EN (2020) Impact of sex on the adaptation of adult mice to long consumption of sweet-fat diet. Vavilov Zhurn Genet Selekt 24(8): 844–852. https://doi.org/10.18699/VJ20.682
- Tramunt B, Smati S, Grandgeorge N, Lenfant F, Arnal JF, Montagner A, Gourdy P (2020) Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia 63(3): 453–461. https://doi.org/10.1007/s00125-019-05040-3
- Freire-Regatillo A, Fernández-Gómez MJ, Díaz F, Barrios V, Sánchez-Jabonero I, Frago LM, Argente J, García-Segura LM, Chowen JA (2020) Sex differences in the peripubertal response to a short-term, high-fat diet intake. J Neuroendocrinol 32(1): e12756. https://doi.org/10.1111/jne.12756
- Huang KP, Ronveaux CC, Knotts TA, Rutkowsky JR, Ramsey JJ, Raybould HE (2020) Sex differences in response to short-term high fat diet in mice. Physiol Behav 221: 112894. https://doi.org/10.1016/j.physbeh.2020.112894
- Nishimura T, Nakatake Y, Konishi M, Itoh N (2000) Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta 1492(1): 203. https://doi.org/10.1016/s0167-4781(00)00067-1
- Zhang P, Kuang H, He Y, Idiga SO, Li S, Chen Z, Yang Z, Cai X, Zhang K, Potthoff MJ, Xu Y, Lin JD (2018) NRG1-Fc improves metabolic health via dual hepatic and central action. JCI Insight 3(5): e98522. https://doi.org/10.1172/jci.insight.98522
- Fon Tacer K, Bookout AL, Ding X, Kurosu H, John GB, Wang L, Goetz R, Mohammadi M, Kuroo M, Mangelsdorf DJ, Kliewer SA (2010) Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol 24(10): 2050. https://doi.org/10.1210/me.2010-0142
- Johnson CL, Weston JY, Chadi SA, Fazio EN, Huff MW, Kharitonenkov A, Köester A, Pin CL (2009) Fibroblast growth factor 21 reduces the severity of cerulein-induced pancreatitis in mice. Gastroenterology 137(5): 1795–1804. https://doi.org/10.1053/j.gastro.2009.07.064
- Patel V, Adya R, Chen J, Ramanjaneya M, Bari MF, Bhudia SK, Hillhouse EW, Tan BK, Randeva HS (2014) Novel insights into the cardio-protective effects of FGF21 in lean and obese rat hearts. PLoS One 9(2): e87102. https://doi.org/10.1371/journal.pone.0087102
- Bazhan N, Jakovleva T, Balyibina N, Dubinina A, Denisova E, Feofanova N, Makarova E (2019) Sex Dimorphism in the Fgf21 Gene Expression in Liver and Adipose Tissues is Dependent on the Metabolic Condition. Online J Biol Sci 19(1): 28–36.
- Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, Gromada J, Brozinick JT, Hawkins ED, Wroblewski VJ, Li DS, Mehrbod F, Jaskunas SR, Shanafelt AB (2005) FGF-21 as a novel metabolic regulator. J Clin Invest 115(6): 1627–1635. https://doi.org/10.1172/JCI23606
- Kurosu H, Choi M, Ogawa Y, Dickson AS, Goetz R, Eliseenkova AV, Mohammadi M, Rosenblatt KP, Kliewer SA, Kuro-o M (2007) Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem 282(37): 26687. https://doi.org/10.1074/jbc.M704165200
- Suzuki M, Uehara Y, Motomura-Matsuzaka K, Oki J, Koyama Y, Kimura M, Asada M, Komi-Kuramochi A, Oka S, Imamura T (2008) betaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol Endocrinol 22(4): 1006. https://doi.org/10.1210/me.2007-0313
- Bookout AL, de Groot MH, Owen BM, Lee S, Gautron L, Lawrence HL, Ding X, Elmquist JK, Takahashi JS, Mangelsdorf DJ, Kliewer SA (2013) FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med 19(9): 1147. https://doi.org/10.1038/nm.3249
- Jensen-Cody SO, Flippo KH, Claflin KE, Yavuz Y, Sapouckey SA, Walters GC, Usachev YM, Atasoy D, Gillum MP, Potthoff MJ (2020) FGF21 Signals to Glutamatergic Neurons in the Ventromedial Hypothalamus to Suppress Carbohydrate Intake. Cell Metab 32(2): 273–286.e6. https://doi.org/10.1016/j.cmet.2020.06.008
- Yang ZH, Miyahara H, Takeo J, Katayama M (2012) Diet high in fat and sucrose induces rapid onset of obesity-related metabolic syndrome partly through rapid response of genes involved in lipogenesis, insulin signalling and inflammation in mice. Diabetol Metab Syndr 4(1): 32. https://doi.org/10.1186/1758-5996-4-32
- Lan T, Morgan DA, Rahmouni K, Sonoda J, Fu X, Burgess SC, Holland WL, Kliewer SA, Mangelsdorf DJ (2017) FGF19, FGF21, and an FGFR1/β-Klotho-Activating Antibody Act on the Nervous System to Regulate Body Weight and Glycemia. Cell Metab 26(5): 709–718.e3. https://doi.org/10.1016/j.cmet.2017.09.005
- Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, Moller DE, Kharitonenkov A (2008) Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149(12): 6018–6027. https://doi.org/10.1210/en.2008-0816
- Larson KR, Chaffin AT, Goodson ML, Fang Y, Ryan KK (2019) Fibroblast Growth Factor-21 Controls Dietary Protein Intake in Male Mice. Endocrinology 160(5): 1069–1080. https://doi.org/10.1210/en.2018-01056
- Von Holstein-Rathlou S, Gillum MP (2019) Fibroblast growth factor 21: an endocrine inhibitor of sugar and alcohol appetite. J Physiol 597(14): 3539–3548. https://doi.org/10.1113/JP277117
- Hua L, Zhuo Y, Jiang D, Li J, Huang X, Zhu Y, Li Z, Yan L, Jin C, Jiang X, Che L, Fang Z, Lin Y, Xu S, Li J, Feng B, Wu D (2018) Identification of hepatic fibroblast growth factor 21 as a mediator in 17β-estradiol-induced white adipose tissue browning. FASEB J 32(10): 5602–5611. https://doi.org/10.1096/fj.201800240R
- Allard C, Bonnet F, Xu B, Coons L, Albarado D, Hill C, Fagherazzi G, Korach KS, Levin ER, Lefante J, Morrison C, Mauvais-Jarvis F (2019) Activation of hepatic estrogen receptor-α increases energy expenditure by stimulating the production of fibroblast growth factor 21 in female mice. Mol Metab 22: 62–70. https://doi.org/10.1016/j.molmet.2019.02.002
- Jakovleva TV, Kazantseva AY, Dubinina AD, Balybina NY, Baranov KO, Makarova EN, Bazhan NM (2022) Estradiol-dependent and independent effects of FGF21 in obese female mice. Vavilov Zhurn Genet Selekt 26(2): 159–168. https://doi.org/10.18699/VJGB-22-20
- Sampey BP, Vanhoose AM, Winfield HM, Freemerman AJ, Muehlbauer MJ, Fueger PT, Newgard CB, Makowski L (2011) Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet. Obesity (Silver Spring, Md.) 19(6): 1109–1117. https://doi.org/10.1038/oby.2011.18
- Gao H, Bryzgalova G, Hedman E, Khan A, Efendic S, Gustafsson JA, Dahlman-Wright K (2006) Long-term administration of estradiol decreases expression of hepatic lipogenic genes and improves insulin sensitivity in ob/ob mice: a possible mechanism is through direct regulation of signal transducer and activator of transcription 3. Mol Endocrinol 20(6): 1287–1299. https://doi.org/10.1210/me.2006-0012
- Thammacharoen S, Geary N, Lutz TA, Ogawa S, Asarian L (2009) Divergent effects of estradiol and the estrogen receptor-alpha agonist PPT on eating and activation of PVN CRH neurons in ovariectomized rats and mice. Brain Res 1268: 88–96. https://doi.org/10.1016/j.brainres.2009.02.067
- Kim JY, Jo KJ, Kim OS, Kim BJ, Kang DW, Lee KH, Baik HW, Han MS, Lee SK (2010) Parenteral 17beta-estradiol decreases fasting blood glucose levels in non-obese mice with short-term ovariectomy. Life Sci 87(11-12): 358–366. https://doi.org/10.1016/j.lfs.2010.07.009
- Roesch SL, Styer AM, Wood GC, Kosak Z, Seiler J, Benotti P, Petrick AT, Gabrielsen J, Strodel WE, Gerhard GS, Still CD, Argyropoulos G (2015) Perturbations of fibroblast growth factors 19 and 21 in type 2 diabetes. PloS One 10(2): e0116928. https://doi.org/10.1371/journal.pone.0116928
- Bryzgalova G, Lundholm L, Portwood N, Gustafsson JA, Khan A, Efendic S, Dahlman-Wright K (2008) Mechanisms of antidiabetogenic and body weight-lowering effects of estrogen in high-fat diet-fed mice. Am J Physiol Endocrinol Metab 295(4): E904–E912. https://doi.org/10.1152/ajpendo.90248.2008
- Fisher FM, Maratos-Flier E (2016) Understanding the Physiology of FGF21. Annu Rev Physiol 78: 223–241. https://doi.org/10.1146/annurev-physiol-021115-105339
- Makarova E, Kazantseva A, Dubinina A, et al. (2021) The Same Metabolic Response to FGF21 Administration in Male and Female Obese Mice Is Accompanied by Sex-Specific Changes in Adipose Tissue Gene Expression. Int J Mol Sci 22(19): 10561. https://doi.org/10.3390/ijms221910561
- Liu C, Schönke M, Zhou E, Li Z, Kooijman S, Boon MR, Larsson M, Wallenius K, Dekker N, Barlind L, Peng XR, Wang Y, Rensen PCN (2022) Pharmacological treatment with FGF21 strongly improves plasma cholesterol metabolism to reduce atherosclerosis. Cardiovasc Res 118(2): 489–502. https://doi.org/10.1093/cvr/cvab076
- Walf AA, Frye CA (2010) Estradiol reduces anxiety- and depression-like behavior of aged female mice. Physiol Behav 99(2): 169–174. https://doi.org/10.1016/j.physbeh.2009.09.017
- Dahir NS, Calder AN, McKinley BJ, Liu Y, Gilbertson TA (2021) Sex differences in fat taste responsiveness are modulated by estradiol. Am J Physiol Endocrinol Metab 320(3): E566– E580. https://doi.org/10.1152/ajpendo.00331.2020
- Yang TY, Liang NC (2018) Ovarian hormones mediate running-induced changes in high fat diet choice patterns in female rats. Horm Behav 100: 81–93. https://doi.org/10.1016/j.yhbeh.2018.02.010
- Sugaya A, Sugiyama T, Yanase S, Shen XX, Minoura H, Toyoda N (2000) Expression of glucose transporter 4 mRNA in adipose tissue and skeletal muscle of ovariectomized rats treated with sex steroid hormones. Life Sci 66(7): 641–648. https://doi.org/10.1016/s0024-3205(99)00636-0
- Fisher FM, Chui PC, Antonellis PJ, Bina HA, Kharitonenkov A, Flier JS, Maratos-Flier E (2010) Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes 59(11): 2781– 2789. https://doi.org/10.2337/db10-0193
- Hale C, Chen MM, Stanislaus S, Chinookoswong N, Hager T, Wang M, Véniant MM, Xu J (2012) Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance. Endocrinology 153(1): 69–80. https://doi.org/10.1210/en.2010-1262
- Samms RJ, Cheng CC, Kharitonenkov A, Gimeno RE, Adams AC (2016) Overexpression of β-Klotho in Adipose Tissue Sensitizes Male Mice to Endogenous FGF21 and Provides Protection From Diet-Induced Obesity. Endocrinology 157(4): 1467–1480. https://doi.org/10.1210/en.2015-1722
- Santoso P, Nakata M, Shiizaki K, Boyang Z, Parmila K, Otgon-Uul Z, Hashimoto K, Satoh T, Mori M, Kuro-o M, Yada T (2017) Fibroblast growth factor 21, assisted by elevated glucose, activates paraventricular nucleus NUCB2/Nesfatin-1 neurons to produce satiety under fed states. Scient Rep 7: 45819. https://doi.org/10.1038/srep45819
- BonDurant LD, Potthoff MJ (2018) Fibroblast Growth Factor 21: A Versatile Regulator of Metabolic Homeostasis. Annu Rev Nutr 38: 173–196. https://doi.org/10.1146/annurev-nutr-071816-064800
- Liang Q, Zhong L, Zhang J, Wang Y, Bornstein SR, Triggle CR, Ding H, Lam KS, Xu A (2014) FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting. Diabetes 63(12): 4064–4075. https://doi.org/10.2337/db14-0541
- Ornitz DM, Itoh N (2015) The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev Dev Biol 4(3): 215–266. https://doi.org/10.1002/wdev.176
- Potthoff MJ, Boney-Montoya J, Choi M, He T, Sunny NE, Satapati S, Suino-Powell K, Xu HE, Gerard RD, Finck BN, Burgess SC, Mangelsdorf DJ, Kliewer SA (2011) FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway. Cell Metab 13(6): 729–738. https://doi.org/10.1016/j.cmet.2011.03.019
Arquivos suplementares
