Effectiveness of Course Use of Metformin and its Combination with Intranasal Insulin for Treatment of Rats with “Cafeteria Diet”-Induced Obesity
- Authors: Derkach K.V.1, Zorina I.I.1, Shpakov A.O.1,2
-
Affiliations:
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
- St. Petersburg State University
- Issue: Vol 110, No 4 (2024)
- Pages: 590-604
- Section: EXPERIMENTAL ARTICLES
- URL: https://medjrf.com/0869-8139/article/view/651655
- DOI: https://doi.org/10.31857/S0869813924040067
- EDN: https://elibrary.ru/CNPBPA
- ID: 651655
Cite item
Abstract
The “cafeteria diet,” which includes an excess of saturated fats and easily digestible carbohydrates, leads to obesity and is a risk factor for the development of type 2 diabetes. Metformin (MF) is often used to correct diet-induced obesity (DIO), but in some patients it causes serious side effects, which requires a reduction in its doses, including through combined use with drugs that potentiate the effects of MF. A candidate for the role of such drugs is intranasally administered insulin (INI), which itself has a restorative potential in the treatment of metabolic disorders. The goal of the work was to study the effectiveness of a three-week combined use of MF (100 mg/kg/day, perorally) with INI in two doses (1.5 and 6.0 IU/kg/day) for the correction of metabolic and hormonal disorders in male rats with DIO induced by a “cafeteria diet”. It was shown that in rats with DIO, the combination of MF and INI normalized body weight and abdominal fat, restored glucose homeostasis, lipid metabolism, basal and glucose-stimulated levels of insulin and leptin. Compared with MF monotherapy, the combined use of MF and INI more effectively restored sensitivity to insulin, assessed by a decrease in the insulin resistance index, and also normalized glucose tolerance, assessed by a decrease in the value of AUC0-120, the integrated area under glucose concentration curves in the glucose tolerance test. The combination of MF with INI at a dose of 1.5 IU/kg/day normalized the hormonal status of the thyroid system, disturbed in DIO, while the combination of MF with INI at a dose of 6 IU/kg/day worsened the hypothyroid state, mainly due to hyperactivation of thyroid-stimulating hormone secretion and the development resistance of the thyroid gland to it. Thus, for the correction of metabolic and hormonal parameters in DIO, including the restoration of the functions of the thyroid system, the use of MF with relatively low doses of IVI, which does not have a negative effect on the thyroid axis, is promising.
Full Text

About the authors
K. V. Derkach
Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
Author for correspondence.
Email: derkatch_k@list.ru
Russian Federation, St. Petersburg
I. I. Zorina
Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
Email: derkatch_k@list.ru
Russian Federation, St. Petersburg
A. O. Shpakov
Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences; St. Petersburg State University
Email: derkatch_k@list.ru
Russian Federation, St. Petersburg; St. Petersburg
References
- GBD 2017 Risk Factor Collaborators (2018) Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392(10159): 1923–1994. https://doi.org/10.1016/S0140-6736(18)32225-6
- Frühbeck G, Toplak H, Woodward E, Yumuk V, Maislos M, Oppert JM; Executive Committee of the European Association for the Study of Obesity (2013) Obesity: the gateway to ill health – an EASO position statement on a rising public health, clinical and scientific challenge in Europe. Obes Facts 6(2): 117–120. https://doi.org/10.1159/000350627
- Dutta S, Shah RB, Singhal S, Dutta SB, Bansal S, Sinha S, Haque M (2023) Metformin: A Review of Potential Mechanism and Therapeutic Utility Beyond Diabetes. Drug Des Devel Ther 17: 1907–1932. https://doi.org/10.2147/DDDT.S409373
- Hundal RS, Inzucchi SE (2003) Metformin: new understandings, new uses. Drugs 63(18): 1879–1894. https://doi.org/10.2165/00003495-200363180-00001
- Alshahrani A, Aljada A, Masood A, Mujammami M, Alfadda AA, Musambil M, Alanazi IO, Al Dubayee M, Abdel Rahman AM, Benabdelkamel H (2023) Proteomic Profiling Identifies Distinct Regulation of Proteins in Obese Diabetic Patients Treated with Metformin. Pharmaceuticals (Basel) 16(10): 1345. https://doi.org/10.3390/ph16101345
- Franks S (2011) When should an insulin sensitizing agent be used in the treatment of polycystic ovary syndrome? Clin Endocrinol (Oxf) 74(2): 148–151. https://doi.org/10.1111/j.1365-2265.2010.03934.x
- Condorelli RA, Cannarella R, Aversa A, Basile L, Avola O, Calogero AE, La Vignera S (2022) Effects of Slow-Acting Metformin Treatment on the Hormonal and Morphological Thyroid Profile in Patients with Insulin Resistance. Pharmaceutics 14(10): 1987. https://doi.org/10.3390/pharmaceutics14101987
- Van Leeuwen N, Nijpels G, Becker ML, Deshmukh H, Zhou K, Stricker BH, Uitterlinden AG, Hofman A, van ‘t Riet E, Palmer CN, Guigas B, Slagboom PE, Durrington P, Calle RA, Neil A, Hitman G, Livingstone SJ, Colhoun H, Holman RR, McCarthy MI, Dekker JM, ‘t Hart LM, Pearson ER (2012) A gene variant near ATM is significantly associated with metformin treatment response in type 2 diabetes: a replication and meta-analysis of five cohorts. Diabetologia 55(7): 1971–1977. https://doi.org/10.1007/s00125-012-2537-x
- Chen P, Cao Y, Chen S, Liu Z, Chen S, Guo Y (2022) Association of SLC22A1, SLC22A2, SLC47A1, and SLC47A2 Polymorphisms with Metformin Efficacy in Type 2 Diabetic Patients. Biomedicines 10(10): 2546. https://doi.org/10.3390/biomedicines10102546
- Peng A, Gong C, Xu Y, Liang X, Chen X, Hong W, Yan J (2023) Association between organic cation transporter genetic polymorphisms and metformin response and intolerance in T2DM individuals: a systematic review and meta-analysis. Front Public Health 11: 1183879. https://doi.org/10.3389/fpubh.2023.1183879
- Kanto K, Ito H, Noso S, Babaya N, Hiromine Y, Taketomo Y, Toma J, Niwano F, Yasutake S, Kawabata Y, Ikegami H (2017) Effects of dosage and dosing frequency on the efficacy and safety of high-dose metformin in Japanese patients with type 2 diabetes mellitus. J Diabetes Invest 9(3): 587–593. https://doi.org/10.1111/jdi.12755
- DeFronzo R, Fleming GA, Chen K, Bicsak TA (2016) Metformin-associated lactic acidosis: Current perspectives on causes and risk. Metabolism 65(2): 20–29. https://doi.org/10.1016/j.metabol.2015.10.014
- Nabrdalik K, Skonieczna-Żydecka K, Irlik K, Hendel M, Kwiendacz H, Łoniewski I, Januszkiewicz K, Gumprecht J, Lip GYH (2022) Gastrointestinal adverse events of metformin treatment in patients with type 2 diabetes mellitus: A systematic review, meta-analysis and meta-regression of randomized controlled trials. Front Endocrinol (Lausanne) 13: 975912. https://doi.org/10.3389/fendo.2022.975912
- Ji L, Han P, Wang X, Liu J, Zheng S, Jou YM, O’Neill EA, Golm GT, Engel SS, Kaufman KD, Shankar RR (2016) Randomized clinical trial of the safety and efficacy of sitagliptin and metformin co-administered to Chinese patients with type 2 diabetes mellitus. J Diabetes Invest 7(5): 727–736. https://doi.org/10.1111/jdi.12511
- Shaaban HH, Alzaim I, El-Mallah A, Aly RG, El-Yazbi AF, Wahid A (2022) Metformin, pioglitazone, dapagliflozin and their combinations ameliorate manifestations associated with NAFLD in rats via anti-inflammatory, anti-fibrotic, anti-oxidant and anti-apoptotic mechanisms. Life Sci 308: 120956. https://doi.org/10.1016/j.lfs.2022.120956
- Derkach KV, Ivantsov AO, Chistyakova OV, Sukhov IB, Buzanakov DM, Kulikova AA, Shpakov AO (2017) Intranasal insulin restores metabolic parameters and insulin sensitivity in rats with metabolic syndromeю Bull Exp Biol Med 163(2): 184–189. https://doi.org/10.1007/s10517-017-3762-6
- Шпаков АО, Деркач КВ, Суркова ЕВ, Беспалов АИ (2019) Перспективы применения интраназально вводимого инсулина для коррекции метаболических и гормональных нарушений при сахарном диабете и метаболическом синдроме. Пробл эндокринол 65(5): 389–395. [Shpakov AO, Derkach KV, Surkova EV, Bespalov AI (2019) Prospects for the use of intranasally administered insulin for the correction of metabolic and hormonal disorders in diabetes mellitus and metabolic syndrome. Probl endokrinol 65(5): 389–395. (In Russ)]. https://doi.org/10.14341/probl9960
- Деркач КВ, Бондарева ВМ, Шпаков АО (2022) Влияние интраназально вводимого инсулина на метаболические и гормональные показатели у взрослых самцов крыс, нарушенные вследствие трехдневного голодания в раннем постнатальном периоде. Биомед химия 68(4): 263–271. [Derkach KV, Bondareva VM, Shpakov AO (2022) The effect of intranasally administered insulin on metabolic and hormonal parameters in adult male rats, impaired due to three-day fasting in the early postnatal period. Biomed khimiya 68(4): 263–271. (In Russ)]. https://doi.org/10.18097/PBMC20226804263
- Shpakov AO, Derkach KV, Berstein LM (2015) Brain signaling systems in the Type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases. Future Sci OA 1(3): FSO25. https://doi.org/10.4155/fso.15.23
- Derkach K, Zakharova I, Zorina I, Bakhtyukov A, Romanova I, Bayunova L, Shpakov A (2019) The evidence of metabolic-improving effect of metformin in Ay/a mice with genetically-induced melanocortin obesity and the contribution of hypothalamic mechanisms to this effect. PLoS One 14(3): e0213779. https://doi.org/10.1371/journal.pone.0213779
- Derkach KV, Bondareva VM, Shpakov AO (2018) Coadministration of intranasally delivered insulin and proinsulin C-peptide to rats with the types 1 and 2 diabetes mellitus restores their metabolic parameters. Advances Gerontol 8(2): 139–146. https://doi.org/10.1134/S2079057018020030
- Derkach KV, Bondareva VM, Shpakov AO (2019) Regulatory effects of intranasal C-peptide and insulin on thyroid and androgenic status of male rats with moderate type 1 diabetes mellitus. J Evol Biochem Physiol 55(6): 493–496. https://doi.org/10.1134/S0022093019060073
- Деркач КВ, Бондарева ВМ, Басова НЕ, Кузнецова ЛА, Шпаков АО (2021) Совместное применение метформина и интраназального инсулина нормализует чувствительность к глюкозе и гормональный статус у крыс с диабетом 2-го типа. Интеграт физиол 2(4): 399–411. [Derkach KV, Bondareva VM, Basova NE, Kuznetsova LA, Shpakov AO (2021) Combined use of metformin and intranasal insulin normalizes glucose sensitivity and hormonal status in rats with type 2 diabetes. Integrat Physiol 2(4): 399–411. (In Russ)]. https://doi.org/10.33910/2687-1270-2021-2-4-399-411
- Oche J, Olorundare O, Afolabi S, Ologe M, Njan A, Akanbi O (2023) Comparative Therapeutic Effect of Single/Combined Administration of Saxagliptin, Metformin and Intranasal Insulin on Dexamethasone Induced Insulin Resistance in Albino Wistar Rat Model. Niger J Physiol Sci 38(1): 37–46. https://doi.org/10.54548/njps.v38i1.7
- Sukhov IB, Lebedeva MF, Zakharova IO, Derkach KV, Bayunova LV, Zorina II, Avrova NF, Shpakov AO (2020) Intranasal Administration of Insulin and Gangliosides Improves Spatial Memory in Rats with Neonatal Type 2 Diabetes Mellitus. Bull Exp Biol Med 168(3): 317–320. https://doi: 10.1007/s10517-020-04699-8
- Derkach KV, Bogush IV, Berstein LM, Shpakov AO (2015) The Influence of Intranasal Insulin on Hypothalamic-Pituitary-Thyroid Axis in Normal and Diabetic Rats. Horm Metab Res 47(12): 916–924. https://doi.org/10.1055/s-0035-1547236
- Njan AA, Fatigun CO, Alli-Oluwafuyi AM, Olorundare OE, Afolabi OS, Akinola O, Amin A (2018) Effect of intranasal insulin on peripheral glucose profile in dexamethasone-induced insulin resistance in Wistar rats. Beni-Suef University J Basic Appl Sci 7(4): 516–524. https://doi.org/10.1016/j.bjbas.2018.06.003
- Nijssen KMR, Mensink RP, Joris PJ (2023) Effects of Intranasal Insulin Administration on Cerebral Blood Flow and Cognitive Performance in Adults: A Systematic Review of Randomized, Placebo-Controlled Intervention Studies. Neuroendocrinology 113(1): 1–13. https://doi: 10.1159/000526717
- Bakhtyukov AA, Derkach KV, Sorokoumov VN, Stepochkina AM, Romanova IV, Morina IY, Zakharova IO, Bayunova LV, Shpakov AO (2021) The Effects of Separate and Combined Treatment of Male Rats with Type 2 Diabetes with Metformin and Orthosteric and Allosteric Agonists of Luteinizing Hormone Receptor on Steroidogenesis and Spermatogenesis. Int J Mol Sci 23(1): 198. https://doi: 10.3390/ijms23010198
- He L (2020) Metformin and Systemic Metabolism. Trends Pharmacol Sci 41(11): 868–881. https://doi.org/10.1016/j.tips.2020.09.001
- Dash S, Xiao C, Morgantini C, Koulajian K, Lewis GF (2015) Intranasal insulin suppresses endogenous glucose production in humans compared with placebo in the presence of similar venous insulin concentrations. Diabetes 64(3): 766–774. https://doi.org/10.2337/db14-0685
- Beddows CA, Dodd GT (2021) Insulin on the brain: The role of central insulin signalling in energy and glucose homeostasis. J Neuroendocrinol 33(4): e12947. https://doi.org/10.1111/jne.12947
- Scherer T, Sakamoto K, Buettner C (2021) Brain insulin signalling in metabolic homeostasis and disease. Nat Rev Endocrinol 17(8): 468–483. https://doi.org/10.1038/s41574-021-00498-x
- Heni M, Wagner R, Kullmann S, Gancheva S, Roden M, Peter A, Stefan N, Preissl H, Häring HU, Fritsche A (2017) Hypothalamic and Striatal Insulin Action Suppresses Endogenous Glucose Production and May Stimulate Glucose Uptake During Hyperinsulinemia in Lean but Not in Overweight Men. Diabetes 66(7): 1797–1806. https://doi.org/10.2337/db16-1380
- Hummel J, Benkendorff C, Fritsche L, Prystupa K, Vosseler A, Gancheva S, Trenkamp S, Birkenfeld AL, Preissl H, Roden M, Häring HU, Fritsche A, Peter A, Wagner R, Kullmann S, Heni M (2023) Brain insulin action on peripheral insulin sensitivity in women depends on menstrual cycle phase. Nat Metab 5(9): 1475–1482. https://doi.org/10.1038/s42255-023-00869-w
- Fujikawa T (2021) Central regulation of glucose metabolism in an insulin-dependent and -independent manner. J Neuroendocrinol 33(4): e12941. https://doi.org/10.1111/jne.12941
- Xiao C, Dash S, Stahel P, Lewis GF (2017) Effects of Intranasal Insulin on Triglyceride-Rich Lipoprotein Particle Production in Healthy Men. Arterioscler Thromb Vasc Biol 37(9): 1776–1781. https://doi.org/10.1161/ATVBAHA.117.309705
- Khan S, Jena G (2016) Sodium butyrate reduces insulin-resistance, fat accumulation and dyslipidemia in type-2 diabetic rat: A comparative study with metformin. Chem Biol Interact 254: 124–134. https://doi.org/10.1016/j.cbi.2016.06.007
- Min QQ, Qin LQ, Sun ZZ, Zuo WT, Zhao L, Xu JY (2018) Effects of Metformin Combined with Lactoferrin on Lipid Accumulation and Metabolism in Mice Fed with High-Fat Diet. Nutrients 10(11): 1628. https://doi.org/10.3390/nu10111628
- Biondi B (2023) Subclinical Hypothyroidism in Patients with Obesity and Metabolic Syndrome: A Narrative Review. Nutrients 16(1): 87. https://doi.org/10.3390/nu16010087
- Meng X, Xu S, Chen G, Derwahl M, Liu C (2017) Metformin and thyroid disease. J Endocrinol 233(1): R43–R51. https://doi.org/10.1530/JOE-16-0450
- Krysiak R, Kowalcze K, Okopień B (2020) Different effects of metformin on hypothalamic-pituitary-thyroid axis activity in levothyroxine-treated and levothyroxine-naïve women with non-autoimmune hypothyroidism. J Clin Pharm Ther 45(6): 1427–1433. https://doi.org/10.1111/jcpt.13247
- Krysiak R, Kowalcze K, Okopień B (2022) Thyroid Antibody Titers and Hypothalamic-Pituitary-Thyroid Axis Activity in Levothyroxine-Treated Women With Autoimmune Subclinical Hypothyroidism Receiving Atorvastatin or Metformin. J Clin Pharmacol 62(12): 1566–1573. https://doi.org/10.1002/jcph.2123
- Xu Z, Ye H, Xiao W, Sun A, Yang S, Zhang T, Sha X, Yang H (2022) Metformin Attenuates Inflammation and Fibrosis in Thyroid-Associated Ophthalmopathy. Int J Mol Sci 23(24): 15508. https://doi.org/10.3390/ijms232415508
- Shpakov AO (2021) Improvement Effect of Metformin on Female and Male Reproduction in Endocrine Pathologies and Its Mechanisms. Pharmaceuticals (Basel) 14(1): 42. https://doi.org/10.3390/ph14010042
Supplementary files
