Поиск ингибиторов ионотропных глутаматных рецепторов в ряду производных 2,3,4,5-тетрагидро[1,3]диазепино[1,2-а]бензимидазола

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В настоящей работе выполнен скрининг 14 новых производных диазепинобензимидазола (соединения серии ДАБ) на ингибирующую активность в отношении NMDA- и Ca2+-непроницаемых(КН) AMPA-рецепторов. Эксперименты проводились на изолированных нейронах головного мозга крыс линии Вистар, для исследования NMDA- и КН-AMPA-рецепторов использовались пирамидные нейроны зоны CA1 гиппокампа. Изоляция клеток осуществлялась методом вибродиссоциации, а регистрация токов – методом фиксации потенциала в конфигурации «целая клетка». Все исследованные соединения при концентрации 100 μМ ингибировали NMDA-рецепторы (≥30%), в то время как токи КН-AMPA-рецепторов ингибировались только четырьмя соединениями: ДАБ-8, ДАБ-12, ДАБ-19 и ДАБ-32. ДАБ-8, ДАБ-12 и ДАБ-32 имеют у атома азота N11 4-замещенную фенацильную группу с электроотрицательным атомом фтора в пара-положении (ДАБ-8 и ДАБ-32), или без него (ДАБ-12), тогда как у наиболее активного соединения ДАБ-19 у атома азота N11 находится 4-трет-бутил-бензильная группа с объемным трет-бутильным заместителем в пара-положении. Наиболее активными из них оказались ДАБ-12, ДАБ-19 и ДАБ-32, выбранные для дальнейшего изучения их концентрационных зависимостей. Соединение ДАБ-19 продемонстрировало наиболее выраженную активность и к NMDA-, и к КН-AMPA-рецепторам; ИК50 составили 11.0 ± 1.6 µM и 15.4 ± 1.4 µM соответственно. Подобная способность ингибировать и NMDA-, и КН-AMPA-рецепторы в таких концентрациях является крайне необычной. На основе предыдущих данных о нейропсихотропных эффектах ДАБ-19 была выдвинута гипотеза о его возможной противосудорожной активности, что было подтверждено в тесте «Пентилен-тетразол индуцированных судорог». Выявление ДАБ-19 как комбинированного антагониста NMDA- и КН-AMPA-рецепторов представляет собой важное достижение для дальнейшей разработки эффективных противосудорожных препаратов.

Полный текст

Доступ закрыт

Об авторах

М. Ю. Дронь

Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН

Автор, ответственный за переписку.
Email: neuro.mike@yahoo.com
Россия, Санкт-Петербург

Д. В. Мальцев

Волгоградский государственный медицинский университет

Email: neuro.mike@yahoo.com
Россия, Волгоград

А. А. Спасов

Волгоградский государственный медицинский университет

Email: neuro.mike@yahoo.com
Россия, Волгоград

Л. Н. Диваева

Южный федеральный университет

Email: neuro.mike@yahoo.com
Россия, Ростов-на-Дону

В. С. Сочнев

Южный федеральный университет

Email: neuro.mike@yahoo.com
Россия, Ростов-на-Дону

А. С. Морковник

Южный федеральный университет

Email: neuro.mike@yahoo.com
Россия, Ростов-на-Дону

О. И. Барыгин

Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН

Email: neuro.mike@yahoo.com
Россия, Санкт-Петербург

Список литературы

  1. Collingridge G, Singer W (1990) Excitatory amino acid receptors and synaptic plasticity. Trends Pharmacol Sci 11(7):290–296. https://doi.org/10.1016/0165-6147(90)90011-v
  2. Reiner A, Levitz J (2018) Glutamatergic signaling in the central nervous system: Ionotropic and metabotropic receptors in concert. Neuron 98(6):1080–1098. https://doi.org/ 10.1016/j.neuron.2018.05.018
  3. Fleming J, England P (2010) Developing a complete pharmacology for AMPA receptors: A perspective on subtype-selective ligands. Bioorganic & Med Chem 18(4): 1381–1387. https://doi.org/10.1016/j.bmc.2009.12.072
  4. Washburn M, Numberger M, Zhang S, Dingledine R (1997) Differential dependence on GluR2 expression of three characteristic features of AMPA receptors. J Neurosci 17(24):9393–9406. https://doi.org/10.1523/JNEUROSCI.17-24-09393.1997
  5. Cull‐Candy S, Farrant M (2021) Ca2+‐permeable AMPA receptors and their auxiliary subunits in synaptic plasticity and disease. J Physiol 599(10):2655–2671. https://doi.org/10.1113/JP279029
  6. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307(5950): 462–465. https://doi.org/10.1038/307462a0
  7. Wyllie D, Béhé P, Nassar M, Schoepfer R (1996) Single-channel currents from recombinant NM DANRla/NR2D receptors expressed in Xenopus oocytes. Proc Royal Soc Lond Ser B: Biol Sci 263(1373):1079–1086. https://doi.org/10.1098/rspb.1996.0159
  8. Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Europ J Physiol 460(2):525–542. https://doi.org/10.1007/s00424-010-0809-1
  9. Zanos P, Gould T (2018) Mechanisms of ketamine action as an antidepressant. Mol Psychiatr 23(4):801–811. https://doi.org/10.1038/mp.2017.255
  10. Kotermanski S, Wood J, Johnson J (2009). Memantine binding to a superficial site on NMDA receptors contributes to partial trapping. J Physiol 587(19): 4589–4604. https://doi.org/10.1113/jphysiol.2009.176297
  11. Hanada T, Hashizume Y, Tokuhara N, Takenaka O, Kohmura N, Ogasawara A, Hatakeyama S, Ohgoh M, Ueno M, Nishizawa Y (2011) Perampanel: A novel, orally active, noncompetitive AMPA‐receptor antagonist that reduces seizure activity in rodent models of epilepsy. Epilepsia 52(7): 1331–1340. https://doi.org/10.1111/j.1528-1167.2011.03109.x
  12. Sun L, Chiu D, Kowal D, Simon R, Smeyne M, Zukin R, Olney J, Baudy R, Lin S (2004) Characterization of Two Novel N-Methyl-D-aspartate Antagonists: EAA-090 (2-[8, 9-Dioxo-2, 6-diazabicyclo [5.2. 0] non-1 (7)-en2-yl] ethylphosphonic Acid) and EAB-318 (R-α-Amino-5-chloro-1-(phosphonomethyl)-1H-benzimidazole-2-propanoic Acid Hydrochloride). J Pharmacol Exp Therap 310(2):563–570. https://doi.org/10.1124/jpet.104.066092
  13. Wu A, Wang C, Niu L (2014) Mechanism of inhibition of the GluA1 AMPA receptor channel opening by the 2, 3-benzodiazepine compound GYKI 52466 and a N-methyl-carbamoyl derivative. Biochemistry 53(18): 3033–3041. https://doi.org/10.1021/bi5002079
  14. Qneibi M, Hamed O, Jaradat N, Hawash M, Al-Kerm R, Al-Kerm R, Sobuh S, Tarazi S (2021) The AMPA receptor biophysical gating properties and binding site: Focus on novel curcumin-based diazepines as non-competitive antagonists. Bioorganic Chem 116:105406. https://doi.org/10.1016/j.bioorg.2021.105406
  15. Vorobjev V (1991) Vibrodissociation of sliced mammalian nervous tissue. J Neurosci Meth 38 (2–3):145–150. https://doi.org/10.1016/0165-0270(91)90164-U
  16. Chen Q, He S, Hu X, Yu J, Zhou Y, Zheng J, Zhang S, Zhang C, Duan W, Xiong, Z (2007) Differential roles of NR2A-and NR2B-containing NMDA receptors in activity-dependent brain-derived neurotrophic factor gene regulation and limbic epileptogenesis. J Neurosci 27(3):542–552. https://doi.org/10.1523/JNEUROSCI.3607-06.2007
  17. Buldakova S, Vorobjev V, Sharonova I, Samoilova M, Magazanik L (1999) Characterization of AMPA receptor populations in rat brain cells by the use of subunit-specific open channel blocking drug, IEM-1460. Brain Res 846(1): 52–58. https://doi.org/10.1016/S0006-8993(99)01970-8
  18. Жмуренко Л, Воронина Т, Литвинова С, Неробкова Л, Гайдуков И, Мокров Г, Гудашева Т (2018) Синтез и противосудорожная активность производных оксимов 3-и 4-бензоилпиридинов. Хим-фарм журн 52(1):19–28. [Zhmurenko L, Voronina T, Litvinova S, Nerobkova L, Gaidukov I, Mokrov G, Gudasheva T (2018) Synthesis and anticonvulsant activity of 3- and 4-benzoylpyridine oxime derivatives. Pharmaceut Chem J 52(1):19–28. (In Russ)]. https://doi.org/10.30906/0023-1134-2018-52-1-19-28
  19. Воронина Т, Неробкова Л (2012) Методические указания по изучению противосудорожной активности фармакологических веществ. Руководство по проведению доклинических исследований лекарственных средств, часть 1 235–250. [Voronina T, Nerobkova L (2012) Metodicheskie ukazaniya po izucheniyu protivosudorozhnoj aktivnosti farmakologicheskih veshchestv. Ruk Proveden Doklinich Issl Lek Sredstv 235–250. (In Russ)].
  20. Shimada T, Yamagata K (2018) Pentylenetetrazole-induced kindling mouse model. Journal of visualized experiments: JoVE 136:56573. https://doi.org/10.3791/56573
  21. Dhaliwal J, Rosani A, Saadabadi A (2023) Diazepam. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing PMID: 30725707
  22. Antonov S, Johnson J, Lukomskaya N, Potapyeva N, Gmiro V, Magazanik L (1995) Novel adamantane derivatives act as blockers of open ligand-gated channels and as anticonvulsants. Mol Pharmacol 47(3):558–567.
  23. Bolshakov K, Kim K, Potapjeva N, Gmiro V, Tikhonov D, Usherwood P, Mellor I, Magazanik L (2005) Design of antagonists for NMDA and AMPA receptors. Neuropharmacology 49(2):144–155. https://doi.org/10.1016/j.neuropharm.2005.02.007
  24. Barygin O (2016) Inhibition of calcium-permeable and calcium-impermeable AMPA receptors by perampanel in rat brain neurons. Neurosci Lett 633:146–151. https://doi.org/10.1016/j.neulet.2016.09.028
  25. Armstrong N, Gouaux E (2000) Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: Crystal structures of the GluR2 ligand binding core. Neuron 28(1):165–181. https://doi.org/10.1016/S0896-6273(00)00094-5
  26. Таран А, Мальцев Д, Яковлев Д, Караваева Т, Ткаченко Ю, Диваева Л, Морковник А, Кузьменко Т (2017) Изучение анксиолитической активности в ряду новых производных диазепинобензимидазола на установке «Приподнятый крестообразный лабиринт». Волгоградский научно-медицинский журнал 1:24–26. [Taran A, Maltsev D, Yakovlev D, Karavaeva T, Tkachenko Y, Divaeva L, Morkovnik A, Kuzmenko T (2017) A study of anxiolytic activity of new diazepinobenzimidazoles in the elevated plus maze test. Volgograd Sci Med J 1:24–26. (In Russ)].
  27. Спасов А, Диваева Л, Мальцев Д, Кузьменко Т, Морковник А, Мирошников М, Таран А, Золотова Е (2018) Анксиолитический потенциал нового ряда производных диазепинобензимидазола. Вестн Волгоград гос мед ун-та 3(67):19–23. [Spasov A, Divaeva L, Maltsev D, Kuzmenko T, Morkovnik A, Miroshnikov M, Taran A, Zolotova E (2018) The anxiolytic potential of a new series of diazepinobenzimidazole derivatives. J Volgograd State Med Univers 15(3):19–23. (In Russ)]. https://doi.org/10.19163/1994-9480-2018-3(67)-19-23
  28. Maltsev D, Spasov A, Miroshnikov M, Skripka M, Divaeva L (2020) Influence of Diazepino [1, 2-a] benzimidazole derivative (DAB-19) on behavioral aspects of animals. Res Res Pharmacol 6(3):9–14. https://doi.org/10.3897/rrpharmacology.6.55142
  29. Спасов А, Мальцев Д, Мирошников М, Таран А, Нурмагомедова Б, Скрипка М, Кузьменко Т, Морковник А, Диваева Л (2020) Антидепрессивная активность и потенциальные механизмы действия производного диазепинобензимидазола ДАБ-19. Экспер клин фармак 83(4):31–36. [Spasov A, Maltsev D, Miroshnikov M, Taran A, Nurmagamedova B, Skripka M, Kuzmenko T, Morkovnik A, Divaeva L (2020) The antidepressant activity of diazepinobenbenzimidazole derivative DAB-19 and its potential mechanisms of action. Exp Clin Pharmacol 83(4):31–36. (In Russ)]. https://doi.org/10.30906/0869-2092-2020-83-4-31-36
  30. Мирошников М, Мальцев Д, Спасов А, Таран А, Скрипка М, Суркова Е, Гонтарева А, Диваева Л, Морковник А (2020) Анксиолитическая активность нового производного диазепино [1, 2-a] бензимидазола соединения ДАБ-19. Экспер клин фармак 83(10):3–8. [Miroshnikov M, Maltsev D, Spasov A, Taran A, Skripka M, Surkova E, Gontareva A, Divaeva L, Morkovnik A (2020) The Anxiolytic Activity of a New Derivative of Diazepinobenzimidazole (DAB-19). Exp Clin Pharmacol 83(10):3–8. (In Russ)]. https://doi.org/10.30906/0869-2092-2020-83-10-3-8
  31. Мальцев Д, Таран А, Скрипка М, Мирошников М, Диваева Л, Кузьменко Т, Морковник А (2023) Диазепинобензимидазолы – новый класс для поиска соединений с акнсиолитической активностью. Экспер клин фармак 86(11s):101. [Maltsev D, Taran A, Skripka M, Miroshnikov M, Divaeva L, Kuzmenko T, Morkovnik A (2023) Diazepinobenzimidazoles – a new class for searching for compounds with axiniolytic activity. Exp Clin Pharmacol 86(11s):101. (In Russ)]. https://doi.org/10.30906/ekf-2023-86s-101a
  32. Kotloski R, Gidal B (2022) Rescue treatments for seizure clusters. Neurologic Clinics 40(4):927–937. https://doi.org/10.1016/j.ncl.2022.03.016
  33. Rogawski M (2013) AMPA receptors as a molecular target in epilepsy therapy. Acta Neurologica Scandinavica 127:9–18. https://doi.org/10.1111/ane.12099
  34. Sivakumar S, Ghasemi M, Schachter S (2022) Targeting NMDA receptor complex in management of epilepsy. Pharmaceuticals 15(10):1297. https://doi.org/10.3390/ph15101297

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Структурные формулы исследуемых N11-замещенных производных 2,3,4,5-тетрагидро[1,3]диазепино[1,2-a]бензимидазола. Соединения использовались в форме гидроиодида (ДАБ-1), гидробромидов (ДАБ-7, ДАБ-8, ДАБ-12, ДАБ-19, ДАБ-32), гидрохлоридов (ДАБ 40, ДАБ-41), дигидрохлоридов (ДАБ-20, ДАБ-21, ДАБ-22).

Скачать (334KB)
3. Рис. 2. Электрофизиологическая характеризация активностей соединений, оцененных на этапе скрининга: (a) – ДАБ-8 в концентрации 100 μM вызывает ингибирование 50% интегрального тока NMDA-рецепторов, экспрессированных на пирамидных нейронах СА1-зоны гиппоккампа; (b) – ДАБ-40 в концентрации 100 μM демонстрирует выраженную ингибирующую активность в отношении NMDA-рецепторов; (c) – ДАБ-8 проявляет ингибирующую активность КН-AMPA-рецепторов, сопоставимую с таковой при действии данного соединения на NMDA-рецепторы; (d) – ДАБ-22 является низкоактивным ингибитором КН-AMPA-рецепторов пирамидных нейронов СА1 зоны гиппокампа.

Скачать (398KB)
4. Рис. 3. Электрофизиологическое описание действия наиболее активных производных диазепинобензимидазола на NMDA- и КН-AMPA-рецепторы: (а) – ингибирование NMDA-рецепторов соединением ДАБ-19 при различных его концентрациях; (b) – кривые концентрационной зависимости, описывающие действие ДАБ-12, ДАБ-19 и ДАБ-32 на NMDA-рецепторы; (с) – концентрационная зависимость ингибирования КН-AMPA-рецепторов соединением ДАБ-19; (d) – концентрационная зависимость ингибирования КН-AMPA-рецепторов диазепинобензимидазолами ДАБ-12, ДАБ-19 и ДАБ-32.

Скачать (491KB)

© Российская академия наук, 2025