New Insights into the Long Non-coding RNAs Dependent Modulation of Heart Failure and Cardiac Hypertrophy: From Molecular Function to Diagnosis and Treatment
- Авторлар: Rezaee M.1, Masihipour N.2, Milasi Y.3, Dehmordi R.4, Reiner .5, Asadi S.6, Mohammadi F.7, Khalilzadeh P.8, Rostami M.4, Asemi Z.9, Mafi A.4
-
Мекемелер:
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences
- Department of Medicine, Lorestan University of medical science
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences,
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences
- Department of Internal Medicine, University Hospital Centre Zagreb
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran
- Afzalipour Faculty of Medicine, Kerman University of Medical Sciences
- Student Research Committee, Kurdistan University of Medical Sciences
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences
- Шығарылым: Том 31, № 11 (2024)
- Беттер: 1404-1426
- Бөлім: Anti-Infectives and Infectious Diseases
- URL: https://medjrf.com/0929-8673/article/view/644208
- DOI: https://doi.org/10.2174/0929867330666230306143351
- ID: 644208
Дәйексөз келтіру
Толық мәтін
Аннотация
Heart failure (HF) is a public health issue that imposes high costs on healthcare systems. Despite the significant advances in therapies and prevention of HF, it remains a leading cause of morbidity and mortality worldwide. The current clinical diagnostic or prognostic biomarkers, as well as therapeutic strategies, have some limitations. Genetic and epigenetic factors have been identified to be central to the pathogenesis of HF. Therefore, they might provide promising novel diagnostic and therapeutic approaches for HF. Long non-coding RNAs (lncRNAs) belong to a group of RNAs that are produced by RNA polymerase II. These molecules play an important role in the functioning of different cell biological processes, such as transcription and regulation of gene expression. LncRNAs can affect different signaling pathways by targeting biological molecules or a variety of different cellular mechanisms. The alteration in their expression has been reported in different types of cardiovascular diseases, including HF, supporting the theory that they are important in the development and progression of heart diseases. Therefore, these molecules can be introduced as diagnostic, prognostic, and therapeutic biomarkers in HF. In this review, we summarize different lncRNAs as diagnostic, prognostic, and therapeutic biomarkers in HF. Moreover, we highlight various molecular mechanisms dysregulated by different lncRNAs in HF.
Негізгі сөздер
Авторлар туралы
Malihe Rezaee
Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences
Email: info@benthamscience.net
Niloufar Masihipour
Department of Medicine, Lorestan University of medical science
Email: info@benthamscience.net
Yaser Milasi
Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences,
Email: info@benthamscience.net
Rohollah Dehmordi
Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences
Email: info@benthamscience.net
eljko Reiner
Department of Internal Medicine, University Hospital Centre Zagreb
Email: info@benthamscience.net
Sepideh Asadi
Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran
Email: info@benthamscience.net
Fatemeh Mohammadi
Afzalipour Faculty of Medicine, Kerman University of Medical Sciences
Email: info@benthamscience.net
Parisa Khalilzadeh
Student Research Committee, Kurdistan University of Medical Sciences
Email: info@benthamscience.net
Mehdi Rostami
Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences
Email: info@benthamscience.net
Zatollah Asemi
Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Alireza Mafi
Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Әдебиет тізімі
- Hoffman, T.M. Chronic heart failure. Pediatr. Crit. Care Med., 2016, 17(8), S119-S123. doi: 10.1097/PCC.0000000000000755 PMID: 27490589
- McMurray, J.J.V. Clinical practice. Systolic heart failure. N. Engl. J. Med., 2010, 362(3), 228-238. doi: 10.1056/NEJMcp0909392 PMID: 20089973
- Khatibzadeh, S.; Farzadfar, F.; Oliver, J.; Ezzati, M.; Moran, A. Worldwide risk factors for heart failure: A systematic review and pooled analysis. Int. J. Cardiol., 2013, 168(2), 1186-1194. doi: 10.1016/j.ijcard.2012.11.065 PMID: 23201083
- Yang, J.; Xu, W.W.; Hu, S.J. Heart failure: Advanced development in genetics and epigenetics. Biomed Res Int, 2015, 2015, 352734. doi: 10.1155/2015/352734 PMID: 25949994
- Segura, A.M.; Frazier, O.H.; Buja, L.M. Fibrosis and heart failure. Heart Fail. Rev., 2014, 19(2), 173-185. doi: 10.1007/s10741-012-9365-4 PMID: 23124941
- Oremus, M.; McKelvie, R.; Don-Wauchope, A.; Santaguida, P.L.; Ali, U.; Balion, C.; Hill, S.; Booth, R.; Brown, J.A.; Bustamam, A.; Sohel, N.; Raina, P. A systematic review of BNP and NT-proBNP in the management of heart failure: Overview and methods. Heart Fail. Rev., 2014, 19(4), 413-419. doi: 10.1007/s10741-014-9440-0 PMID: 24953975
- Sato, Y.; Fujiwara, H.; Takatsu, Y. Cardiac troponin and heart failure in the era of high-sensitivity assays. J. Cardiol., 2012, 60(3), 160-167. doi: 10.1016/j.jjcc.2012.06.007 PMID: 22867801
- Henriksen, J.H.; Gøtze, J.P.; Fuglsang, S.; Christensen, E.; Bendtsen, F.; Møller, S. Increased circulating pro-brain natriuretic peptide (proBNP) and brain natriuretic peptide (BNP) in patients with cirrhosis: Relation to cardiovascular dysfunction and severity of disease. Gut, 2003, 52(10), 1511-1517. doi: 10.1136/gut.52.10.1511 PMID: 12970147
- Burke, M.A.; Cotts, W.G. Interpretation of B-type natriuretic peptide in cardiac disease and other comorbid conditions. Heart Fail. Rev., 2007, 12(1), 23-36. doi: 10.1007/s10741-007-9002-9 PMID: 17345160
- Fonseca, C. Diagnosis of heart failure in primary care. Heart Fail. Rev., 2006, 11(2), 95-107. doi: 10.1007/s10741-006-9481-0 PMID: 16937029
- McNally, E.M.; Barefield, D.Y.; Puckelwartz, M.J. The genetic landscape of cardiomyopathy and its role in heart failure. Cell Metab., 2015, 21(2), 174-182. doi: 10.1016/j.cmet.2015.01.013 PMID: 25651172
- Han, P.; Li, W.; Lin, C.H.; Yang, J.; Shang, C.; Nurnberg, S.T.; Jin, K.K.; Xu, W.; Lin, C.Y.; Lin, C.J.; Xiong, Y.; Chien, H.C.; Zhou, B.; Ashley, E.; Bernstein, D.; Chen, P.S.; Chen, H.S.V.; Quertermous, T.; Chang, C.P. A long noncoding RNA protects the heart from pathological hypertrophy. Nature, 2014, 514(7520), 102-106. doi: 10.1038/nature13596 PMID: 25119045
- Dirkx, E.; da Costa Martins, P.A.; De Windt, L.J. Regulation of fetal gene expression in heart failure. Biochim. Biophys. Acta Mol. Basis Dis., 2013, 1832(12), 2414-2424. doi: 10.1016/j.bbadis.2013.07.023
- Greco, S.; Zaccagnini, G.; Perfetti, A.; Fuschi, P.; Valaperta, R.; Voellenkle, C.; Castelvecchio, S.; Gaetano, C.; Finato, N.; Beltrami, A.P.; Menicanti, L.; Martelli, F. Long noncoding RNA dysregulation in ischemic heart failure. J. Transl. Med., 2016, 14(1), 183. doi: 10.1186/s12967-016-0926-5 PMID: 27317124
- Dick, S.A.; Epelman, S. Chronic heart failure and inflammation: What do we really know? Circ. Res., 2016, 119(1), 159-176. doi: 10.1161/CIRCRESAHA.116.308030 PMID: 27340274
- Tsutsui, H.; Kinugawa, S.; Matsushima, S. Oxidative stress and heart failure. Am. J. Physiol. Heart Circ. Physiol., 2011, 301(6), H2181-H2190. doi: 10.1152/ajpheart.00554.2011 PMID: 21949114
- Costa, S.; Reina-Couto, M.; Albino-Teixeira, A.; Sousa, T. Statins and oxidative stress in chronic heart failure. Rev. Port. Cardiol., 2016, 35(1), 41-57. doi: 10.1016/j.repc.2015.09.006 PMID: 26763895
- Bridges, M.C.; Daulagala, A.C.; Kourtidis, A. LNCcation: lncRNA localization and function. J. Cell Biol., 2021, 220(2), e202009045. doi: 10.1083/jcb.202009045 PMID: 33464299
- Engreitz, J.M.; Pandya-Jones, A.; McDonel, P.; Shishkin, A.; Sirokman, K.; Surka, C.; Kadri, S.; Xing, J.; Goren, A.; Lander, E.S.; Plath, K.; Guttman, M. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science, 2013, 341(6147), 1237973. doi: 10.1126/science.1237973 PMID: 23828888
- Khorkova, O.; Hsiao, J.; Wahlestedt, C. Basic biology and therapeutic implications of lncRNA. Adv. Drug Deliv. Rev., 2015, 87, 15-24. doi: 10.1016/j.addr.2015.05.012 PMID: 26024979
- Quinn, J.J.; Chang, H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet., 2016, 17(1), 47-62. doi: 10.1038/nrg.2015.10 PMID: 26666209
- Archer, K.; Broskova, Z.; Bayoumi, A.; Teoh, J.; Davila, A.; Tang, Y.; Su, H.; Kim, I. Long non-coding RNAs as master regulators in cardiovascular diseases. Int. J. Mol. Sci., 2015, 16(10), 23651-23667. doi: 10.3390/ijms161023651 PMID: 26445043
- Greco, S.; Salgado Somoza, A.; Devaux, Y.; Martelli, F. Long noncoding RNAs and cardiac disease. Antioxid. Redox Signal., 2018, 29(9), 880-901. doi: 10.1089/ars.2017.7126 PMID: 28699361
- Uchida, S.; Dimmeler, S. Long noncoding RNAs in cardiovascular diseases. Circ. Res., 2015, 116(4), 737-750. doi: 10.1161/CIRCRESAHA.116.302521 PMID: 25677520
- Yan, Y.; Song, D.; Song, X.; Song, C. The role of lncRNA MALAT1 in cardiovascular disease. IUBMB Life, 2020, 72(3), 334-342. doi: 10.1002/iub.2210 PMID: 31856403
- Liu, L.; An, X.; Li, Z.; Song, Y.; Li, L.; Zuo, S.; Liu, N.; Yang, G.; Wang, H.; Cheng, X.; Zhang, Y.; Yang, X.; Wang, J. The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc. Res., 2016, 111(1), 56-65. doi: 10.1093/cvr/cvw078 PMID: 27084844
- Wang, K.; Liu, C.Y.; Zhou, L.Y.; Wang, J.X.; Wang, M.; Zhao, B.; Zhao, W.K.; Xu, S.J.; Fan, L.H.; Zhang, X.J.; Feng, C.; Wang, C.Q.; Zhao, Y.F.; Li, P.F. APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nat. Commun., 2015, 6(1), 6779. doi: 10.1038/ncomms7779 PMID: 25858075
- Ismail, N.; Abdullah, N.; Abdul Murad, N.A.; Jamal, R.; Sulaiman, S.A. Long non-coding RNAs (lncRNAs) in cardiovascular disease complication of type 2 diabetes. Diagnostics, 2021, 11(1), 145. doi: 10.3390/diagnostics11010145 PMID: 33478141
- Bunch, H. Gene regulation of mammalian long non-coding RNA. Mol. Genet. Genomics, 2018, 293(1), 1-15. doi: 10.1007/s00438-017-1370-9 PMID: 28894972
- Statello, L.; Guo, C.J.; Chen, L.L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol., 2021, 22(2), 96-118. doi: 10.1038/s41580-020-00315-9 PMID: 33353982
- Moran, V.A.; Perera, R.J.; Khalil, A.M. Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res., 2012, 40(14), 6391-6400. doi: 10.1093/nar/gks296 PMID: 22492512
- Rybak-Wolf, A.; Stottmeister, C.; Glaar, P.; Jens, M.; Pino, N.; Giusti, S.; Hanan, M.; Behm, M.; Bartok, O.; Ashwal-Fluss, R.; Herzog, M.; Schreyer, L.; Papavasileiou, P.; Ivanov, A.; Öhman, M.; Refojo, D.; Kadener, S.; Rajewsky, N. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell, 2015, 58(5), 870-885. doi: 10.1016/j.molcel.2015.03.027 PMID: 25921068
- Yin, Q.F.; Yang, L.; Zhang, Y.; Xiang, J.F.; Wu, Y.W.; Carmichael, G.G.; Chen, L.L. Long noncoding RNAs with snoRNA ends. Mol. Cell, 2012, 48(2), 219-230. doi: 10.1016/j.molcel.2012.07.033 PMID: 22959273
- Zhang, H.; Liu, B.; Shi, X.; Sun, X. Long noncoding RNAs: Potential therapeutic targets in cardiocerebrovascular diseases. Pharmacol. Ther., 2021, 221, 107744. doi: 10.1016/j.pharmthera.2020.107744 PMID: 33181193
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet., 2009, 10(1), 57-63. doi: 10.1038/nrg2484 PMID: 19015660
- Jarroux, J.; Morillon, A.; Pinskaya, M. History, discovery, and classification of lncRNAs. Adv. Exp. Med. Biol., 2017, 1008, 1-46. doi: 10.1007/978-981-10-5203-3_1 PMID: 28815535
- Mattick, J.S.; Rinn, J.L. Discovery and annotation of long noncoding RNAs. Nat. Struct. Mol. Biol., 2015, 22(1), 5-7. doi: 10.1038/nsmb.2942 PMID: 25565026
- Wong, L.S.; Wong, C.M. Decoding the roles of long noncoding RNAs in hepatocellular carcinoma. Int. J. Mol. Sci., 2021, 22(6), 3137. doi: 10.3390/ijms22063137 PMID: 33808647
- Cabili, M.N.; Dunagin, M.C.; McClanahan, P.D.; Biaesch, A.; Padovan-Merhar, O.; Regev, A.; Rinn, J.L.; Raj, A. Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol., 2015, 16(1), 20. doi: 10.1186/s13059-015-0586-4 PMID: 25630241
- He, X.; Ou, C.; Xiao, Y.; Han, Q.; Li, H.; Zhou, S. LncRNAs: Key players and novel insights into diabetes mellitus. Oncotarget, 2017, 8(41), 71325-71341. doi: 10.18632/oncotarget.19921 PMID: 29050364
- Bermúdez, M.; Aguilar-Medina, M.; Lizárraga-Verdugo, E.; Avendaño-Félix, M.; Silva-Benítez, E.; López-Camarillo, C.; Ramos-Payán, R. LncRNAs as regulators of autophagy and drug resistance in colorectal cancer. Front. Oncol., 2019, 9, 1008. doi: 10.3389/fonc.2019.01008 PMID: 31632922
- Xu, Q.; Song, Z.; Zhu, C.; Tao, C.; Kang, L.; Liu, W.; He, F.; Yan, J.; Sang, T. Systematic comparison of lncRNAs with protein coding mRNAs in population expression and their response to environmental change. BMC Plant Biol., 2017, 17(1), 42. doi: 10.1186/s12870-017-0984-8 PMID: 28193161
- Liu, H.; Wan, J.; Chu, J. Long non-coding RNAs and endometrial cancer. Biomed. Pharmacother., 2019, 119, 109396. doi: 10.1016/j.biopha.2019.109396 PMID: 31505425
- Jiang, M-C.; Ni, J-J.; Cui, W-Y.; Wang, B-Y.; Zhuo, W. Emerging roles of lncRNA in cancer and therapeutic opportunities. Am. J. Cancer Res., 2019, 9(7), 1354-1366. PMID: 31392074
- Begolli, R.; Sideris, N.; Giakountis, A. LncRNAs as chromatin regulators in cancer: From molecular function to clinical potential. Cancers, 2019, 11(10), 1524. doi: 10.3390/cancers11101524 PMID: 31658672
- Martens-Uzunova, E.S.; Böttcher, R.; Croce, C.M.; Jenster, G.; Visakorpi, T.; Calin, G.A. Long noncoding RNA in prostate, bladder, and kidney cancer. Eur. Urol., 2014, 65(6), 1140-1151. doi: 10.1016/j.eururo.2013.12.003 PMID: 24373479
- Liu, Y.; Ding, W.; Yu, W.; Zhang, Y.; Ao, X.; Wang, J. Long non-coding RNAs: Biogenesis, functions, and clinical significance in gastric cancer. Mol. Ther. Oncolytics, 2021, 23, 458-476. doi: 10.1016/j.omto.2021.11.005 PMID: 34901389
- Schmitz, S.U.; Grote, P.; Herrmann, B.G. Mechanisms of long noncoding RNA function in development and disease. Cell. Mol. Life Sci., 2016, 73(13), 2491-2509. doi: 10.1007/s00018-016-2174-5 PMID: 27007508
- Wang, K.C.; Chang, H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell, 2011, 43(6), 904-914. doi: 10.1016/j.molcel.2011.08.018 PMID: 21925379
- Flynn, R.A.; Chang, H.Y. Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell, 2014, 14(6), 752-761. doi: 10.1016/j.stem.2014.05.014 PMID: 24905165
- Cabili, M.N.; Trapnell, C.; Goff, L.; Koziol, M.; Tazon-Vega, B.; Regev, A.; Rinn, J.L. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev., 2011, 25(18), 1915-1927. doi: 10.1101/gad.17446611 PMID: 21890647
- Pandey, R.R.; Mondal, T.; Mohammad, F.; Enroth, S.; Redrup, L.; Komorowski, J.; Nagano, T.; Mancini-DiNardo, D.; Kanduri, C. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell, 2008, 32(2), 232-246. doi: 10.1016/j.molcel.2008.08.022 PMID: 18951091
- Gong, C.; Maquat, L.E. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature, 2011, 470(7333), 284-288. doi: 10.1038/nature09701 PMID: 21307942
- Ørom, U.A.; Derrien, T.; Beringer, M.; Gumireddy, K.; Gardini, A.; Bussotti, G.; Lai, F.; Zytnicki, M.; Notredame, C.; Huang, Q.; Guigo, R.; Shiekhattar, R. Long noncoding RNAs with enhancer-like function in human cells. Cell, 2010, 143(1), 46-58. doi: 10.1016/j.cell.2010.09.001 PMID: 20887892
- Guttman, M.; Amit, I.; Garber, M.; French, C.; Lin, M.F.; Feldser, D.; Huarte, M.; Zuk, O.; Carey, B.W.; Cassady, J.P.; Cabili, M.N.; Jaenisch, R.; Mikkelsen, T.S.; Jacks, T.; Hacohen, N.; Bernstein, B.E.; Kellis, M.; Regev, A.; Rinn, J.L.; Lander, E.S. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 2009, 458(7235), 223-227. doi: 10.1038/nature07672 PMID: 19182780
- Pontier, D.B.; Gribnau, J. Xist regulation and function eXplored. Hum. Genet., 2011, 130(2), 223-236. doi: 10.1007/s00439-011-1008-7 PMID: 21626138
- Tsagakis, I.; Douka, K.; Birds, I.; Aspden, J.L. Long non-coding RNAs in development and disease: Conservation to mechanisms. J. Pathol., 2020, 250(5), 480-495. doi: 10.1002/path.5405 PMID: 32100288
- Chen, Y.; Li, Z.; Chen, X.; Zhang, S. Long non-coding RNAs: From disease code to drug role. Acta Pharm. Sin. B, 2021, 11(2), 340-354. doi: 10.1016/j.apsb.2020.10.001 PMID: 33643816
- DiStefano, J.K.; Gerhard, G.S. Long noncoding RNAs and human liver disease. Annu. Rev. Pathol., 2022, 17(1), 1-21. doi: 10.1146/annurev-pathol-042320-115255 PMID: 34416820
- Azzalin, C.M.; Reichenbach, P.; Khoriauli, L.; Giulotto, E.; Lingner, J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science, 2007, 318(5851), 798-801. doi: 10.1126/science.1147182 PMID: 17916692
- Guenther, M.G.; Levine, S.S.; Boyer, L.A.; Jaenisch, R.; Young, R.A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell, 2007, 130(1), 77-88. doi: 10.1016/j.cell.2007.05.042 PMID: 17632057
- Redon, S.; Reichenbach, P.; Lingner, J. The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res., 2010, 38(17), 5797-5806. doi: 10.1093/nar/gkq296 PMID: 20460456
- Kino, T.; Hurt, D.E.; Ichijo, T.; Nader, N.; Chrousos, G.P. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci. Signal., 2010, 3(107), ra8-ra8. doi: 10.1126/scisignal.2000568 PMID: 20124551
- Sun, Q.; Hao, Q.; Prasanth, K.V. Nuclear long noncoding RNAs: Key regulators of gene expression. Trends Genet., 2018, 34(2), 142-157. doi: 10.1016/j.tig.2017.11.005 PMID: 29249332
- Tripathi, V.; Ellis, J.D.; Shen, Z.; Song, D.Y.; Pan, Q.; Watt, A.T.; Freier, S.M.; Bennett, C.F.; Sharma, A.; Bubulya, P.A.; Blencowe, B.J.; Prasanth, S.G.; Prasanth, K.V. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell, 2010, 39(6), 925-938. doi: 10.1016/j.molcel.2010.08.011 PMID: 20797886
- Hung, T.; Chang, H.Y. Long noncoding RNA in genome regulation. RNA Biol., 2010, 7(5), 582-585. doi: 10.4161/rna.7.5.13216 PMID: 20930520
- Wang, K.C.; Yang, Y.W.; Liu, B.; Sanyal, A.; Corces-Zimmerman, R.; Chen, Y.; Lajoie, B.R.; Protacio, A.; Flynn, R.A.; Gupta, R.A.; Wysocka, J.; Lei, M.; Dekker, J.; Helms, J.A.; Chang, H.Y. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 2011, 472(7341), 120-124. doi: 10.1038/nature09819 PMID: 21423168
- Wang, Y.; Dang, Y.; Liu, J.; Ouyang, X. The function of homeobox genes and lncRNAs in cancer. Oncol. Lett., 2016, 12(3), 1635-1641. doi: 10.3892/ol.2016.4901 PMID: 27588114
- Sun, Y.; Zhou, Y.; Bai, Y.; Wang, Q.; Bao, J.; Luo, Y.; Guo, Y.; Guo, L. A long non-coding RNA HOTTIP expression is associated with disease progression and predicts outcome in small cell lung cancer patients. Mol. Cancer, 2017, 16(1), 162. doi: 10.1186/s12943-017-0729-1 PMID: 29041935
- Spitale, R.C.; Tsai, M.C.; Chang, H.Y. RNA templating the epigenome. Epigenetics, 2011, 6(5), 539-543. doi: 10.4161/epi.6.5.15221 PMID: 21393997
- Collins, K. Physiological assembly and activity of human telomerase complexes. Mech. Ageing Dev., 2008, 129(1-2), 91-98. doi: 10.1016/j.mad.2007.10.008 PMID: 18054989
- Zheng, M.; Zhao, L.; Yang, X. Expression profiles of long noncoding RNA and mRNA in epicardial adipose tissue in patients with heart failure. Biomed Res Int, 2019, 2019, 3945475. doi: 10.1155/2019/3945475
- Gao, W.; Wang, Z.M.; Zhu, M.; Lian, X.Q.; Zhao, H.; Zhao, D.; Yang, Z.J.; Lu, X.; Wang, L.S. Altered long noncoding RNA expression profiles in the myocardium of rats with ischemic heart failure. J. Cardiovasc. Med., 2015, 16(7), 473-479. doi: 10.2459/JCM.0b013e32836499cd PMID: 26002832
- Cao, Y.; Yang, Y.; Wang, L.; Li, L.; Zhang, J.; Gao, X.; Dai, S.; Zhang, Y.; Guo, Q.; Peng, Y.G.; Wang, E. Analyses of long non-coding RNA and mRNA profiles in right ventricle myocardium of acute right heart failure in pulmonary arterial hypertension rats. Biomed. Pharmacother., 2018, 106, 1108-1115. doi: 10.1016/j.biopha.2018.07.057 PMID: 30119177
- Di Salvo, T.G.; Guo, Y.; Su, Y.R.; Clark, T.; Brittain, E.; Absi, T.; Maltais, S.; Hemnes, A. Right ventricular long noncoding RNA expression in human heart failure. Pulm. Circ., 2015, 5(1), 135-161. doi: 10.1086/679721 PMID: 25992278
- Tavener, S.A.; Long, E.M.; Robbins, S.M.; McRae, K.M.; Van Remmen, H.; Kubes, P. Immune cell toll-like receptor 4 is required for cardiac myocyte impairment during endotoxemia. Circ. Res., 2004, 95(7), 700-707. doi: 10.1161/01.RES.0000144175.70140.8c PMID: 15358664
- Wang, K.; Long, B.; Zhou, L.Y.; Liu, F.; Zhou, Q.Y.; Liu, C.Y.; Fan, Y.Y.; Li, P.F. CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nat. Commun., 2014, 5(1), 3596. doi: 10.1038/ncomms4596 PMID: 24710105
- Yu, C.J.; Liang, C.; Li, Y.X.; Hu, Q.Q.; Zheng, W.W.; Niu, N.; Yang, X.; Wang, Z.R.; Yu, X.D.; Zhang, B.L.; Song, B.L.; Zhang, Z.R. ZNF307 (Zinc Finger Protein 307) acts as a negative regulator of pressure overloadinduced cardiac hypertrophy. Hypertension, 2017, 69(4), 615-624. doi: 10.1161/HYPERTENSIONAHA.116.08500 PMID: 28223477
- Ghafouri-Fard, S.; Taheri, M. Nuclear enriched abundant transcript 1 (NEAT1): A long non-coding RNA with diverse functions in tumorigenesis. Biomed. Pharmacother., 2019, 111, 51-59. doi: 10.1016/j.biopha.2018.12.070 PMID: 30576934
- Chen, J.; Zhang, J.; Gao, Y.; Li, Y.; Feng, C.; Song, C.; Ning, Z.; Zhou, X.; Zhao, J.; Feng, M.; Zhang, Y.; Wei, L.; Pan, Q.; Jiang, Y.; Qian, F.; Han, J.; Yang, Y.; Wang, Q.; Li, C. LncSEA: A platform for long non-coding RNA related sets and enrichment analysis. Nucleic Acids Res., 2021, 49(D1), D969-D980. doi: 10.1093/nar/gkaa806 PMID: 33045741
- Huang, W.; Huang, F.; Zhang, R.; Luo, H. LncRNA Neat1 expedites the progression of liver fibrosis in mice through targeting miR-148a-3p and miR-22-3p to upregulate Cyth3. Cell Cycle, 2021, 20(5-6), 490-507. doi: 10.1080/15384101.2021.1875665 PMID: 33550894
- Li, C.; Liu, Y.F.; Huang, C.; Chen, Y.X.; Xu, C.Y.; Chen, Y. Long noncoding RNA NEAT1 sponges miR-129 to modulate renal fibrosis by regulation of collagen type I. Am. J. Physiol. Renal Physiol., 2020, 319(1), F93-F105. doi: 10.1152/ajprenal.00552.2019 PMID: 32475133
- Ge, Z.; Yin, C.; Li, Y.; Tian, D.; Xiang, Y.; Li, Q.; Tang, Y.; Zhang, Y. Long noncoding RNA NEAT1 promotes cardiac fibrosis in heart failure through increased recruitment of EZH2 to the Smad7 promoter region. J. Transl. Med., 2022, 20(1), 7. doi: 10.1186/s12967-021-03211-8 PMID: 34980170
- Wei, Q.; Zhou, H.Y.; Shi, X.D.; Cao, H.Y.; Qin, L. Long noncoding RNA NEAT1 promotes myocardiocyte apoptosis and suppresses proliferation through regulation of miR-129-5p. J. Cardiovasc. Pharmacol., 2019, 74(6), 535-541. doi: 10.1097/FJC.0000000000000741 PMID: 31815867
- Xiao, N.; Zhang, J.; Chen, C.; Wan, Y.; Wang, N.; Yang, J. miR-129-5p improves cardiac function in rats with chronic heart failure through targeting HMGB1. Mamm. Genome, 2019, 30(9-10), 276-288. doi: 10.1007/s00335-019-09817-0 PMID: 31646380
- Zhang, H.; Zhang, N.; Jiang, W.; Lun, X. Clinical significance of the long non-coding RNA NEAT1/miR-129-5p axis in the diagnosis and prognosis for patients with chronic heart failure. Exp. Ther. Med., 2021, 21(5), 512. doi: 10.3892/etm.2021.9943 PMID: 33791021
- Sun, Y.; Ma, L. New insights into long non-coding RNA MALAT1 in cancer and metastasis. Cancers, 2019, 11(2), 216. doi: 10.3390/cancers11020216 PMID: 30781877
- Liu, L.; Tan, L.; Yao, J.; Yang, L. Long non-coding RNA MALAT1 regulates cholesterol accumulation in ox-LDL-induced macrophages via the microRNA-17-5p/ABCA1 axis. Mol. Med. Rep., 2020, 21(4), 1761-1770. doi: 10.3892/mmr.2020.10987 PMID: 32319624
- Zhao, P.; Wang, Y.; Zhang, L.; Zhang, J.; Liu, N.; Wang, H. Mechanism of long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 in lipid metabolism and inflammation in heart failure. Int. J. Mol. Med., 2021, 47(3), 1-1. PMID: 33448307
- Hu, L.; Xu, Y.N.; Wang, Q.; Liu, M.J.; Zhang, P.; Zhao, L.T.; Liu, F.; Zhao, D.Y.; Pei, H.N.; Yao, X.B.; Hu, H.G. Aerobic exercise improves cardiac function in rats with chronic heart failure through inhibition of the long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). Ann. Transl. Med., 2021, 9(4), 340. doi: 10.21037/atm-20-8250 PMID: 33708967
- Kumarswamy, R.; Bauters, C.; Volkmann, I.; Maury, F.; Fetisch, J.; Holzmann, A.; Lemesle, G.; de Groote, P.; Pinet, F.; Thum, T. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ. Res., 2014, 114(10), 1569-1575. doi: 10.1161/CIRCRESAHA.114.303915 PMID: 24663402
- Santer, L.; López, B.; Ravassa, S.; Baer, C.; Riedel, I.; Chatterjee, S.; Moreno, M.U.; González, A.; Querejeta, R.; Pinet, F.; Thum, T.; Díez, J. Circulating long noncoding RNA LIPCAR predicts heart failure outcomes in patients without chronic kidney disease. Hypertension, 2019, 73(4), 820-828. doi: 10.1161/HYPERTENSIONAHA.118.12261 PMID: 30686085
- Wang, H.; Song, T.; Zhao, Y.; Zhao, J.; Wang, X.; Fu, X. Long non-coding RNA LICPAR regulates atrial fibrosis via TGF-β/Smad pathway in atrial fibrillation. Tissue Cell, 2020, 67, 101440. doi: 10.1016/j.tice.2020.101440 PMID: 32971457
- Shahryari, A.; Jazi, M.S.; Samaei, N.M.; Mowla, S.J. Long non-coding RNA SOX2OT: Expression signature, splicing patterns, and emerging roles in pluripotency and tumorigenesis. Front. Genet., 2015, 6, 196. doi: 10.3389/fgene.2015.00196 PMID: 26136768
- Tu, J.; Ma, L.; Zhang, M.; Zhang, J. Long non-coding RNA SOX2 overlapping transcript aggravates H9c2 cell injury via the miR-215-5p/ZEB2 axis and promotes ischemic heart failure in a rat model. Tohoku J. Exp. Med., 2021, 254(3), 221-231. doi: 10.1620/tjem.254.221 PMID: 34321385
- Jahan, F.; Landry, N.; Rattan, S.; Dixon, I.; Wigle, J. The functional role of zinc finger E box-binding homeobox 2 (Zeb2) in promoting cardiac fibroblast activation. Int. J. Mol. Sci., 2018, 19(10), 3207. doi: 10.3390/ijms19103207 PMID: 30336567
- Sun, Y.; Jin, S.D.; Zhu, Q.; Han, L.; Feng, J.; Lu, X.Y.; Wang, W.; Wang, F.; Guo, R.H. Long non-coding RNA LUCAT1 is associated with poor prognosis in human non-small cell lung cancer and regulates cell proliferation via epigenetically repressing p21 and p57 expression. Oncotarget, 2017, 8(17), 28297-28311. doi: 10.18632/oncotarget.16044 PMID: 28423699
- Zheng, A.; Song, X.; Zhang, L.; Zhao, L.; Mao, X.; Wei, M.; Jin, F. Long non-coding RNA LUCAT1/miR- 5582-3p/TCF7L2 axis regulates breast cancer stemness via Wnt/β-catenin pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 305. doi: 10.1186/s13046-019-1315-8 PMID: 31300015
- Lou, Y.; Yu, Y.; Xu, X.; Zhou, S.; Shen, H.; Fan, T.; Wu, D.; Yin, J.; Li, G. Long non-coding RNA LUCAT1 promotes tumourigenesis by inhibiting ANXA2 phosphorylation in hepatocellular carcinoma. J. Cell. Mol. Med., 2019, 23(3), 1873-1884. doi: 10.1111/jcmm.14088 PMID: 30588744
- Zheng, Z.; Zhao, F.; Zhu, D.; Han, J.; Chen, H.; Cai, Y.; Chen, Z.; Xie, W. Long non-coding RNA LUCAT1 promotes proliferation and invasion in clear cell renal cell carcinoma through AKT/GSK-3β signaling pathway. Cell. Physiol. Biochem., 2018, 48(3), 891-904. doi: 10.1159/000491957 PMID: 30032137
- Li, T.; Qian, D.; Guoyan, J.; Lei, Z. Downregulated long noncoding RNA LUCAT1 inhibited proliferation and promoted apoptosis of cardiomyocyte via miR-612/HOXA13 pathway in chronic heart failure. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(1), 385-395. PMID: 31957853
- Zhou, J.; Zhang, H.; Zou, D.; Zhou, Z.; Wang, W.; Luo, Y.; Liu, T. Clinicopathologic and prognostic roles of circular RNA plasmacytoma variant translocation 1 in various cancers. Expert Rev. Mol. Diagn., 2021, 21(10), 1095-1104. doi: 10.1080/14737159.2021.1964959 PMID: 34346262
- Yu, Y-H.; Hu, Z-Y.; Li, M-H.; Li, B.; Wang, Z-M.; Chen, S-L. Cardiac hypertrophy is positively regulated by long non-coding RNA PVT1. Int. J. Clin. Exp. Pathol., 2015, 8(3), 2582-2589. PMID: 26045764
- Cao, F.; Li, Z.; Ding, W.; Yan, L.; Zhao, Q. LncRNA PVT1 regulates atrial fibrosis via miR-128-3p-SP1-TGF-β1-Smad axis in atrial fibrillation. Mol. Med., 2019, 25(1), 7. doi: 10.1186/s10020-019-0074-5 PMID: 30616543
- Zheng, J.; Hu, L.; Cheng, J.; Xu, J.; Zhong, Z.; Yang, Y.; Yuan, Z. lncRNA PVT1 promotes the angiogenesis of vascular endothelial cell by targeting miR-26b to activate CTGF/ANGPT2. Int. J. Mol. Med., 2018, 42(1), 489-496. doi: 10.3892/ijmm.2018.3595 PMID: 29620147
- Sun, B.; Meng, M.; Wei, J.; Wang, S. Long noncoding RNA PVT1 contributes to vascular endothelial cell proliferation via inhibition of miR-190a-5p in diagnostic biomarker evaluation of chronic heart failure. Exp. Ther. Med., 2020, 19(5), 3348-3354. doi: 10.3892/etm.2020.8599 PMID: 32266032
- Zhang, Z.; Fu, C.; Xu, Q.; Wei, X. Long non-coding RNA CASC7 inhibits the proliferation and migration of colon cancer cells via inhibiting microRNA-21. Biomed. Pharmacother., 2017, 95, 1644-1653. doi: 10.1016/j.biopha.2017.09.052 PMID: 28954383
- Wang, G.; Duan, P.; Liu, F.; Wei, Z. Long non-coding RNA CASC7 suppresses malignant behaviors of breast cancer by regulating miR-21-5p/FASLG axis. Bioengineered, 2021, 12(2), 11555-11566. doi: 10.1080/21655979.2021.2010372 PMID: 34889164
- Xu, Y.; Liu, Y.; Cai, R.; He, S.; Dai, R.; Yang, X.; Kong, B.; Qin, Z.; Su, Q. Long non-coding RNA CASC7 is associated with the pathogenesis of heart failure via modulating the expression of miR-30c. J. Cell. Mol. Med., 2020, 24(19), 11500-11511. doi: 10.1111/jcmm.15764 PMID: 32860492
- Boeckel, J.N.; Perret, M.F.; Glaser, S.F.; Seeger, T.; Heumüller, A.W.; Chen, W.; John, D.; Kokot, K.E.; Katus, H.A.; Haas, J.; Lackner, M.K.; Kayvanpour, E.; Grabe, N.; Dieterich, C.; von Haehling, S.; Ebner, N.; Hünecke, S.; Leuschner, F.; Fichtlscherer, S.; Meder, B.; Zeiher, A.M.; Dimmeler, S.; Keller, T. Identification and regulation of the long non-coding RNA Heat2 in heart failure. J. Mol. Cell. Cardiol., 2019, 126, 13-22. doi: 10.1016/j.yjmcc.2018.11.004 PMID: 30445017
- Faghihi, M.A.; Modarresi, F.; Khalil, A.M.; Wood, D.E.; Sahagan, B.G.; Morgan, T.E.; Finch, C.E.; St Laurent, G., III; Kenny, P.J.; Wahlestedt, C. Expression of a noncoding RNA is elevated in Alzheimers disease and drives rapid feed-forward regulation of beta-secretase. Nat. Med., 2008, 14(7), 723-730. doi: 10.1038/nm1784 PMID: 18587408
- Li, F.; Wang, Y.; Yang, H.; Xu, Y.; Zhou, X.; Zhang, X.; Xie, Z.; Bi, J. The effect of BACE1-AS on β-amyloid generation by regulating BACE1 mRNA expression. BMC Mol. Biol., 2019, 20(1), 23. doi: 10.1186/s12867-019-0140-0 PMID: 31570097
- Greco, S.; Zaccagnini, G.; Fuschi, P.; Voellenkle, C.; Carrara, M.; Sadeghi, I.; Bearzi, C.; Maimone, B.; Castelvecchio, S.; Stellos, K.; Gaetano, C.; Menicanti, L.; Martelli, F. Increased BACE1-AS long noncoding RNA and β-amyloid levels in heart failure. Cardiovasc. Res., 2017, 113(5), 453-463. doi: 10.1093/cvr/cvx013 PMID: 28158647
- Shah, A.K.; Bhullar, S.K.; Elimban, V.; Dhalla, N.S. Oxidative stress as a mechanism for functional alterations in cardiac hypertrophy and heart failure. Antioxidants, 2021, 10(6), 931. doi: 10.3390/antiox10060931 PMID: 34201261
- Song, C.; Zhang, J.; Liu, Y.; Pan, H.; Qi, H.; Cao, Y.; Zhao, J.; Li, S.; Guo, J.; Sun, H.; Li, C. Construction and analysis of cardiac hypertrophy-associated lncRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in cardiac hypertrophy. Oncotarget, 2016, 7(10), 10827-10840. doi: 10.18632/oncotarget.7312 PMID: 26872060
- Gao, H.; Li, X.; Zhan, G.; Zhu, Y.; Yu, J.; Wang, J.; Li, L.; Wu, W.; Liu, N.; Guo, X. RETRACTED ARTICLE: Long noncoding RNA MAGI1-IT1 promoted invasion and metastasis of epithelial ovarian cancer via the miR-200a/ZEB axis. Cell Cycle, 2019, 18(12), 1393-1406. doi: 10.1080/15384101.2019.1618121 PMID: 31122127
- Zhang, G.; Chen, H.X.; Yang, S.N.; Zhao, J. MAGI1-IT1 stimulates proliferation in non-small cell lung cancer by upregulating AKT1 as a ceRNA. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(2), 691-698. PMID: 32016970
- Zhang, Q.; Wang, F.; Wang, F.; Wu, N. Long noncoding RNA MAGI1-IT1 regulates cardiac hypertrophy by modulating miR-302e/DKK1/Wnt/beta-catenin signaling pathway. J. Cell. Physiol., 2020, 235(1), 245-253. doi: 10.1002/jcp.28964 PMID: 31222747
- Marinou, K.; Christodoulides, C.; Antoniades, C.; Koutsilieris, M. Wnt signaling in cardiovascular physiology. Trends Endocrinol. Metab., 2012, 23(12), 628-636. doi: 10.1016/j.tem.2012.06.001 PMID: 22902904
- Bergmann, M.W. WNT signaling in adult cardiac hypertrophy and remodeling: Lessons learned from cardiac development. Circ. Res., 2010, 107(10), 1198-1208. doi: 10.1161/CIRCRESAHA.110.223768 PMID: 21071717
- Yu, J.; Yang, Y.; Xu, Z.; Lan, C.; Chen, C.; Li, C.; Chen, Z.; Yu, C.; Xia, X.; Liao, Q. Long noncoding RNA ahit protects against cardiac hypertrophy through SUZ12-mediated downregulation of MEF2A. Circ. Heart Fail., 2020, 13(1), e006525. doi: 10.1161/CIRCHEARTFAILURE.119.006525 PMID: 31957467
- McCalmon, S.A.; Desjardins, D.M.; Ahmad, S.; Davidoff, K.S.; Snyder, C.M.; Sato, K.; Ohashi, K.; Kielbasa, O.M.; Mathew, M.; Ewen, E.P.; Walsh, K.; Gavras, H.; Naya, F.J. Modulation of angiotensin II-mediated cardiac remodeling by the MEF2A target gene Xirp2. Circ. Res., 2010, 106(5), 952-960. doi: 10.1161/CIRCRESAHA.109.209007 PMID: 20093629
- Gholami, A.; Farhadi, K.; Sayyadipour, F.; Soleimani, M.; Saba, F. Long noncoding RNAs (lncRNAs) in human lymphomas. Genes Dis., 2022, 9(4), 900-914. doi: 10.1016/j.gendis.2021.02.001 PMID: 35685474
- Cruz-Miranda, G.; Hidalgo-Miranda, A.; Bárcenas-López, D.; Núñez-Enríquez, J.; Ramírez-Bello, J.; Mejía-Aranguré, J.; Jiménez-Morales, S. Long non-coding RNA and acute leukemia. Int. J. Mol. Sci., 2019, 20(3), 735. doi: 10.3390/ijms20030735 PMID: 30744139
- Zhang, M.; Jiang, Y.; Guo, X.; Zhang, B.; Wu, J.; Sun, J.; Liang, H.; Shan, H.; Zhang, Y.; Liu, J.; Wang, Y.; Wang, L.; Zhang, R.; Yang, B.; Xu, C. Long non-coding RNA cardiac hypertrophy-associated regulator governs cardiac hypertrophy via regulating miR-20b and the downstream PTEN/AKT pathway. J. Cell. Mol. Med., 2019, 23(11), 7685-7698. doi: 10.1111/jcmm.14641 PMID: 31465630
- Ke, Z.P.; Xu, P.; Shi, Y.; Gao, A.M. MicroRNA-93 inhibits ischemia-reperfusion induced cardiomyocyte apoptosis by targeting PTEN. Oncotarget, 2016, 7(20), 28796-28805. doi: 10.18632/oncotarget.8941 PMID: 27119510
- Roe, N.D.; Xu, X.; Kandadi, M.R.; Hu, N.; Pang, J.; Weiser-Evans, M.C.M.; Ren, J. Targeted deletion of PTEN in cardiomyocytes renders cardiac contractile dysfunction through interruption of Pink1AMPK signaling and autophagy. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(2), 290-298. doi: 10.1016/j.bbadis.2014.09.002 PMID: 25229693
- Yang, X.; Qin, Y.; Shao, S.; Yu, Y.; Zhang, C.; Dong, H.; Lv, G.; Dong, S. MicroRNA-214 inhibits left ventricular remodeling in an acute myocardial infarction rat model by suppressing cellular apoptosis via the phosphatase and tensin homolog (PTEN). Int. Heart J., 2016, 57(2), 247-250. doi: 10.1536/ihj.15-293 PMID: 26973267
- Yu, L.; Li, F.; Zhao, G.; Yang, Y.; Jin, Z.; Zhai, M.; Yu, W.; Zhao, L.; Chen, W.; Duan, W.; Yu, S. Protective effect of berberine against myocardial ischemia reperfusion injury: Role of Notch1/Hes1-PTEN/Akt signaling. Apoptosis, 2015, 20(6), 796-810. doi: 10.1007/s10495-015-1122-4 PMID: 25824534
- Braz, J.C.; Gill, R.M.; Corbly, A.K.; Jones, B.D.; Jin, N.; Vlahos, C.J.; Wu, Q.; Shen, W. Selective activation of PI3Kα/Akt/GSK-3β signalling and cardiac compensatory hypertrophy during recovery from heart failure. Eur. J. Heart Fail., 2009, 11(8), 739-748. doi: 10.1093/eurjhf/hfp094 PMID: 19633101
- Zeng, R.; Xiong, Y.; Zhu, F.; Ma, Z.; Liao, W.; He, Y.; He, J.; Li, W.; Yang, J.; Lu, Q.; Xu, G.; Yao, Y. Fenofibrate attenuated glucose-induced mesangial cells proliferation and extracellular matrix synthesis via PI3K/AKT and ERK1/2. PLoS One, 2013, 8(10), e76836. doi: 10.1371/journal.pone.0076836 PMID: 24130796
- Wei, F.; Wang, Y.; Zhou, Y.; Li, Y. Long noncoding RNA CYTOR triggers gastric cancer progression by targeting miR-103/RAB10. Acta Biochim. Biophys. Sin., 2021, 53(8), 1044-1054. doi: 10.1093/abbs/gmab071 PMID: 34110382
- Zhang, J.; Li, W. Long noncoding RNA CYTOR sponges miR-195 to modulate proliferation, migration, invasion and radiosensitivity in nonsmall cell lung cancer cells. Biosci. Rep., 2018, 38(6), BSR20181599. doi: 10.1042/BSR20181599 PMID: 30487160
- Wang, X.; Yu, H.; Sun, W.; Kong, J.; Zhang, L.; Tang, J.; Wang, J.; Xu, E.; Lai, M.; Zhang, H. The long non-coding RNA CYTOR drives colorectal cancer progression by interacting with NCL and Sam68. Mol. Cancer, 2018, 17(1), 110. doi: 10.1186/s12943-018-0860-7 PMID: 30064438
- Yuan, Y.; Wang, J.; Chen, Q.; Wu, Q.; Deng, W.; Zhou, H.; Shen, D. Long non-coding RNA cytoskeleton regulator RNA (CYTOR) modulates pathological cardiac hypertrophy through miR-155-mediated IKKi signaling. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(6), 1421-1427. doi: 10.1016/j.bbadis.2019.02.014 PMID: 30794866
- Dai, J.; Shen, D.F.; Bian, Z.Y.; Zhou, H.; Gan, H.W.; Zong, J.; Deng, W.; Yuan, Y.; Li, F.; Wu, Q.Q.; Gao, L.; Zhang, R.; Ma, Z.G.; Li, H.L.; Tang, Q.Z. IKKi deficiency promotes pressure overload-induced cardiac hypertrophy and fibrosis. PLoS One, 2013, 8(1), e53412. doi: 10.1371/journal.pone.0053412 PMID: 23349709
- Seok, H.Y.; Chen, J.; Kataoka, M.; Huang, Z.P.; Ding, J.; Yan, J.; Hu, X.; Wang, D.Z. Loss of MicroRNA-155 protects the heart from pathological cardiac hypertrophy. Circ. Res., 2014, 114(10), 1585-1595. doi: 10.1161/CIRCRESAHA.114.303784 PMID: 24657879
- Wang, K.; Liu, F.; Zhou, L.Y.; Long, B.; Yuan, S.M.; Wang, Y.; Liu, C.Y.; Sun, T.; Zhang, X.J.; Li, P.F. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ. Res., 2014, 114(9), 1377-1388. doi: 10.1161/CIRCRESAHA.114.302476 PMID: 24557880
- Feng, Y.; Zou, L.; Si, R.; Nagasaka, Y.; Chao, W. Bone marrow MyD88 signaling modulates neutrophil function and ischemic myocardial injury. Am. J. Physiol. Cell Physiol., 2010, 299(4), C760-C769. doi: 10.1152/ajpcell.00155.2010 PMID: 20631245
- Ha, T.; Hua, F.; Li, Y.; Ma, J.; Gao, X.; Kelley, J.; Zhao, A.; Haddad, G.E.; Williams, D.L.; Browder, I.W.; Kao, R.L.; Li, C. Blockade of MyD88 attenuates cardiac hypertrophy and decreases cardiac myocyte apoptosis in pressure overload-induced cardiac hypertrophy in vivo. Am. J. Physiol. Heart Circ. Physiol., 2006, 290(3), H985-H994. doi: 10.1152/ajpheart.00720.2005 PMID: 16199478
- Wo, Y.; Guo, J.; Li, P.; Yang, H.; Wo, J. Long non-coding RNA CHRF facilitates cardiac hypertrophy through regulating Akt3 via miR-93. Cardiovasc. Pathol., 2018, 35, 29-36. doi: 10.1016/j.carpath.2018.04.003 PMID: 29747050
- van Rooij, E.; Sutherland, L.B.; Liu, N.; Williams, A.H.; McAnally, J.; Gerard, R.D.; Richardson, J.A.; Olson, E.N. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl. Acad. Sci. USA, 2006, 103(48), 18255-18260. doi: 10.1073/pnas.0608791103 PMID: 17108080
- Heineke, J.; Molkentin, J.D. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat. Rev. Mol. Cell Biol., 2006, 7(8), 589-600. doi: 10.1038/nrm1983 PMID: 16936699
- Dorn, G.W., II; Force, T. Protein kinase cascades in the regulation of cardiac hypertrophy. J. Clin. Invest., 2005, 115(3), 527-537. doi: 10.1172/JCI24178 PMID: 15765134
- Taniyama, Y.; Ito, M.; Sato, K.; Kuester, C.; Veit, K.; Tremp, G.; Liao, R.; Colucci, W.; Ivashchenko, Y.; Walsh, K.; Shiojima, I. Akt3 overexpression in the heart results in progression from adaptive to maladaptive hypertrophy. J. Mol. Cell. Cardiol., 2005, 38(2), 375-385. doi: 10.1016/j.yjmcc.2004.12.002 PMID: 15698844
- Liao, J.; He, Q.; Li, M.; Chen, Y.; Liu, Y.; Wang, J. LncRNA MIAT: Myocardial infarction associated and more. Gene, 2016, 578(2), 158-161. doi: 10.1016/j.gene.2015.12.032 PMID: 26707210
- Ishii, N.; Ozaki, K.; Sato, H.; Mizuno, H.; Susumu Saito; Takahashi, A.; Miyamoto, Y.; Ikegawa, S.; Kamatani, N.; Hori, M.; Satoshi, S; Nakamura, Y.; Tanaka, T. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J. Hum. Genet., 2006, 51(12), 1087-1099. doi: 10.1007/s10038-006-0070-9 PMID: 17066261
- Shen, Y.; Dong, L.F.; Zhou, R.M.; Yao, J.; Song, Y.C.; Yang, H.; Jiang, Q.; Yan, B. Role of long non-coding RNA MIAT in proliferation, apoptosis and migration of lens epithelial cells: A clinical and in vitro study. J. Cell. Mol. Med., 2016, 20(3), 537-548. doi: 10.1111/jcmm.12755 PMID: 26818536
- Yan, B.; Yao, J.; Liu, J.Y.; Li, X.M.; Wang, X.Q.; Li, Y.J.; Tao, Z.F.; Song, Y.C.; Chen, Q.; Jiang, Q. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ. Res., 2015, 116(7), 1143-1156. doi: 10.1161/CIRCRESAHA.116.305510 PMID: 25587098
- Liu, W.; Liu, Y.; Zhang, Y.; Zhu, X.; Zhang, R.; Guan, L.; Tang, Q.; Jiang, H.; Huang, C.; Huang, H. MicroRNA-150 protects against pressure overload-induced cardiac hypertrophy. J. Cell. Biochem., 2015, 116(10), 2166-2176. doi: 10.1002/jcb.25057 PMID: 25639779
- Li, Z.; Liu, Y.; Guo, X.; Sun, G.; Ma, Q.; Dai, Y.; Zhu, G.; Sun, Y. Long noncoding RNA myocardial infarction-associated transcript is associated with the microRNA-150-5p/P300 pathway in cardiac hypertrophy. Int. J. Mol. Med., 2018, 42(3), 1265-1272. doi: 10.3892/ijmm.2018.3700 PMID: 29786749
- Duan, Y.; Zhou, B.; Su, H.; Liu, Y.; Du, C. miR-150 regulates high glucose-induced cardiomyocyte hypertrophy by targeting the transcriptional co-activator p300. Exp. Cell Res., 2013, 319(3), 173-184. doi: 10.1016/j.yexcr.2012.11.015 PMID: 23211718
- Li, Y.; Wang, J.; Sun, L.; Zhu, S. LncRNA myocardial infarction-associated transcript (MIAT) contributed to cardiac hypertrophy by regulating TLR4 via miR-93. Eur. J. Pharmacol., 2018, 818, 508-517. doi: 10.1016/j.ejphar.2017.11.031 PMID: 29157986
- Baumgarten, G.; Knuefermann, P.; Nozaki, N.; Sivasubramanian, N.; Mann, D.L.; Vallejo, J.G. In vivo expression of proinflammatory mediators in the adult heart after endotoxin administration: The role of toll-like receptor-4. J. Infect. Dis., 2001, 183(11), 1617-1624. doi: 10.1086/320712 PMID: 11343210
- Dange, R.B.; Agarwal, D.; Masson, G.S.; Vila, J.; Wilson, B.; Nair, A.; Francis, J. Central blockade of TLR4 improves cardiac function and attenuates myocardial inflammation in angiotensin II-induced hypertension. Cardiovasc. Res., 2014, 103(1), 17-27. doi: 10.1093/cvr/cvu067 PMID: 24667851
- Ji, Y.; Liu, J.; Wang, Z.; Liu, N. Angiotensin II induces inflammatory response partly via toll-like receptor 4-dependent signaling pathway in vascular smooth muscle cells. Cell. Physiol. Biochem., 2009, 23(4-6), 265-276. doi: 10.1159/000218173 PMID: 19471094
- Ha, T.; Li, Y.; Hua, F.; Ma, J.; Gao, X.; Kelley, J.; Zhao, A.; Haddad, G.; Williams, D.; Williambrowder, I.; Kao, R.L.; Li, C. Reduced cardiac hypertrophy in toll-like receptor 4-deficient mice following pressure overload. Cardiovasc. Res., 2005, 68(2), 224-234. doi: 10.1016/j.cardiores.2005.05.025 PMID: 15967420
- Loewer, S.; Cabili, M.N.; Guttman, M.; Loh, Y.H.; Thomas, K.; Park, I.H.; Garber, M.; Curran, M.; Onder, T.; Agarwal, S.; Manos, P.D.; Datta, S.; Lander, E.S.; Schlaeger, T.M.; Daley, G.Q.; Rinn, J.L. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat. Genet., 2010, 42(12), 1113-1117. doi: 10.1038/ng.710 PMID: 21057500
- Lu, R.; Chen, J.; Kong, L.; Zhu, H. Prognostic value of lncRNA ROR expression in various cancers: A meta-analysis. Biosci. Rep., 2018, 38(5), BSR20181095. doi: 10.1042/BSR20181095 PMID: 30076198
- Jiang, F.; Zhou, X.; Huang, J. Long non-coding RNA-ROR mediates the reprogramming in cardiac hypertrophy. PLoS One, 2016, 11(4), e0152767. doi: 10.1371/journal.pone.0152767 PMID: 27082978
- Carè, A.; Catalucci, D.; Felicetti, F.; Bonci, D.; Addario, A.; Gallo, P.; Bang, M.L.; Segnalini, P.; Gu, Y.; Dalton, N.D.; Elia, L.; Latronico, M.V.G.; Høydal, M.; Autore, C.; Russo, M.A.; Dorn, G.W., II; Ellingsen, Ø.; Ruiz-Lozano, P.; Peterson, K.L.; Croce, C.M.; Peschle, C.; Condorelli, G. MicroRNA-133 controls cardiac hypertrophy. Nat. Med., 2007, 13(5), 613-618. doi: 10.1038/nm1582 PMID: 17468766
- Xu, L.; Wang, H.; Jiang, F.; Sun, H.; Zhang, D. LncRNA AK045171 protects the heart from cardiac hypertrophy by regulating the SP1/MG53 signalling pathway. Aging, 2020, 12(4), 3126-3139. doi: 10.18632/aging.102668 PMID: 32087602
- Azakie, A.; Fineman, J.R.; He, Y. Sp3 inhibits Sp1-mediated activation of the cardiac troponin T promoter and is downregulated during pathological cardiac hypertrophy in vivo. Am. J. Physiol. Heart Circ. Physiol., 2006, 291(2), H600-H611. doi: 10.1152/ajpheart.01305.2005 PMID: 16617124
- Liu, W.; Wang, G.; Zhang, C.; Ding, W.; Cheng, W.; Luo, Y.; Wei, C.; Liu, J. MG53, a novel regulator of KChIP2 and Ito,f, plays a critical role in electrophysiological remodeling in cardiac hypertrophy. Circulation, 2019, 139(18), 2142-2156. doi: 10.1161/CIRCULATIONAHA.118.029413 PMID: 30760025
- Dhingra, R.; Vasan, R.S. Biomarkers in cardiovascular disease: Statistical assessment and section on key novel heart failure biomarkers. Trends Cardiovasc. Med., 2017, 27(2), 123-133. doi: 10.1016/j.tcm.2016.07.005 PMID: 27576060
- Villacorta, H.; Maisel, A.S. Soluble ST2 testing: A promising biomarker in the management of heart failure. Arq. Bras. Cardiol., 2016, 106(2), 145-152. PMID: 26761075
- Paul, T.K.; Mukherjee, D. Silent myocardial infarction and risk of heart failure. Ann. Transl. Med., 2018, 6(S1), S35. doi: 10.21037/atm.2018.09.45 PMID: 30613610
- Luo, F.; Wang, T.; Zeng, L.; Zhu, S.; Cao, W.; Wu, W.; Wu, H.; Zou, T. Diagnostic potential of circulating LncRNAs in human cardiovascular disease: A meta-analysis. Biosci. Rep., 2018, 38(6), BSR20181610. doi: 10.1042/BSR20181610 PMID: 30361292
- Terracciano, D.; Ferro, M.; Terreri, S.; Lucarelli, G.; DElia, C.; Musi, G.; de Cobelli, O.; Mirone, V.; Cimmino, A. Urinary long noncoding RNAs in nonmuscle-invasive bladder cancer: New architects in cancer prognostic biomarkers. Transl. Res., 2017, 184, 108-117. doi: 10.1016/j.trsl.2017.03.005 PMID: 28438520
- Martignano, F.; Rossi, L.; Maugeri, A.; Gallà, V.; Conteduca, V.; De Giorgi, U.; Casadio, V.; Schepisi, G. Urinary RNA-based biomarkers for prostate cancer detection. Clin. Chim. Acta, 2017, 473, 96-105. doi: 10.1016/j.cca.2017.08.009 PMID: 28807541
- Zhou, X.; Yin, C.; Dang, Y.; Ye, F.; Zhang, G. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci. Rep., 2015, 5(1), 11516. doi: 10.1038/srep11516 PMID: 26096073
- Viereck, J.; Thum, T. Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ. Res., 2017, 120(2), 381-399. doi: 10.1161/CIRCRESAHA.116.308434 PMID: 28104771
- Li, Q.; Shao, Y.; Zhang, X.; Zheng, T.; Miao, M.; Qin, L.; Wang, B.; Ye, G.; Xiao, B.; Guo, J. Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumour Biol., 2015, 36(3), 2007-2012. doi: 10.1007/s13277-014-2807-y PMID: 25391424
- Fritz, J.V.; Heintz-Buschart, A.; Ghosal, A.; Wampach, L.; Etheridge, A.; Galas, D.; Wilmes, P. Sources and functions of extracellular small RNAs in human circulation. Annu. Rev. Nutr., 2016, 36(1), 301-336. doi: 10.1146/annurev-nutr-071715-050711 PMID: 27215587
- Xuan, L.; Sun, L.; Zhang, Y.; Huang, Y.; Hou, Y.; Li, Q.; Guo, Y.; Feng, B.; Cui, L.; Wang, X.; Wang, Z.; Tian, Y.; Yu, B.; Wang, S.; Xu, C.; Zhang, M.; Du, Z.; Lu, Y.; Yang, B.F. Circulating long non-coding RNAs NRON and MHRT as novel predictive biomarkers of heart failure. J. Cell. Mol. Med., 2017, 21(9), 1803-1814. doi: 10.1111/jcmm.13101 PMID: 28296001
- Abu el Maaty, M.A.; Hanafi, R.S.; El-Badawy, S.; Gad, M.Z. Interplay of vitamin D and nitric oxide in post-menopausal knee osteoarthritis. Aging Clin. Exp. Res., 2014, 26(4), 363-368. doi: 10.1007/s40520-013-0192-9 PMID: 24374888
- Zhang, L.; Wu, Y-J.; Zhang, S-L. Circulating lncRNA MHRT predicts survival of patients with chronic heart failure. J. Geriatr. Cardiol., 2019, 16(11), 818-821. PMID: 31853247
- Bossuyt, P.M.; Reitsma, J.B.; Bruns, D.E.; Gatsonis, C.A.; Glasziou, P.P.; Irwig, L.M.; Moher, D.; Rennie, D.; de Vet, H.C.; Lijmer, J.G. The STARD statement for reporting studies of diagnostic accuracy: Explanation and elaboration. Ann. Intern. Med., 2003, 138(1), W1-12. doi: 10.7326/0003-4819-138-1-200301070-00010 PMID: 12513067
- Adams, B.D.; Parsons, C.; Walker, L.; Zhang, W.C.; Slack, F.J. Targeting noncoding RNAs in disease. J. Clin. Invest., 2017, 127(3), 761-771. doi: 10.1172/JCI84424 PMID: 28248199
- Collins, L.; Binder, P.; Chen, H.; Wang, X. Regulation of long non-coding RNAs and microRNAs in heart disease: Insight into mechanisms and therapeutic approaches. Front. Physiol., 2020, 11, 798. doi: 10.3389/fphys.2020.00798 PMID: 32754048
- Rincon, M.Y.; VandenDriessche, T.; Chuah, M.K. Gene therapy for cardiovascular disease: Advances in vector development, targeting, and delivery for clinical translation. Cardiovasc. Res., 2015, 108(1), 4-20. doi: 10.1093/cvr/cvv205 PMID: 26239654
- Wang, K.; Sun, T.; Li, N.; Wang, Y.; Wang, J.X.; Zhou, L.Y.; Long, B.; Liu, C.Y.; Liu, F.; Li, P.F. MDRL lncRNA regulates the processing of miR-484 primary transcript by targeting miR-361. PLoS Genet., 2014, 10(7), e1004467. doi: 10.1371/journal.pgen.1004467 PMID: 25057983
- Aparicio-Prat, E.; Arnan, C.; Sala, I.; Bosch, N.; Guigó, R.; Johnson, R. DECKO: Single-oligo, dual-CRISPR deletion of genomic elements including long non-coding RNAs. BMC Genomics, 2015, 16(1), 846. doi: 10.1186/s12864-015-2086-z PMID: 26493208
- Liu, S.J.; Horlbeck, M.A.; Cho, S.W.; Birk, H.S.; Malatesta, M.; He, D.; Attenello, F.J.; Villalta, J.E.; Cho, M.Y.; Chen, Y.; Mandegar, M.A.; Olvera, M.P.; Gilbert, L.A.; Conklin, B.R.; Chang, H.Y.; Weissman, J.S.; Lim, D.A. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science, 2017, 355(6320), eaah7111. doi: 10.1126/science.aah7111 PMID: 27980086
- Fazil, M.H.U.T.; Ong, S.T.; Chalasani, M.L.S.; Low, J.H.; Kizhakeyil, A.; Mamidi, A.; Lim, C.F.H.; Wright, G.D.; Lakshminarayanan, R.; Kelleher, D.; Verma, N.K. GapmeR cellular internalization by macropinocytosis induces sequence-specific gene silencing in human primary T-cells. Sci. Rep., 2016, 6(1), 37721. doi: 10.1038/srep37721 PMID: 27883055
- Swayze, E.E.; Siwkowski, A.M.; Wancewicz, E.V.; Migawa, M.T.; Wyrzykiewicz, T.K.; Hung, G.; Monia, B.P.; Bennett, C.F. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res., 2007, 35(2), 687-700. doi: 10.1093/nar/gkl1071 PMID: 17182632
- Micheletti, R.; Plaisance, I.; Abraham, B.J.; Sarre, A.; Ting, C.C.; Alexanian, M.; Maric, D.; Maison, D.; Nemir, M.; Young, R.A.; Schroen, B.; González, A.; Ounzain, S.; Pedrazzini, T. The long noncoding RNA Wisper controls cardiac fibrosis and remodeling. Sci. Transl. Med., 2017, 9(395), eaai9118. doi: 10.1126/scitranslmed.aai9118 PMID: 28637928
- Piccoli, M.T.; Gupta, S.K.; Viereck, J.; Foinquinos, A.; Samolovac, S.; Kramer, F.L.; Garg, A.; Remke, J.; Zimmer, K.; Batkai, S.; Thum, T. Inhibition of the cardiac fibroblastenriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ. Res., 2017, 121(5), 575-583. doi: 10.1161/CIRCRESAHA.117.310624 PMID: 28630135
- Viereck, J.; Kumarswamy, R.; Foinquinos, A.; Xiao, K.; Avramopoulos, P.; Kunz, M.; Dittrich, M.; Maetzig, T.; Zimmer, K.; Remke, J.; Just, A.; Fendrich, J.; Scherf, K.; Bolesani, E.; Schambach, A.; Weidemann, F.; Zweigerdt, R.; de Windt, L.J.; Engelhardt, S.; Dandekar, T.; Batkai, S.; Thum, T. Long noncoding RNA Chast promotes cardiac remodeling. Sci. Transl. Med., 2016, 8(326), 326ra22. doi: 10.1126/scitranslmed.aaf1475 PMID: 26888430
- Burdick, A.D.; Sciabola, S.; Mantena, S.R.; Hollingshead, B.D.; Stanton, R.; Warneke, J.A.; Zeng, M.; Martsen, E.; Medvedev, A.; Makarov, S.S.; Reed, L.A.; Davis, J.W., II; Whiteley, L.O. Sequence motifs associated with hepatotoxicity of locked nucleic acidmodified antisense oligonucleotides. Nucleic Acids Res., 2014, 42(8), 4882-4891. doi: 10.1093/nar/gku142 PMID: 24550163
- Ounzain, S.; Micheletti, R.; Arnan, C.; Plaisance, I.; Cecchi, D.; Schroen, B.; Reverter, F.; Alexanian, M.; Gonzales, C.; Ng, S.Y.; Bussotti, G.; Pezzuto, I.; Notredame, C.; Heymans, S.; Guigó, R.; Johnson, R.; Pedrazzini, T. CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis. J. Mol. Cell. Cardiol., 2015, 89(Pt A), 98-112. doi: 10.1016/j.yjmcc.2015.09.016
- Poller, W.; Dimmeler, S.; Heymans, S.; Zeller, T.; Haas, J.; Karakas, M.; Leistner, D.M.; Jakob, P.; Nakagawa, S.; Blankenberg, S.; Engelhardt, S.; Thum, T.; Weber, C.; Meder, B.; Hajjar, R.; Landmesser, U. Non-coding RNAs in cardiovascular diseases: Diagnostic and therapeutic perspectives. Eur. Heart J., 2018, 39(29), 2704-2716. doi: 10.1093/eurheartj/ehx165 PMID: 28430919
- Kemp, C.D.; Conte, J.V. The pathophysiology of heart failure. Cardiovasc. Pathol., 2012, 21(5), 365-371. doi: 10.1016/j.carpath.2011.11.007 PMID: 22227365
- Frey, N.; Olson, E.N. Cardiac hypertrophy: The good, the bad, and the ugly. Annu. Rev. Physiol., 2003, 65(1), 45-79. doi: 10.1146/annurev.physiol.65.092101.142243 PMID: 12524460
- Vaduganathan, M.; Greene, S.J.; Butler, J.; Sabbah, H.N.; Shantsila, E.; Lip, G.Y.H.; Gheorghiade, M. The immunological axis in heart failure: Importance of the leukocyte differential. Heart Fail. Rev., 2013, 18(6), 835-845. doi: 10.1007/s10741-012-9352-9 PMID: 23054221
- Kumar, A.; Supowit, S.; Potts, J.D.; DiPette, D.J. Alpha-calcitonin gene-related peptide prevents pressure-overload induced heart failure: Role of apoptosis and oxidative stress. Physiol. Rep., 2019, 7(21), e14269. doi: 10.14814/phy2.14269 PMID: 31724338
- van der Pol, A.; van Gilst, W.H.; Voors, A.A.; van der Meer, P. Treating oxidative stress in heart failure: Past, present and future. Eur. J. Heart Fail., 2019, 21(4), 425-435. doi: 10.1002/ejhf.1320 PMID: 30338885
- Sui, Y.B.; Wang, Y.; Liu, L.; Liu, F.; Zhang, Y.Q. Astragaloside IV alleviates heart failure by promoting angiogenesis through the JAK-STAT3 pathway. Pharm. Biol., 2019, 57(1), 48-54. doi: 10.1080/13880209.2019.1569697 PMID: 30905241
- Ghosh, R.; Pattison, J.S. Macroautophagy and chaperone-mediated autophagy in heart failure: The known and the unknown. Oxid Med Cell Longev, 2018, 2018, 8602041. doi: 10.1155/2018/8602041
- Rosik, J.; Szostak, B.; Machaj, F.; Pawlik, A. Potential targets of gene therapy in the treatment of heart failure. Expert Opin. Ther. Targets, 2018, 22(9), 811-816. doi: 10.1080/14728222.2018.1514012 PMID: 30124081
- Creemers, E.E.; Wilde, A.A.; Pinto, Y.M. Heart failure: advances through genomics. Nat. Rev. Genet., 2011, 12(5), 357-362. doi: 10.1038/nrg2983 PMID: 21423240
- Yu, X.; Zou, T.; Zou, L.; Jin, J.; Xiao, F.; Yang, J. Plasma long noncoding RNA urothelial carcinoma associated 1 predicts poor prognosis in chronic heart failure patients. Med. Sci. Monit., 2017, 23, 2226-2231. doi: 10.12659/MSM.904113 PMID: 28490726
- Zhuang, A.; Calkin, A.C.; Lau, S.; Kiriazis, H.; Donner, D.G.; Liu, Y.; Bond, S.T.; Moody, S.C.; Gould, E.A.M.; Colgan, T.D.; Carmona, S.R.; Inouye, M.; de Aguiar Vallim, T.Q.; Tarling, E.J.; Quaife-Ryan, G.A.; Hudson, J.E.; Porrello, E.R.; Gregorevic, P.; Gao, X.M.; Du, X.J.; McMullen, J.R.; Drew, B.G. Loss of the long non-coding RNA OIP5-AS1 exacerbates heart failure in a sex-specific manner. iScience, 2021, 24(6), 102537. doi: 10.1016/j.isci.2021.102537 PMID: 34142046
Қосымша файлдар
