Development in the Inhibition of Dengue Proteases as Drug Targets


如何引用文章

全文:

详细

Background:Viral infections continue to increase morbidity and mortality severely. The flavivirus genus has fifty different species, including the dengue, Zika, and West Nile viruses that can infect 40% of individuals globally, who reside in at least a hundred different countries. Dengue, one of the oldest and most dangerous human infections, was initially documented by the Chinese Medical Encyclopedia in the Jin period. It was referred to as \"water poison,\" connected to flying insects, i.e., Aedes aegypti and Ae-des albopictus. DENV causes some medical expressions like dengue hemorrhagic fever, acute febrile illness, and dengue shock syndrome.

Objective:According to the World Health Organization report of 2012, 2500 million people are in danger of contracting dengue fever worldwide. According to a recent study, 96 million of the 390 million dengue infections yearly show some clinical or subclinical se-verity. There is no antiviral drug or vaccine to treat this severe infection. It can be con-trolled by getting enough rest, drinking plenty of water, and using painkillers. The first dengue vaccine created by Sanofi, called Dengvaxia, was previously approved by the US-FDA in 2019. All four serotypes of the DENV1-4 have shown re-infection in vaccine recipients. However, the usage of Dengvaxia has been constrained by its adverse effects.

Conclusion:Different classes of compounds have been reported against DENV, such as nitrogen-containing heterocycles (i.e., imidazole, pyridine, triazoles quinazolines, quinoline, and indole), oxygen-containing heterocycles (i.e., coumarins), and some are mixed heterocyclic compounds of S, N (thiazole, benzothiazine, and thiazolidinediones), and N, O (i.e., oxadiazole). There have been reports of computationally designed compounds to impede the molecular functions of specific structural and non-structural proteins as potential therapeutic targets. This review summarized the current progress in developing dengue protease inhibitors.

作者简介

Muhammad Akram

Department of Chemistry, Quaid-i-Azam University

Email: info@benthamscience.net

Shehryar Hameed

H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi,

Email: info@benthamscience.net

Abbas Hassan

Department of Chemistry, Quaid-i-Azam University

Email: info@benthamscience.net

Khalid Khan

H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences,, University of Karachi,

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Lancet, T. Neglected tropical diseases: becoming less neglected. Lancet, 2014, 383(9925), 1269. doi: 10.1016/S0140-6736(14)60629-2 PMID: 24725560
  2. LaBeaud, A.D. Why arboviruses can be neglected tropical diseases. PLoS Negl. Trop. Dis., 2008, 2(6), e247. doi: 10.1371/journal.pntd.0000247 PMID: 18575597
  3. Gubler, D.J. The global emergence/resurgence of arboviral diseases as public health problems. Arch. Med. Res., 2002, 33(4), 330-342. doi: 10.1016/S0188-4409(02)00378-8 PMID: 12234522
  4. Burrows, J.N.; Elliott, R.L.; Kaneko, T.; Mowbray, C.E.; Waterson, D. The role of modern drug discovery in the fight against neglected and tropical diseases. MedChemComm, 2014, 5(6), 688-700. doi: 10.1039/c4md00011k
  5. Lai, P.C.; Lee, S.S.; Kao, C.H.; Chen, Y.S.; Huang, C-K.; Lin, W-R.; Wann, S-R.; Lin, H.H.; Yen, M.Y.; Liu, Y.C. Characteristics of a dengue hemorrhagic fever outbreak in 2001 in Kaohsiung. J. Microbiol. Immunol. Infect., 2004, 37(5), 266-270. PMID: 15497006
  6. Waterman, S.H.; Gubler, D.J. Dengue fever. Clin. Dermatol., 1989, 7(1), 117-122. doi: 10.1016/0738-081X(89)90034-5 PMID: 2647259
  7. Gibbons, R.V.; Vaughn, D.W. Dengue: An escalating problem. BMJ, 2002, 324(7353), 1563-1566. doi: 10.1136/bmj.324.7353.1563 PMID: 12089096
  8. Guzman, M.G.; Halstead, S.B.; Artsob, H.; Buchy, P.; Farrar, J.; Gubler, D.J.; Hunsperger, E.; Kroeger, A.; Margolis, H.S.; Martínez, E.; Nathan, M.B.; Pelegrino, J.L.; Simmons, C.; Yoksan, S.; Peeling, R.W. Dengue: A continuing global threat. Nat. Rev. Microbiol., 2010, 8(S12)(Suppl.), S7-S16. doi: 10.1038/nrmicro2460 PMID: 21079655
  9. Pujar, G.V.; Sethu, A.K.; Bhagyalalitha, M.; Singh, M. Dengue structural proteins as antiviral drug targets: Current status in the drug discovery & development. Eur. J. Med. Chem., 2021, 221, 113527. doi: 10.1016/j.ejmech.2021.113527 PMID: 34020338
  10. Rodenhuis-Zybert, I.A.; Wilschut, J.; Smit, J.M. Dengue virus life cycle: Viral and host factors modulating infectivity. Cell. Mol. Life Sci., 2010, 67(16), 2773-2786. doi: 10.1007/s00018-010-0357-z PMID: 20372965
  11. Noble, C.G.; Shi, P.Y. Structural biology of dengue virus enzymes: Towards rational design of therapeutics. Antiviral Res., 2012, 96(2), 115-126. doi: 10.1016/j.antiviral.2012.09.007 PMID: 22995600
  12. Santiago, G.A.; Vergne, E.; Quiles, Y.; Cosme, J.; Vazquez, J.; Medina, J.F.; Medina, F.; Colón, C.; Margolis, H.; Muñoz-Jordán, J.L. Analytical and clinical performance of the CDC real time RT-PCR assay for detection and typing of dengue virus. PLoS Negl. Trop. Dis., 2013, 7(7), e2311. doi: 10.1371/journal.pntd.0002311 PMID: 23875046
  13. Beatty, M.E.; Margolis, H.S.; Coudeville, L.; Hutubessy, R.; Hombach, J.; Dessis, D.; Dervaux, B.; Wichmann, O.; Meltzer, M.I.; Kuritsky, J.N.; Shepard, D.S.; Beutels, P. Health economics of dengue: A systematic literature review and expert panel’s assessment. Am. J. Trop. Med. Hyg., 2011, 84(3), 473-488. doi: 10.4269/ajtmh.2011.10-0521 PMID: 21363989
  14. Alvarez, M.; Morier, L.; Bernardo, L.; Halstead, S.B.; Guzman, M.G.; Castro, O.; Vázquez, S.; Gonzalez, D.; Rodriguez-Roche, R.; Kouri, G. Dengue hemorrhagic fever caused by sequential dengue 1-3 virus infections over a long time interval: Havana epidemic, 2001-2002. Am. J. Trop. Med. Hyg., 2006, 75(6), 1113-1117. doi: 10.4269/ajtmh.2006.75.1113 PMID: 17172378
  15. Halstead, S.B. Neutralization and antibody-dependent enhancement of dengue viruses. Adv. Virus Res., 2003, 60, 421-467. doi: 10.1016/S0065-3527(03)60011-4 PMID: 14689700
  16. Kamasa-Quashie, D. Relationship between single nucleotide polymorphisms and severe dengue in a Brazilian population; University of Pittsburgh, 2020.
  17. Simmons, C.P.; McPherson, K.; Van Vinh Chau, N.; Hoai Tam, D.T.; Young, P.; Mackenzie, J.; Wills, B. Recent advances in dengue pathogenesis and clinical management. Vaccine, 2015, 33(50), 7061-7068. doi: 10.1016/j.vaccine.2015.09.103
  18. Organization, W.H. Dengue vaccine: WHO position paper – July 2016. Wkly. Epidemiol. Rec., 2016, 91(30), 349-364. PMID: 27476189
  19. Otto, H.H.; Schirmeister, T. Cysteine proteases and their inhibitors. Chem. Rev., 1997, 97(1), 133-172. doi: 10.1021/cr950025u PMID: 11848867
  20. Vasiljeva, O.; Reinheckel, T.; Peters, C.; Turk, D.; Turk, V.; Turk, B. Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr. Pharm. Des., 2007, 13(4), 387-403. doi: 10.2174/138161207780162962 PMID: 17311556
  21. Walsh, G. Proteins: Biochemistry and Biotechnology; John Wiley & Sons, 2015.
  22. McGrath, M.E. The lysosomal cysteine proteases. Annu. Rev. Biophys. Biomol. Struct., 1999, 28(1), 181-204. doi: 10.1146/annurev.biophys.28.1.181 PMID: 10410800
  23. Petrov, V.; Fagard, R.; Lijnen, P. Effect of protease inhibitors on angiotensin-converting enzyme activity in human T-lymphocytes. Am. J. Hypertens., 2000, 13(5), 535-539. doi: 10.1016/S0895-7061(99)00236-8 PMID: 10826406
  24. Hirai, T.; Kanda, T.; Sato, K.; Takaishi, M.; Nakajima, K.; Yamamoto, M.; Kamijima, R.; DiGiovanni, J.; Sano, S. Cathepsin K is involved in development of psoriasis-like skin lesions through TLR-dependent Th17 activation. J. Immunol., 2013, 190(9), 4805-4811. doi: 10.4049/jimmunol.1200901 PMID: 23543761
  25. Sajid, M.; McKerrow, J.H. Cysteine proteases of parasitic organisms. Mol. Biochem. Parasitol., 2002, 120(1), 1-21. doi: 10.1016/S0166-6851(01)00438-8 PMID: 11849701
  26. Chambers, T.J.; Hahn, C.S.; Galler, R.; Rice, C.M. Flavivirus genome organization, expression, and replication. Annu. Rev. Microbiol., 1990, 44(1), 649-688. doi: 10.1146/annurev.mi.44.100190.003245 PMID: 2174669
  27. Clyde, K.; Kyle, J.L.; Harris, E. Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J. Virol., 2006, 80(23), 11418-11431. doi: 10.1128/JVI.01257-06 PMID: 16928749
  28. Stadler, K.; Allison, S.L.; Schalich, J.; Heinz, F.X. Proteolytic activation of tick-borne encephalitis virus by furin. J. Virol., 1997, 71(11), 8475-8481. doi: 10.1128/jvi.71.11.8475-8481.1997 PMID: 9343204
  29. Fahimi, H.; Mohammadipour, M.; Haddad Kashani, H.; Parvini, F.; Sadeghizadeh, M. Dengue viruses and promising envelope protein domain III-based vaccines. Appl. Microbiol. Biotechnol., 2018, 102(7), 2977-2996. doi: 10.1007/s00253-018-8822-y PMID: 29470620
  30. Modis, Y.; Ogata, S.; Clements, D.; Harrison, S.C. Structure of the dengue virus envelope protein after membrane fusion. Nature, 2004, 427(6972), 313-319. doi: 10.1038/nature02165 PMID: 14737159
  31. Byk, L.A.; Gamarnik, A.V. Properties and functions of the dengue virus capsid protein. Annu. Rev. Virol., 2016, 3(1), 263-281. doi: 10.1146/annurev-virology-110615-042334 PMID: 27501261
  32. Smith, J.L.; Sheridan, K.; Parkins, C.J.; Frueh, L.; Jemison, A.L.; Strode, K.; Dow, G.; Nilsen, A.; Hirsch, A.J. Characterization and structure-activity relationship analysis of a class of antiviral compounds that directly bind dengue virus capsid protein and are incorporated into virions. Antiviral Res., 2018, 155, 12-19. doi: 10.1016/j.antiviral.2018.04.019 PMID: 29709563
  33. Yeo, A.S.L.; Rathakrishnan, A.; Wang, S.M.; Ponnampalavanar, S.; Manikam, R.; Sathar, J.; Kumari Natkunam, S.; Sekaran, S.D. Dengue patients exhibit higher levels of PrM and E antibodies than their asymptomatic counterparts. BioMed Res. Int., 2015, 2015, 1-10.
  34. Hsieh, S.C.; Wu, Y.C.; Zou, G.; Nerurkar, V.R.; Shi, P.Y.; Wang, W.K. Highly conserved residues in the helical domain of dengue virus type 1 precursor membrane protein are involved in assembly, precursor membrane (prM) protein cleavage, and entry. J. Biol. Chem., 2014, 289(48), 33149-33160. doi: 10.1074/jbc.M114.610428 PMID: 25326389
  35. Navarro-Sanchez, E.; Altmeyer, R.; Amara, A.; Schwartz, O.; Fieschi, F.; Virelizier, J.L.; Arenzana-Seisdedos, F.; Desprès, P. Dendritic-cell-specific ICAM3-grabbing nonintegrin is essential for the productive infection of human dendritic cells by mosquito‐cell-derived dengue viruses. EMBO Rep., 2003, 4(7), 723-728. doi: 10.1038/sj.embor.embor866 PMID: 12783086
  36. Noble, C.G.; Chen, Y.L.; Dong, H.; Gu, F.; Lim, S.P.; Schul, W.; Wang, Q.Y.; Shi, P.Y. Strategies for development of dengue virus inhibitors. Antiviral Res., 2010, 85(3), 450-462. doi: 10.1016/j.antiviral.2009.12.011 PMID: 20060421
  37. Mukhopadhyay, S.; Kuhn, R.J.; Rossmann, M.G. A structural perspective of the flavivirus life cycle. Nat. Rev. Microbiol., 2005, 3(1), 13-22. doi: 10.1038/nrmicro1067 PMID: 15608696
  38. Wang, Q.Y.; Patel, S.J.; Vangrevelinghe, E.; Xu, H.Y.; Rao, R.; Jaber, D.; Schul, W.; Gu, F.; Heudi, O.; Ma, N.L.; Poh, M.K.; Phong, W.Y.; Keller, T.H.; Jacoby, E.; Vasudevan, S.G. A small-molecule dengue virus entry inhibitor. Antimicrob. Agents Chemother., 2009, 53(5), 1823-1831. doi: 10.1128/AAC.01148-08 PMID: 19223625
  39. Poh, M.K.; Yip, A.; Zhang, S.; Priestle, J.P.; Ma, N.L.; Smit, J.M.; Wilschut, J.; Shi, P.Y.; Wenk, M.R.; Schul, W. A small molecule fusion inhibitor of dengue virus. Antiviral Res., 2009, 84(3), 260-266. doi: 10.1016/j.antiviral.2009.09.011 PMID: 19800368
  40. Zhou, Z.; Khaliq, M.; Suk, J.E.; Patkar, C.; Li, L.; Kuhn, R.J.; Post, C.B. Antiviral compounds discovered by virtual screening of small-molecule libraries against dengue virus E protein. ACS Chem. Biol., 2008, 3(12), 765-775. doi: 10.1021/cb800176t PMID: 19053243
  41. Kampmann, T.; Yennamalli, R.; Campbell, P.; Stoermer, M.J.; Fairlie, D.P.; Kobe, B.; Young, P.R. In silico screening of small molecule libraries using the dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses. Antiviral Res., 2009, 84(3), 234-241. doi: 10.1016/j.antiviral.2009.09.007 PMID: 19781577
  42. Schmidt, A.G.; Lee, K.; Yang, P.L.; Harrison, S.C. Correction: Small-molecule inhibitors of dengue-virus entry. PLoS Pathog., 2019, 15(1), e1007553. doi: 10.1371/journal.ppat.1007553 PMID: 30703168
  43. Costin, J.M.; Jenwitheesuk, E.; Lok, S.M.; Hunsperger, E.; Conrads, K.A.; Fontaine, K.A.; Rees, C.R.; Rossmann, M.G.; Isern, S.; Samudrala, R.; Michael, S.F. Structural optimization and de novo design of dengue virus entry inhibitory peptides. PLoS Negl. Trop. Dis., 2010, 4(6), e721. doi: 10.1371/journal.pntd.0000721 PMID: 20582308
  44. Hrobowski, Y.M.; Garry, R.F.; Michael, S.F. The involvement of survival signaling pathways in rubella-virus induced apoptosis. Virol. J., 2005, 2(1), 1-10. doi: 10.1186/1743-422X-2-1
  45. Modis, Y.; Ogata, S.; Clements, D.; Harrison, S.C. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl. Acad. Sci. USA, 2003, 100(12), 6986-6991. doi: 10.1073/pnas.0832193100 PMID: 12759475
  46. Lim, S.P.; Wang, Q.Y.; Noble, C.G.; Chen, Y.L.; Dong, H.; Zou, B.; Yokokawa, F.; Nilar, S.; Smith, P.; Beer, D.; Lescar, J.; Shi, P.Y. Ten years of dengue drug discovery: Progress and prospects. Antiviral Res., 2013, 100(2), 500-519. doi: 10.1016/j.antiviral.2013.09.013 PMID: 24076358
  47. Alhoot, M.A.; Rathinam, A.K.; Wang, S.M.; Manikam, R.; Sekaran, S.D. Inhibition of dengue virus entry into target cells using synthetic antiviral peptides. Int. J. Med. Sci., 2013, 10(6), 719-729. doi: 10.7150/ijms.5037 PMID: 23630436
  48. Jadav, S.S.; Kaptein, S.; Timiri, A.; De Burghgraeve, T.; Badavath, V.N.; Ganesan, R.; Sinha, B.N.; Neyts, J.; Leyssen, P.; Jayaprakash, V. Design, synthesis, optimization and antiviral activity of a class of hybrid dengue virus E protein inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(8), 1747-1752. doi: 10.1016/j.bmcl.2015.02.059 PMID: 25791449
  49. Lin, C.; Yu, J.; Hussain, M.; Zhou, Y.; Duan, A.; Pan, W.; Yuan, J.; Zhang, J. Design, synthesis, and biological evaluation of novel 7-deazapurine nucleoside derivatives as potential anti-dengue virus agents. Antiviral Res., 2018, 149, 95-105. doi: 10.1016/j.antiviral.2017.11.005 PMID: 29129706
  50. Samsa, M.M.; Mondotte, J.A.; Iglesias, N.G.; Assunção-Miranda, I.; Barbosa-Lima, G.; Da Poian, A.T.; Bozza, P.T.; Gamarnik, A.V. Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog., 2009, 5(10), e1000632. doi: 10.1371/journal.ppat.1000632 PMID: 19851456
  51. Byrd, C.M.; Dai, D.; Grosenbach, D.W.; Berhanu, A.; Jones, K.F.; Cardwell, K.B.; Schneider, C.; Wineinger, K.A.; Page, J.M.; Harver, C.; Stavale, E.; Tyavanagimatt, S.; Stone, M.A.; Bartenschlager, R.; Scaturro, P.; Hruby, D.E.; Jordan, R. A novel inhibitor of dengue virus replication that targets the capsid protein. Antimicrob. Agents Chemother., 2013, 57(1), 15-25. doi: 10.1128/AAC.01429-12 PMID: 23070172
  52. Lee, J.C.; Tseng, C.K.; Wu, Y.H.; Kaushik-Basu, N.; Lin, C.K.; Chen, W.C.; Wu, H.N. Characterization of the activity of 2′-C-methylcytidine against dengue virus replication. Antiviral Res., 2015, 116, 1-9. doi: 10.1016/j.antiviral.2015.01.002 PMID: 25614455
  53. Peng, M.; Watanabe, S.; Chan, K.W.K.; He, Q.; Zhao, Y.; Zhang, Z.; Lai, X.; Luo, D.; Vasudevan, S.G.; Li, G. Luteolin restricts dengue virus replication through inhibition of the proprotein convertase furin. Antiviral Res., 2017, 143, 176-185. doi: 10.1016/j.antiviral.2017.03.026 PMID: 28389141
  54. Alayli, F.; Scholle, F. Dengue virus NS1 enhances viral replication and pro-inflammatory cytokine production in human dendritic cells. Virology, 2016, 496, 227-236. doi: 10.1016/j.virol.2016.06.008
  55. Lindenbach, B.D.; Rice, C.M. Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function. J. Virol., 1999, 73(6), 4611-4621. doi: 10.1128/JVI.73.6.4611-4621.1999 PMID: 10233920
  56. Konishi, E.; Kosugi, S.; Imoto, J. Dengue tetravalent DNA vaccine inducing neutralizing antibody and anamnestic responses to four serotypes in mice. Vaccine, 2006, 24(12), 2200-2207. doi: 10.1016/j.vaccine.2005.11.002
  57. Kurane, I.; Brinton, M.A.; Samson, A.L.; Ennis, F.A. Dengue virus-specific, human CD4+ CD8- cytotoxic T-cell clones: Multiple patterns of virus cross-reactivity recognized by NS3-specific T-cell clones. J. Virol., 1991, 65(4), 1823-1828. doi: 10.1128/jvi.65.4.1823-1828.1991 PMID: 1705990
  58. Porter, K.R.; Raviprakash, K. Nucleic acid (DNA) immunization as a platform for dengue vaccine development. Vaccine, 2015, 33(50), 7135-7140. doi: 10.1016/j.vaccine.2015.09.102
  59. Rothan, H.A.; Bahrani, H.; Rahman, N.; Yusof, R. Identification of natural antimicrobial agents to treat dengue infection: In vitro analysis of latarcin peptide activity against dengue virus. BMC Microbiol., 2014, 14(1), 140. doi: 10.1186/1471-2180-14-140
  60. Jacob, G.S. Glycosylation inhibitors in biology and medicine. Curr. Opin. Struct. Biol., 1995, 5(5), 605-611. doi: 10.1016/0959-440X(95)80051-4 PMID: 8574695
  61. Elbein, A.D. Glycosidase inhibitors: inhibitors of N‐linked oligosaccharide processing. FASEB J., 1991, 5(15), 3055-3063. doi: 10.1096/fasebj.5.15.1743438 PMID: 1743438
  62. Pan, Y.T.; Hori, H.; Saul, R.; Sanford, B.A.; Molyneux, R.J.; Elbein, A.D. Castanospermine inhibits the processing of the oligosaccharide portion of the influenza viral hemagglutinin. Biochemistry, 1983, 22(16), 3975-3984. doi: 10.1021/bi00285a038
  63. Block, T.M.; Lu, X.; Mehta, A.S.; Blumberg, B.S.; Tennant, B.; Ebling, M.; Korba, B.; Lansky, D.M.; Jacob, G.S.; Dwek, R.A. Treatment of chronic hepadnavirus infection in a woodchuck animal model with an inhibitor of protein folding and trafficking. Nat. Med., 1998, 4(5), 610-614. doi: 10.1038/nm0598-610 PMID: 9585237
  64. Courageot, M.P.; Frenkiel, M.P.; Duarte Dos Santos, C.; Deubel, V.; Desprès, P. Alpha-glucosidase inhibitors reduce dengue virus production by affecting the initial steps of virion morphogenesis in the endoplasmic reticulum. J. Virol., 2000, 74(1), 564-572. doi: 10.1128/JVI.74.1.564-572.2000 PMID: 10590151
  65. Schul, W.; Liu, W.; Xu, H.Y.; Flamand, M.; Vasudevan, S.G. A dengue fever viremia model in mice shows reduction in viral replication and suppression of the inflammatory response after treatment with antiviral drugs. J. Infect. Dis., 2007, 195(5), 665-674. doi: 10.1086/511310 PMID: 17262707
  66. Tan, A.; van den Broek, L.; van Boeckel, S.; Ploegh, H.; Bolscher, J. Chemical modification of the glucosidase inhibitor 1-deoxynojirimycin. Structure-activity relationships. J. Biol. Chem., 1991, 266(22), 14504-14510. doi: 10.1016/S0021-9258(18)98715-6 PMID: 1650361
  67. Mellor, H.R.; Nolan, J.; Pickering, L.; Wormald, M.R.; Platt, F.M.; Dwek, R.A.; Fleet, G.W.J.; Butters, T.D. Preparation, biochemical characterization and biological properties of radiolabelled N-alkylated deoxynojirimycins. Biochem. J., 2002, 366(1), 225-233. doi: 10.1042/bj20020466 PMID: 11982484
  68. Rathore, A.P.S.; Paradkar, P.N.; Watanabe, S.; Tan, K.H.; Sung, C.; Connolly, J.E.; Low, J.; Ooi, E.E.; Vasudevan, S.G. Celgosivir treatment misfolds dengue virus NS1 protein, induces cellular pro-survival genes and protects against lethal challenge mouse model. Antiviral Res., 2011, 92(3), 453-460. doi: 10.1016/j.antiviral.2011.10.002 PMID: 22020302
  69. Raut, R.; Beesetti, H.; Tyagi, P.; Khanna, I.; Jain, S.K.; Jeankumar, V.U.; Yogeeswari, P.; Sriram, D.; Swaminathan, S. Complete genome sequencing and phylogenetic analysis of dengue type 1 virus isolated from Jeddah, Saudi Arabia. J. Virol., 2015, 12(1), 1-7. doi: 10.1186/s12985-014-0235-7
  70. Xie, X.; Zou, J.; Zhang, X.; Zhou, Y.; Routh, A.L.; Kang, C.; Popov, V.L.; Chen, X.; Wang, Q-Y.; Dong, H. Dengue NS2A protein orchestrates virus assembly. Cell Host Microb.,, 2019, 26(5), 606-622.
  71. Nemésio, H.; Villalaín, J. Membrane interacting regions of Dengue virus NS2A protein. J. Phys. Chem. B, 2014, 118(34), 10142-10155. doi: 10.1021/jp504911r PMID: 25119664
  72. Li, Y.; Li, Q.; Wong, Y.L.; Liew, L.S.Y.; Kang, C. Membrane topology of NS2B of dengue virus revealed by NMR spectroscopy. Biochim. Biophys. Acta Biomembr., 2015, 1848(10), 2244-2252. doi: 10.1016/j.bbamem.2015.06.010
  73. Kim, Y.M.; Gayen, S.; Kang, C.; Joy, J.; Huang, Q.; Chen, A.S.; Wee, J.L.K.; Ang, M.J.Y.; Lim, H.A.; Hung, A.W.; Li, R.; Noble, C.G.; Lee, L.T.; Yip, A.; Wang, Q.Y.; Chia, C.S.B.; Hill, J.; Shi, P.Y.; Keller, T.H. NMR analysis of a novel enzymatically active unlinked dengue NS2B-NS3 protease complex. J. Biol. Chem., 2013, 288(18), 12891-12900. doi: 10.1074/jbc.M112.442723 PMID: 23511634
  74. Hariono, M.; Choi, S.B.; Roslim, R.F.; Nawi, M.S.; Tan, M.L.; Kamarulzaman, E.E.; Mohamed, N.; Yusof, R.; Othman, S.; Abd Rahman, N.; Othman, R.; Wahab, H.A. Thioguanine-based DENV-2 NS2B/NS3 protease inhibitors: Virtual screening, synthesis, biological evaluation and molecular modelling. PLoS One, 2019, 14(1), e0210869. doi: 10.1371/journal.pone.0210869 PMID: 30677071
  75. Yang, C.C.; Hsieh, Y.C.; Lee, S.J.; Wu, S.H.; Liao, C.L.; Tsao, C.H.; Chao, Y.S.; Chern, J.H.; Wu, C.P.; Yueh, A. Novel dengue virus-specific NS2B/NS3 protease inhibitor, BP2109, discovered by a high-throughput screening assay. Antimicrob. Agents Chemother., 2011, 55(1), 229-238. doi: 10.1128/AAC.00855-10 PMID: 20937790
  76. Timiri, A.K.; Selvarasu, S.; Kesherwani, M.; Vijayan, V.; Sinha, B.N.; Devadasan, V.; Jayaprakash, V. Synthesis and molecular modelling studies of novel sulphonamide derivatives as dengue virus 2 protease inhibitors. Bioorg. Chem., 2015, 62, 74-82. doi: 10.1016/j.bioorg.2015.07.005 PMID: 26247308
  77. Wu, D.; Mao, F.; Ye, Y.; Li, J.; Xu, C.; Luo, X.; Chen, J.; Shen, X. Policresulen, a novel NS2B/NS3 protease inhibitor, effectively inhibits the replication of DENV2 virus in BHK-21 cells. Acta Pharmacol. Sin., 2015, 36(9), 1126-1136. doi: 10.1038/aps.2015.56 PMID: 26279156
  78. Osman, H.; Idris, N.H.; Kamarulzaman, E.E.; Wahab, H.A.; Hassan, M.Z. 3,5-Bis(arylidene)-4-piperidones as potential dengue protease inhibitors. Acta Pharm. Sin. B, 2017, 7(4), 479-484. doi: 10.1016/j.apsb.2017.04.009 PMID: 28752033
  79. Weng, Z.; Shao, X.; Graf, D.; Wang, C.; Klein, C.D.; Wang, J.; Zhou, G.C. Identification of fused bicyclic derivatives of pyrrolidine and imidazolidinone as dengue virus-2 NS2B-NS3 protease inhibitors. Eur. J. Med. Chem., 2017, 125, 751-759. doi: 10.1016/j.ejmech.2016.09.063 PMID: 27721158
  80. Hamdani, S.S.; Khan, B.A.; Hameed, S.; Batool, F.; Saleem, H.N.; Mughal, E.U.; Saeed, M. Synthesis and evaluation of novel S-benzyl- and S-alkylphthalimide-oxadiazole-benzenesulfonamide hybrids as inhibitors of dengue virus protease. Bioorg. Chem., 2020, 96, 103567. doi: 10.1016/j.bioorg.2020.103567 PMID: 32062063
  81. Steuer, C.; Gege, C.; Fischl, W.; Heinonen, K.H.; Bartenschlager, R.; Klein, C.D. Synthesis and biological evaluation of α-ketoamides as inhibitors of the Dengue virus protease with antiviral activity in cell-culture. Bioorg. Med. Chem., 2011, 19(13), 4067-4074. doi: 10.1016/j.bmc.2011.05.015 PMID: 21641807
  82. Lai, H.; Dou, D.; Aravapalli, S.; Teramoto, T.; Lushington, G.H.; Mwania, T.M.; Alliston, K.R.; Eichhorn, D.M.; Padmanabhan, R.; Groutas, W.C. Design, synthesis and characterization of novel 1,2-benzisothiazol-3(2H)-one and 1,3,4-oxadiazole hybrid derivatives: Potent inhibitors of Dengue and West Nile virus NS2B/NS3 proteases. Bioorg. Med. Chem., 2013, 21(1), 102-113. doi: 10.1016/j.bmc.2012.10.058 PMID: 23211969
  83. Lai, H.; Sridhar Prasad, G.; Padmanabhan, R. Characterization of 8-hydroxyquinoline derivatives containing aminobenzothiazole as inhibitors of dengue virus type 2 protease in vitro. Antiviral Res., 2013, 97(1), 74-80. doi: 10.1016/j.antiviral.2012.10.009 PMID: 23127365
  84. Behnam, M.A.M.; Graf, D.; Bartenschlager, R.; Zlotos, D.P.; Klein, C.D. Discovery of nanomolar dengue and west nile virus protease inhibitors containing a 4-benzyloxyphenylglycine residue. J. Med. Chem., 2015, 58(23), 9354-9370. doi: 10.1021/acs.jmedchem.5b01441 PMID: 26562070
  85. Nitsche, C.; Schreier, V.N.; Behnam, M.A.M.; Kumar, A.; Bartenschlager, R.; Klein, C.D. Thiazolidinone-peptide hybrids as dengue virus protease inhibitors with antiviral activity in cell culture. J. Med. Chem., 2013, 56(21), 8389-8403. doi: 10.1021/jm400828u PMID: 24083834
  86. Liu, H.; Wu, R.; Sun, Y.; Ye, Y.; Chen, J.; Luo, X.; Shen, X.; Liu, H. Identification of novel thiadiazoloacrylamide analogues as inhibitors of dengue-2 virus NS2B/NS3 protease. Bioorg. Med. Chem., 2014, 22(22), 6344-6352. doi: 10.1016/j.bmc.2014.09.057 PMID: 25438757
  87. Gao, Y.; Cui, T.; Lam, Y. Synthesis and disulfide bond connectivity–activity studies of a kalata B1-inspired cyclopeptide against dengue NS2B–NS3 protease. Bioorg. Med. Chem., 2010, 18(3), 1331-1336. doi: 10.1016/j.bmc.2009.12.026 PMID: 20042339
  88. Prusis, P.; Junaid, M.; Petrovska, R.; Yahorava, S.; Yahorau, A.; Katzenmeier, G.; Lapins, M.; Wikberg, J.E.S. Design and evaluation of substrate-based octapeptide and non substrate-based tetrapeptide inhibitors of dengue virus NS2B–NS3 proteases. Biochem. Biophys. Res. Commun., 2013, 434(4), 767-772. doi: 10.1016/j.bbrc.2013.03.139 PMID: 23587903
  89. Weigel, L.F.; Nitsche, C.; Graf, D.; Bartenschlager, R.; Klein, C.D. Phenylalanine and phenylglycine analogues as arginine mimetics in dengue protease inhibitors. J. Med. Chem., 2015, 58(19), 7719-7733. doi: 10.1021/acs.jmedchem.5b00612 PMID: 26367391
  90. Arias, C.F.; Preugschat, F.; Strauss, J.H. Dengue 2 virus NS2B and NS3 form a stable complex that can cleave NS3 within the helicase domain. Virology, 1993, 193(2), 888-899. doi: 10.1006/viro.1993.1198
  91. Falgout, B.; Pethel, M.; Zhang, Y.M.; Lai, C.J. Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J. Virol., 1991, 65(5), 2467-2475. doi: 10.1128/jvi.65.5.2467-2475.1991 PMID: 2016768
  92. Falgout, B.; Miller, R.H.; Lai, C.J. Deletion analysis of dengue virus type 4 nonstructural protein NS2B: Identification of a domain required for NS2B-NS3 protease activity. J. Virol., 1993, 67(4), 2034-2042. doi: 10.1128/jvi.67.4.2034-2042.1993 PMID: 8383225
  93. Li, H.; Clum, S.; You, S.; Ebner, K.E.; Padmanabhan, R. The serine protease and RNA-stimulated nucleoside triphosphatase and RNA helicase functional domains of dengue virus type 2 NS3 converge within a region of 20 amino acids. J. Virol., 1999, 73(4), 3108-3116. doi: 10.1128/JVI.73.4.3108-3116.1999 PMID: 10074162
  94. Yusof, R.; Clum, S.; Wetzel, M.; Murthy, H.M.K.; Padmanabhan, R. Purified NS2B/NS3 serine protease of dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro. J. Biol. Chem., 2000, 275(14), 9963-9969. doi: 10.1074/jbc.275.14.9963 PMID: 10744671
  95. Leung, D.; Schroder, K.; White, H.; Fang, N.X.; Stoermer, M.J.; Abbenante, G.; Martin, J.L.; Young, P.R.; Fairlie, D.P. Activity of recombinant dengue 2 virus NS3 protease in the presence of a truncated NS2B co-factor, small peptide substrates, and inhibitors. J. Biol. Chem., 2001, 276(49), 45762-45771. doi: 10.1074/jbc.M107360200 PMID: 11581268
  96. Li, J.; Lim, S.P.; Beer, D.; Patel, V.; Wen, D.; Tumanut, C.; Tully, D.C.; Williams, J.A.; Jiricek, J.; Priestle, J.P.; Harris, J.L.; Vasudevan, S.G. Functional profiling of recombinant NS3 proteases from all four serotypes of dengue virus using tetrapeptide and octapeptide substrate libraries. J. Biol. Chem., 2005, 280(31), 28766-28774. doi: 10.1074/jbc.M500588200 PMID: 15932883
  97. Murthy, H.M.K.; Clum, S.; Padmanabhan, R. Dengue virus NS3 serine protease. Crystal structure and insights into interaction of the active site with substrates by molecular modeling and structural analysis of mutational effects. J. Biol. Chem., 1999, 274(9), 5573-5580. doi: 10.1074/jbc.274.9.5573 PMID: 10026173
  98. Hsu, J.; Wang, H.C.; Chen, G.W.; Shih, S.R. Antiviral drug discovery targeting to viral proteases. Curr. Pharm. Des., 2006, 12(11), 1301-1314. doi: 10.2174/138161206776361110 PMID: 16611117
  99. Menéndez-Arias, L. Molecular basis of human immunodeficiency virus drug resistance: An update. Antiviral Res., 2010, 85(1), 210-231. doi: 10.1016/j.antiviral.2009.07.006 PMID: 19616029
  100. Wendt, A.; Adhoute, X.; Castellani, P.; Oules, V.; Ansaldi, C.; Benali, S.; Bourlière, M. Chronic hepatitis C: Future treatment. Clin. Pharmacol., 2014, 6, 1-17.
  101. Natarajan, S. NS3 protease from flavivirus as a target for designing antiviral inhibitors against dengue virus. Genet. Mol. Biol., 2010, 33(2), 214-219. doi: 10.1590/S1415-47572010000200002 PMID: 21637471
  102. Bazan, J.F.; Fletterick, R.J. Detection of a trypsin-like serine protease domain in flaviviruses and pestviruses. Virology, 1989, 171(2), 637-639. doi: 10.1016/0042-6822(89)90639-9
  103. Erbel, P.; Schiering, N.; D’Arcy, A.; Renatus, M.; Kroemer, M.; Lim, S.P.; Yin, Z.; Keller, T.H.; Vasudevan, S.G.; Hommel, U. Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat. Struct. Mol. Biol., 2006, 13(4), 372-373. doi: 10.1038/nsmb1073 PMID: 16532006
  104. Mueller, N.H.; Pattabiraman, N.; Ansarah-Sobrinho, C.; Viswanathan, P.; Pierson, T.C.; Padmanabhan, R. Identification and biochemical characterization of small-molecule inhibitors of west nile virus serine protease by a high-throughput screen. Antimicrob. Agents Chemother., 2008, 52(9), 3385-3393. doi: 10.1128/AAC.01508-07 PMID: 18606844
  105. Lim, S.P.; Noble, C.G.; Shi, P.Y. The dengue virus NS5 protein as a target for drug discovery. Antiviral Res., 2015, 119, 57-67. doi: 10.1016/j.antiviral.2015.04.010 PMID: 25912817
  106. Xie, X.; Zou, J.; Wang, Q.Y.; Shi, P.Y. Targeting dengue virus NS4B protein for drug discovery. Antiviral Res., 2015, 118, 39-45. doi: 10.1016/j.antiviral.2015.03.007 PMID: 25796970
  107. Lee, J.C.; Chang, F.R.; Chen, S.R.; Wu, Y.H.; Hu, H.C.; Wu, Y.C.; Backlund, A.; Cheng, Y.B. Anti-dengue virus constituents from formosan zoanthid palythoa mutuki. Mar. Drugs, 2016, 14(8), 151. doi: 10.3390/md14080151 PMID: 27517937
  108. Naik, N.G.; Wu, H.N. Mutation of putative N-glycosylation sites on dengue virus NS4B decreases RNA replication. J. Virol., 2015, 89(13), 6746-6760. doi: 10.1128/JVI.00423-15 PMID: 25878113
  109. Wu, H.; Bock, S.; Snitko, M.; Berger, T.; Weidner, T.; Holloway, S.; Kanitz, M.; Diederich, W.E.; Steuber, H.; Walter, C.; Hofmann, D.; Weißbrich, B.; Spannaus, R.; Acosta, E.G.; Bartenschlager, R.; Engels, B.; Schirmeister, T.; Bodem, J. Novel dengue virus NS2B/NS3 protease inhibitors. Antimicrob. Agents Chemother., 2015, 59(2), 1100-1109. doi: 10.1128/AAC.03543-14 PMID: 25487800
  110. Yang, C.C.; Hu, H.S.; Wu, R.H.; Wu, S.H.; Lee, S.J.; Jiaang, W.T.; Chern, J.H.; Huang, Z.S.; Wu, H.N.; Chang, C.M.; Yueh, A. A novel dengue virus inhibitor, BP13944, discovered by high-throughput screening with dengue virus replicon cells selects for resistance in the viral NS2B/NS3 protease. Antimicrob. Agents Chemother., 2014, 58(1), 110-119. doi: 10.1128/AAC.01281-13 PMID: 24145533
  111. Balasubramanian, A.; Manzano, M.; Teramoto, T.; Pilankatta, R.; Padmanabhan, R. High-throughput screening for the identification of small-molecule inhibitors of the flaviviral protease. Antiviral Res., 2016, 134, 6-16. doi: 10.1016/j.antiviral.2016.08.014 PMID: 27539384
  112. Gan, C.S.; Lee, Y.K.; Heh, C.H.; Rahman, N.A.; Yusof, R.; Othman, S. The synthetic molecules YK51 and YK73 attenuate replication of dengue virus serotype 2. Trop. Biomed., 2017, 34(2), 270-283. PMID: 33593007
  113. Padmapriya, P.; Gracy Fathima, S.; Ramanathan, G. v, Y.; A, K.S.; Kaveri, K.; Gunasekaran, P.; Tirichurapalli Sivagnanam, U.; Thennarasu, S. Development of antiviral inhibitor against dengue 2 targeting Ns3 protein: In vitro and in silico significant studies. Acta Trop., 2018, 188, 1-8. doi: 10.1016/j.actatropica.2018.08.022 PMID: 30145258
  114. Li, L.; Basavannacharya, C.; Chan, K.W.K.; Shang, L.; Vasudevan, S.G.; Yin, Z. Structure-guided discovery of a novel non-peptide inhibitor of dengue virus NS2B-NS3 protease. Eur. J. Med. Chem., 2015, 86, 255-264.
  115. Pelliccia, S.; Wu, Y.H.; Coluccia, A.; La Regina, G.; Tseng, C.K.; Famiglini, V.; Masci, D.; Hiscott, J.; Lee, J.C.; Silvestri, R. Inhibition of dengue virus replication by novel inhibitors of RNA-dependent RNA polymerase and protease activities. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 1091-1101. doi: 10.1080/14756366.2017.1355791 PMID: 28776445
  116. Miller, S.; Kastner, S.; Krijnse-Locker, J.; Bühler, S.; Bartenschlager, R. The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner. J. Biol. Chem., 2007, 282(12), 8873-8882. doi: 10.1074/jbc.M609919200 PMID: 17276984
  117. Li, Y.; Lee, M.Y.; Loh, Y.R.; Kang, C. Secondary structure and membrane topology of dengue virus NS4A protein in micelles. Biochim. Biophys. Acta Biomembr., 2018, 1860(2), 442-450. doi: 10.1016/j.bbamem.2017.10.016 PMID: 29055659
  118. Hung, Y.F.; Schwarten, M.; Hoffmann, S.; Willbold, D.; Sklan, E.; Koenig, B. Amino terminal region of dengue virus NS4A cytosolic domain binds to highly curved liposomes. Viruses, 2015, 7(7), 4119-4130. doi: 10.3390/v7072812
  119. Stern, O.; Hung, Y.F.; Valdau, O.; Yaffe, Y.; Harris, E.; Hoffmann, S.; Willbold, D.; Sklan, E.H. An N-terminal amphipathic helix in dengue virus nonstructural protein 4A mediates oligomerization and is essential for replication. J. Virol., 2013, 87(7), 4080-4085. doi: 10.1128/JVI.01900-12 PMID: 23325687
  120. Lee, C.M.; Xie, X.; Zou, J.; Li, S.H.; Lee, M.Y.Q.; Dong, H.; Qin, C.F.; Kang, C.; Shi, P.Y. Determinants of dengue virus NS4A protein oligomerization. J. Virol., 2015, 89(12), 6171-6183. doi: 10.1128/JVI.00546-15 PMID: 25833044
  121. Zou, J.; Xie, X.; Wang, Q.Y.; Dong, H.; Lee, M.Y.; Kang, C.; Yuan, Z.; Shi, P.Y. Characterization of dengue virus NS4A and NS4B protein interaction. J. Virol., 2015, 89(7), 3455-3470. doi: 10.1128/JVI.03453-14 PMID: 25568208
  122. Lin, C.; Amberg, S.M.; Chambers, T.J.; Rice, C.M. Cleavage at a novel site in the NS4A region by the yellow fever virus NS2B-3 proteinase is a prerequisite for processing at the downstream 4A/4B signalase site. J. Virol., 1993, 67(4), 2327-2335. doi: 10.1128/jvi.67.4.2327-2335.1993 PMID: 8445732
  123. Reddy, S.B.G.; Chin, W-X.; Shivananju, N.S. Dengue virus NS2 and NS4: Minor proteins, mammoth roles. Biochem. Pharmacol., 2018, 154, 54-63. doi: 10.1016/j.bcp.2018.04.008 PMID: 29674002
  124. Ambrose, R.L.; Mackenzie, J.M. A conserved peptide in West Nile virus NS4A protein contributes to proteolytic processing and is essential for replication. J. Virol., 2011, 85(21), 11274-11282. doi: 10.1128/JVI.05864-11 PMID: 21880777
  125. Wu, J.; Bera, A.K.; Kuhn, R.J.; Smith, J.L. Structure of the flavivirus helicase: Implications for catalytic activity, protein interactions, and proteolytic processing. J. Virol., 2005, 79(16), 10268-10277. doi: 10.1128/JVI.79.16.10268-10277.2005 PMID: 16051820
  126. Yamashita, T.; Unno, H.; Mori, Y.; Tani, H.; Moriishi, K.; Takamizawa, A.; Agoh, M.; Tsukihara, T.; Matsuura, Y. Crystal structure of the catalytic domain of Japanese encephalitis virus NS3 helicase/nucleoside triphosphatase at a resolution of 1.8 Å. Virology, 2008, 373(2), 426-436. doi: 10.1016/j.virol.2007.12.018
  127. Nobori, H.; Toba, S.; Yoshida, R.; Hall, W.W.; Orba, Y.; Sawa, H.; Sato, A. Identification of compound-B, a novel anti-dengue virus agent targeting the non-structural protein 4A. Antiviral Res., 2018, 155, 60-66. doi: 10.1016/j.antiviral.2018.05.003 PMID: 29758236
  128. Miller, S.; Sparacio, S.; Bartenschlager, R. Subcellular localization and membrane topology of the dengue virus type 2 non-structural protein 4B. J. Biol. Chem., 2006, 281(13), 8854-8863. doi: 10.1074/jbc.M512697200 PMID: 16436383
  129. Li, Y.; Wong, Y.L.; Lee, M.Y.; Li, Q.; Wang, Q.Y.; Lescar, J.; Shi, P.Y.; Kang, C. Secondary structure and membrane topology of the full-length dengue virus NS4B in micelles. Angew. Chem., 2016, 128(39), 12247-12251. doi: 10.1002/ange.201606609
  130. Umareddy, I.; Chao, A.; Sampath, A.; Gu, F.; Vasudevan, S.G. Dengue virus NS4B interacts with NS3 and dissociates it from single-stranded RNA. J. Gen. Virol., 2006, 87(9), 2605-2614. doi: 10.1099/vir.0.81844-0 PMID: 16894199
  131. Zou, J.; Xie, X.; Lee, L.T.; Chandrasekaran, R.; Reynaud, A.; Yap, L.; Wang, Q.Y.; Dong, H.; Kang, C.; Yuan, Z.; Lescar, J.; Shi, P.Y. Dimerization of flavivirus NS4B protein. J. Virol., 2014, 88(6), 3379-3391. doi: 10.1128/JVI.02782-13 PMID: 24390334
  132. Zmurko, J.; Neyts, J.; Dallmeier, K. Flaviviral NS4b, chameleon and jack-in-the-box roles in viral replication and pathogenesis, and a molecular target for antiviral intervention. Rev. Med. Virol., 2015, 25(4), 205-223. doi: 10.1002/rmv.1835 PMID: 25828437
  133. Zou, G.; Puig-Basagoiti, F.; Zhang, B.; Qing, M.; Chen, L.; Pankiewicz, K.W.; Felczak, K.; Yuan, Z.; Shi, P.Y. A single-amino acid substitution in West Nile virus 2K peptide between NS4A and NS4B confers resistance to lycorine, a flavivirus inhibitor. Virology, 2009, 384(1), 242-252. doi: 10.1016/j.virol.2008.11.003
  134. Wang, P.; Li, L.F.; Wang, Q.Y.; Shang, L.Q.; Shi, P.Y.; Yin, Z. Anti-dengue-virus activity and structure-activity relationship studies of lycorine derivatives. ChemMedChem, 2014, 9(7), 1522-1533. doi: 10.1002/cmdc.201300505 PMID: 24574246
  135. Xie, X.; Wang, Q.Y.; Xu, H.Y.; Qing, M.; Kramer, L.; Yuan, Z.; Shi, P.Y. Inhibition of dengue virus by targeting viral NS4B protein. J. Virol., 2011, 85(21), 11183-11195. doi: 10.1128/JVI.05468-11 PMID: 21865382
  136. van Cleef, K.W.R.; Overheul, G.J.; Thomassen, M.C.; Kaptein, S.J.F.; Davidson, A.D.; Jacobs, M.; Neyts, J.; van Kuppeveld, F.J.M.; van Rij, R.P. Identification of a new dengue virus inhibitor that targets the viral NS4B protein and restricts genomic RNA replication. Antiviral Res., 2013, 99(2), 165-171. doi: 10.1016/j.antiviral.2013.05.011 PMID: 23735301
  137. Wang, Q.Y.; Dong, H.; Zou, B.; Karuna, R.; Wan, K.F.; Zou, J.; Susila, A.; Yip, A.; Shan, C.; Yeo, K.L.; Xu, H.; Ding, M.; Chan, W.L.; Gu, F.; Seah, P.G.; Liu, W.; Lakshminarayana, S.B.; Kang, C.; Lescar, J.; Blasco, F.; Smith, P.W.; Shi, P.Y. Discovery of dengue virus NS4B inhibitors. J. Virol., 2015, 89(16), 8233-8244. doi: 10.1128/JVI.00855-15 PMID: 26018165
  138. van Cleef, K.W.R.; Overheul, G.J.; Thomassen, M.C.; Marjakangas, J.M.; van Rij, R.P. Escape mutations in NS4B render dengue virus insensitive to the antiviral activity of the paracetamol metabolite AM404. Antimicrob. Agents Chemother., 2016, 60(4), 2554-2557. doi: 10.1128/AAC.02462-15 PMID: 26856827
  139. Grant, D.; Tan, G.K.; Qing, M.; Ng, J.K.W.; Yip, A.; Zou, G.; Xie, X.; Yuan, Z.; Schreiber, M.J.; Schul, W.; Shi, P.Y.; Alonso, S. A single amino acid in nonstructural protein NS4B confers virulence to dengue virus in AG129 mice through enhancement of viral RNA synthesis. J. Virol., 2011, 85(15), 7775-7787. doi: 10.1128/JVI.00665-11 PMID: 21632767
  140. Zou, B.; Chan, W.L.; Ding, M.; Leong, S.Y.; Nilar, S.; Seah, P.G.; Liu, W.; Karuna, R.; Blasco, F.; Yip, A.; Chao, A.; Susila, A.; Dong, H.; Wang, Q.Y.; Xu, H.Y.; Chan, K.; Wan, K.F.; Gu, F.; Diagana, T.T.; Wagner, T.; Dix, I.; Shi, P.Y.; Smith, P.W. Lead optimization of spiropyrazolopyridones: A new and potent class of dengue virus inhibitors. ACS Med. Chem. Lett., 2015, 6(3), 344-348. doi: 10.1021/ml500521r PMID: 25878766
  141. Kounde, C.S.; Yeo, H.Q.; Wang, Q.Y.; Wan, K.F.; Dong, H.; Karuna, R.; Dix, I.; Wagner, T.; Zou, B.; Simon, O.; Bonamy, G.M.C.; Yeung, B.K.S.; Yokokawa, F. Discovery of 2-oxopiperazine dengue inhibitors by scaffold morphing of a phenotypic high-throughput screening hit. Bioorg. Med. Chem. Lett., 2017, 27(6), 1385-1389. doi: 10.1016/j.bmcl.2017.02.005 PMID: 28216045
  142. Hernandez-Morales, I.; Geluykens, P.; Clynhens, M.; Strijbos, R.; Goethals, O.; Megens, S.; Verheyen, N.; Last, S.; McGowan, D.; Coesemans, E.; De Boeck, B.; Stoops, B.; Devogelaere, B.; Pauwels, F.; Vandyck, K.; Berke, J.M.; Raboisson, P.; Simmen, K.; Lory, P.; Van Loock, M. Characterization of a dengue NS4B inhibitor originating from an HCV small molecule library. Antiviral Res., 2017, 147, 149-158. doi: 10.1016/j.antiviral.2017.10.011 PMID: 29037976
  143. Davidson, A.D. Chapter 2. New insights into flavivirus nonstructural protein 5. Adv. Virus Res., 2009, 74, 41-101. doi: 10.1016/S0065-3527(09)74002-3 PMID: 19698895
  144. Malet, H.; Massé, N.; Selisko, B.; Romette, J.L.; Alvarez, K.; Guillemot, J.C.; Tolou, H.; Yap, T.L.; Vasudevan, S.G.; Lescar, J.; Canard, B. The flavivirus polymerase as a target for drug discovery. Antiviral Res., 2008, 80(1), 23-35. doi: 10.1016/j.antiviral.2008.06.007 PMID: 18611413
  145. Lim, S.P.; Koh, J.H.K.; Seh, C.C.; Liew, C.W.; Davidson, A.D.; Chua, L.S.; Chandrasekaran, R.; Cornvik, T.C.; Shi, P.Y.; Lescar, J. A crystal structure of the dengue virus non-structural protein 5 (NS5) polymerase delineates interdomain amino acid residues that enhance its thermostability and de novo initiation activities. J. Biol. Chem., 2013, 288(43), 31105-31114. doi: 10.1074/jbc.M113.508606 PMID: 24025331
  146. Ray, D.; Shah, A.; Tilgner, M.; Guo, Y.; Zhao, Y.; Dong, H.; Deas, T.S.; Zhou, Y.; Li, H.; Shi, P.Y. West Nile virus 5′-cap structure is formed by sequential guanine N-7 and ribose 2′-O methylations by nonstructural protein 5. J. Virol., 2006, 80(17), 8362-8370. doi: 10.1128/JVI.00814-06 PMID: 16912287
  147. Zhou, Y.; Ray, D.; Zhao, Y.; Dong, H.; Ren, S.; Li, Z.; Guo, Y.; Bernard, K.A.; Shi, P.Y.; Li, H. Structure and function of flavivirus NS5 methyltransferase. J. Virol., 2007, 81(8), 3891-3903. doi: 10.1128/JVI.02704-06 PMID: 17267492
  148. El Sahili, A.; Lescar, J. Dengue virus non-structural protein 5. Viruses, 2017, 9(4), 91. doi: 10.3390/v9040091
  149. Dong, H.; Chang, D.C.; Xie, X.; Toh, Y.X.; Chung, K.Y.; Zou, G.; Lescar, J.; Lim, S.P.; Shi, P.Y. Biochemical and genetic characterization of dengue virus methyltransferase. Virology, 2010, 405(2), 568-578. doi: 10.1016/j.virol.2010.06.039
  150. Züst, R.; Cervantes-Barragan, L.; Habjan, M.; Maier, R.; Neuman, B.W.; Ziebuhr, J.; Szretter, K.J.; Baker, S.C.; Barchet, W.; Diamond, M.S.; Siddell, S.G.; Ludewig, B.; Thiel, V. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat. Immunol., 2011, 12(2), 137-143. doi: 10.1038/ni.1979 PMID: 21217758
  151. Züst, R.; Dong, H.; Li, X.F.; Chang, D.C.; Zhang, B.; Balakrishnan, T.; Toh, Y.X.; Jiang, T.; Li, S.H.; Deng, Y.Q.; Ellis, B.R.; Ellis, E.M.; Poidinger, M.; Zolezzi, F.; Qin, C.F.; Shi, P.Y.; Fink, K. Rational design of a live attenuated dengue vaccine: 2′-o-methyltransferase mutants are highly attenuated and immunogenic in mice and macaques. PLoS Pathog., 2013, 9(8), e1003521. doi: 10.1371/journal.ppat.1003521 PMID: 23935499
  152. Assenberg, R.; Ren, J.; Verma, A.; Walter, T.S.; Alderton, D.; Hurrelbrink, R.J.; Fuller, S.D.; Bressanelli, S.; Owens, R.J.; Stuart, D.I.; Grimes, J.M. Crystal structure of the murray valley encephalitis virus NS5 methyltransferase domain in complex with cap analogues. J. Gen. Virol., 2007, 88(8), 2228-2236. doi: 10.1099/vir.0.82757-0 PMID: 17622627
  153. Bollati, M.; Milani, M.; Mastrangelo, E.; Ricagno, S.; Tedeschi, G.; Nonnis, S.; Decroly, E.; Selisko, B.; de Lamballerie, X.; Coutard, B.; Canard, B.; Bolognesi, M. Recognition of RNA cap in the Wesselsbron virus NS5 methyltransferase domain: Implications for RNA-capping mechanisms in Flavivirus. J. Mol. Biol., 2009, 385(1), 140-152. doi: 10.1016/j.jmb.2008.10.028 PMID: 18976670
  154. Egloff, M.P.; Benarroch, D.; Selisko, B.; Romette, J-L.; Canard, B. An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J., 2002, 21(11), 2757-2768. doi: 10.1093/emboj/21.11.2757 PMID: 12032088
  155. Geiss, B.J.; Thompson, A.A.; Andrews, A.J.; Sons, R.L.; Gari, H.H.; Keenan, S.M.; Peersen, O.B. Analysis of flavivirus NS5 methyltransferase cap binding. J. Mol. Biol., 2009, 385(5), 1643-1654. doi: 10.1016/j.jmb.2008.11.058 PMID: 19101564
  156. Jansson, A.M.; Jakobsson, E.; Johansson, P.; Lantez, V.; Coutard, B.; de Lamballerie, X.; Unge, T.; Jones, T.A. Structure of the methyltransferase domain from the modoc virus, a flavivirus with no known vector. Acta Crystallogr. D Biol. Crystallogr., 2009, 65(8), 796-803. doi: 10.1107/S0907444909017260 PMID: 19622863
  157. Mastrangelo, E.; Bollati, M.; Milani, M.; Selisko, B.; Peyrane, F.; Canard, B.; Grard, G.; de Lamballerie, X.; Bolognesi, M. Structural bases for substrate recognition and activity in Meaban virus nucleoside-2′-O-methyltransferase. Protein Sci., 2007, 16(6), 1133-1145. doi: 10.1110/ps.072758107 PMID: 17473012
  158. Lim, S.P.; Sonntag, L.S.; Noble, C.; Nilar, S.H.; Ng, R.H.; Zou, G.; Monaghan, P.; Chung, K.Y.; Dong, H.; Liu, B.; Bodenreider, C.; Lee, G.; Ding, M.; Chan, W.L.; Wang, G.; Jian, Y.L.; Chao, A.T.; Lescar, J.; Yin, Z.; Vedananda, T.R.; Keller, T.H.; Shi, P.Y. Small molecule inhibitors that selectively block dengue virus methyltransferase. J. Biol. Chem., 2011, 286(8), 6233-6240. doi: 10.1074/jbc.M110.179184 PMID: 21147775
  159. Yap, L.J.; Luo, D.; Chung, K.Y.; Lim, S.P.; Bodenreider, C.; Noble, C.; Shi, P.Y.; Lescar, J. Crystal structure of the dengue virus methyltransferase bound to a 5′-capped octameric RNA. PLoS One, 2010, 5(9), e12836. doi: 10.1371/journal.pone.0012836 PMID: 20862256
  160. Henderson, B.R.; Saeedi, B.J.; Campagnola, G.; Geiss, B.J. Analysis of RNA binding by the dengue virus NS5 RNA capping enzyme. PLoS One, 2011, 6(10), e25795. doi: 10.1371/journal.pone.0025795 PMID: 22022449
  161. Potisopon, S.; Priet, S.; Collet, A.; Decroly, E.; Canard, B.; Selisko, B. The methyltransferase domain of dengue virus protein NS5 ensures efficient RNA synthesis initiation and elongation by the polymerase domain. Nucleic Acids Res., 2014, 42(18), 11642-11656. doi: 10.1093/nar/gku666 PMID: 25209234
  162. Lim, S.; Wen, D.; Yap, T.; Yan, C.; Lescar, J.; Vasudevan, S. A scintillation proximity assay for dengue virus NS5 2′-O-methyltransferase-kinetic and inhibition analyses. Antiviral Res., 2008, 80(3), 360-369. doi: 10.1016/j.antiviral.2008.08.005 PMID: 18809436
  163. Selisko, B.; Peyrane, F.F.; Canard, B.; Alvarez, K.; Decroly, E. Biochemical characterization of the (nucleoside-2'O)-methyltransferase activity of dengue virus protein NS5 using purified capped RNA oligonucleotides 7MeGpppACn and GpppACn. J. Gen. Virol., 2010, 91(1), 112-121. doi: 10.1099/vir.0.015511-0 PMID: 19776234
  164. Chung, K.Y.; Dong, H.; Chao, A.T.; Shi, P.Y.; Lescar, J.; Lim, S.P. Higher catalytic efficiency of N-7-methylation is responsible for processive N-7 and 2′-O methyltransferase activity in dengue virus. Virology, 2010, 402(1), 52-60. doi: 10.1016/j.virol.2010.03.011 PMID: 19776122
  165. Barral, K.; Sallamand, C.; Petzold, C.; Coutard, B.; Collet, A.; Thillier, Y.; Zimmermann, J.; Vasseur, J.J.; Canard, B.; Rohayem, J.; Debart, F.; Decroly, E. Development of specific dengue virus 2′-O- and N7-methyltransferase assays for antiviral drug screening. Antiviral Res., 2013, 99(3), 292-300. doi: 10.1016/j.antiviral.2013.06.001 PMID: 23769894
  166. Dong, H.; Liu, L.; Zou, G.; Zhao, Y.; Li, Z.; Lim, S.P.; Shi, P.Y.; Li, H. Structural and functional analyses of a conserved hydrophobic pocket of flavivirus methyltransferase. J. Biol. Chem., 2010, 285(42), 32586-32595. doi: 10.1074/jbc.M110.129197 PMID: 20685660
  167. Noble, C.G.; Li, S.H.; Dong, H.; Chew, S.H.; Shi, P.Y. Crystal structure of dengue virus methyltransferase without S-adenosyl-L-methionine. Antiviral Res., 2014, 111, 78-81. doi: 10.1016/j.antiviral.2014.09.003 PMID: 25241250
  168. Brecher, M.B.; Li, Z.; Zhang, J.; Chen, H.; Lin, Q.; Liu, B.; Li, H. Refolding of a fully functional flavivirus methyltransferase revealed that S-adenosyl methionine but not S-adenosyl homocysteine is copurified with flavivirus methyltransferase. Protein Sci., 2015, 24(1), 117-128. doi: 10.1002/pro.2594 PMID: 25352331
  169. Cannalire, R.; Tarantino, D.; Astolfi, A.; Barreca, M.L.; Sabatini, S.; Massari, S.; Tabarrini, O.; Milani, M.; Querat, G.; Mastrangelo, E.; Manfroni, G.; Cecchetti, V. Functionalized 2,1-benzothiazine 2,2-dioxides as new inhibitors of Dengue NS5 RNA-dependent RNA polymerase. Eur. J. Med. Chem., 2018, 143, 1667-1676. doi: 10.1016/j.ejmech.2017.10.064 PMID: 29137867
  170. Kaptein, S.J.F.; Vincetti, P.; Crespan, E.; Rivera, J.I.A.; Costantino, G.; Maga, G.; Neyts, J.; Radi, M. Identification of broad-spectrum dengue/zika virus replication inhibitors by functionalization of quinoline and 2,6-diaminopurine scaffolds. ChemMedChem, 2018, 13(14), 1371-1376. doi: 10.1002/cmdc.201800178 PMID: 29740962
  171. Benmansour, F.; Eydoux, C.; Querat, G.; de Lamballerie, X.; Canard, B.; Alvarez, K.; Guillemot, J.C.; Barral, K. Novel 2-phenyl-5-(E)-2-(thiophen-2-yl)ethenyl-1,3,4-oxadiazole and 3-phenyl-5-(E)-2-(thiophen-2-yl)ethenyl-1,2,4-oxadiazole derivatives as dengue virus inhibitors targeting NS5 polymerase. Eur. J. Med. Chem., 2016, 109, 146-156. doi: 10.1016/j.ejmech.2015.12.046 PMID: 26774922
  172. Xu, H.T.; Colby-Germinario, S.P.; Hassounah, S.; Quashie, P.K.; Han, Y.; Oliveira, M.; Stranix, B.R.; Wainberg, M.A. Identification of a pyridoxine-derived small-molecule inhibitor targeting dengue virus RNA-dependent RNA polymerase. Antimicrob. Agents Chemother., 2016, 60(1), 600-608. doi: 10.1128/AAC.02203-15 PMID: 26574011
  173. Yokokawa, F.; Nilar, S.; Noble, C.G.; Lim, S.P.; Rao, R.; Tania, S.; Wang, G.; Lee, G.; Hunziker, J.; Karuna, R.; Manjunatha, U.; Shi, P.Y.; Smith, P.W. Discovery of potent non-nucleoside inhibitors of dengue viral RNA-dependent RNA polymerase from a fragment hit using structure-based drug design. J. Med. Chem., 2016, 59(8), 3935-3952. doi: 10.1021/acs.jmedchem.6b00143 PMID: 26984786
  174. Lim, S.P.; Noble, C.G.; Seh, C.C.; Soh, T.S.; El Sahili, A.; Chan, G.K.Y.; Lescar, J.; Arora, R.; Benson, T.; Nilar, S.; Manjunatha, U.; Wan, K.F.; Dong, H.; Xie, X.; Shi, P.Y.; Yokokawa, F. Potent allosteric dengue virus NS5 polymerase inhibitors: Mechanism of action and resistance profiling. PLoS Pathog., 2016, 12(8), e1005737. doi: 10.1371/journal.ppat.1005737 PMID: 27500641
  175. Madhvi, A.; Hingane, S.; Srivastav, R.; Joshi, N.; Subramani, C.; Muthumohan, R.; Khasa, R.; Varshney, S.; Kalia, M.; Vrati, S.; Surjit, M.; Ranjith-Kumar, C.T. A screen for novel hepatitis C virus RdRp inhibitor identifies a broad-spectrum antiviral compound. Sci. Rep., 2017, 7(1), 5816. doi: 10.1038/s41598-017-04449-3 PMID: 28127051
  176. Wang, G.; Lim, S.P.; Chen, Y.L.; Hunziker, J.; Rao, R.; Gu, F.; Seh, C.C.; Ghafar, N.A.; Xu, H.; Chan, K.; Lin, X.; Saunders, O.L.; Fenaux, M.; Zhong, W.; Shi, P.Y.; Yokokawa, F. Structure-activity relationship of uridine-based nucleoside phosphoramidate prodrugs for inhibition of dengue virus RNA-dependent RNA polymerase. Bioorg. Med. Chem. Lett., 2018, 28(13), 2324-2327. doi: 10.1016/j.bmcl.2018.04.069 PMID: 29801997
  177. Coulerie, P.; Maciuk, A.; Eydoux, C.; Hnawia, E.; Lebouvier, N.; Figadère, B.; Guillemot, J-C.; Nour, M. New inhibitors of the DENV-NS 5 RdRp from carpolepis laurifolia as potential antiviral drugs for dengue treatment. Rec. Nat. Prod., 2014, 8(3), 286.
  178. Tarantino, D.; Cannalire, R.; Mastrangelo, E.; Croci, R.; Querat, G.; Barreca, M.L.; Bolognesi, M.; Manfroni, G.; Cecchetti, V.; Milani, M. Targeting flavivirus RNA dependent RNA polymerase through a pyridobenzothiazole inhibitor. Antiviral Res., 2016, 134, 226-235. doi: 10.1016/j.antiviral.2016.09.007 PMID: 27649989
  179. Yao, X.; Ling, Y.; Guo, S.; He, S.; Wang, J.; Zhang, Q.; Wu, W.; Zou, M.; Zhang, T.; Nandakumar, K.S.; Chen, X.; Liu, S. Inhibition of dengue viral infection by diasarone-I is associated with 2'O methyltransferase of NS5. Eur. J. Pharmacol., 2018, 821, 11-20. doi: 10.1016/j.ejphar.2017.12.029
  180. Vernekar, S.K.V.; Qiu, L.; Zhang, J.; Kankanala, J.; Li, H.; Geraghty, R.J.; Wang, Z. 5′-Silylated 3′-1,2,3-triazolyl thymidine analogues as inhibitors of west nile virus and dengue virus. J. Med. Chem., 2015, 58(9), 4016-4028. doi: 10.1021/acs.jmedchem.5b00327 PMID: 25909386
  181. Benmansour, F.; Trist, I.; Coutard, B.; Decroly, E.; Querat, G.; Brancale, A.; Barral, K. Discovery of novel dengue virus NS5 methyltransferase non-nucleoside inhibitors by fragment-based drug design. Eur. J. Med. Chem., 2017, 125, 865-880. doi: 10.1016/j.ejmech.2016.10.007 PMID: 27750202
  182. Brecher, M.; Chen, H.; Liu, B.; Banavali, N.K.; Jones, S.A.; Zhang, J.; Li, Z.; Kramer, L.D.; Li, H. Novel broad spectrum inhibitors targeting the flavivirus methyltransferase. PLoS One, 2015, 10(6), e0130062. doi: 10.1371/journal.pone.0130062 PMID: 26098995
  183. Beesetti, H.; Khanna, N.; Swaminathan, S. Investigational drugs in early development for treating dengue infection. Expert Opin. Investig. Drugs, 2016, 25(9), 1059-1069. doi: 10.1080/13543784.2016.1201063 PMID: 27322111

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024