Exploring Scoring Function Space: Developing Computational Models for Drug Discovery
- Authors: Bitencourt-Ferreira G.1, Villarreal M.2, Quiroga R.2, Biziukova N.3, Poroikov V.3, Tarasova O.3, de Azevedo Junior W.1
-
Affiliations:
- , Pontifical Catholic University of Rio Grande do Sul - PUCRS,
- CONICET-Departamento de Matemática y Física, Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Facultad de Ciencias Químicas,, Universidad Nacional de Córdoba, Ciudad Universitaria
- , Institute of Biomedical Chemistry
- Issue: Vol 31, No 17 (2024)
- Pages: 2361-2377
- Section: Anti-Infectives and Infectious Diseases
- URL: https://medjrf.com/0929-8673/article/view/644479
- DOI: https://doi.org/10.2174/0929867330666230321103731
- ID: 644479
Cite item
Full Text
Abstract
Background:The idea of scoring function space established a systems-level approach to address the development of models to predict the affinity of drug molecules by those interested in drug discovery.
Objective:Our goal here is to review the concept of scoring function space and how to explore it to develop machine learning models to address protein-ligand binding affinity.
Methods:We searched the articles available in PubMed related to the scoring function space. We also utilized crystallographic structures found in the protein data bank (PDB) to represent the protein space.
Results:The application of systems-level approaches to address receptor-drug interactions allows us to have a holistic view of the process of drug discovery. The scoring function space adds flexibility to the process since it makes it possible to see drug discovery as a relationship involving mathematical spaces.
Conclusion:The application of the concept of scoring function space has provided us with an integrated view of drug discovery methods. This concept is useful during drug discovery, where we see the process as a computational search of the scoring function space to find an adequate model to predict receptor-drug binding affinity.
About the authors
Gabriela Bitencourt-Ferreira
, Pontifical Catholic University of Rio Grande do Sul - PUCRS,
Email: info@benthamscience.net
Marcos Villarreal
CONICET-Departamento de Matemática y Física, Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Facultad de Ciencias Químicas,, Universidad Nacional de Córdoba, Ciudad Universitaria
Email: info@benthamscience.net
Rodrigo Quiroga
CONICET-Departamento de Matemática y Física, Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Facultad de Ciencias Químicas,, Universidad Nacional de Córdoba, Ciudad Universitaria
Email: info@benthamscience.net
Nadezhda Biziukova
, Institute of Biomedical Chemistry
Email: info@benthamscience.net
Vladimir Poroikov
, Institute of Biomedical Chemistry
Email: info@benthamscience.net
Olga Tarasova
, Institute of Biomedical Chemistry
Author for correspondence.
Email: info@benthamscience.net
Walter de Azevedo Junior
, Pontifical Catholic University of Rio Grande do Sul - PUCRS,
Author for correspondence.
Email: info@benthamscience.net
References
- Bitencourt-Ferreira, G.; de Azevedo, W.F., J.r. Exploring the scoring function space. Methods Mol. Biol., 2019, 2053, 275-281. doi: 10.1007/978-1-4939-9752-7_17 PMID: 31452111
- Heck, G.S.; Pintro, V.O.; Pereira, R.R.; de Ávila, M.B.; Levin, N.M.B.; de Azevedo, W.F. Supervised machine learning methods applied to predict ligand- binding affinity. Curr. Med. Chem., 2017, 24(23), 2459-2470. PMID: 28641555
- Ross, G.A.; Morris, G.M.; Biggin, P.C. One size does not fit all: The limits of structure-based models in drug discovery. J. Chem. Theory Comput., 2013, 9(9), 4266-4274. doi: 10.1021/ct4004228 PMID: 24124403
- Aghamiri, S.S.; Amin, R.; Helikar, T. Recent applications of quantitative systems pharmacology and machine learning models across diseases. J. Pharmacokinet. Pharmacodyn., 2022, 49(1), 19-37. doi: 10.1007/s10928-021-09790-9 PMID: 34671863
- Abbasi, K.; Razzaghi, P.; Poso, A.; Ghanbari-Ara, S.; Masoudi-Nejad, A. Deep learning in drug target interaction prediction: Current and future perspectives. Curr. Med. Chem., 2021, 28(11), 2100-2113. doi: 10.2174/1875533XMTA5qNzU62 PMID: 32895036
- Gkeka, P.; Stoltz, G.; Barati Farimani, A.; Belkacemi, Z.; Ceriotti, M.; Chodera, J.D.; Dinner, A.R.; Ferguson, A.L.; Maillet, J.B.; Minoux, H.; Peter, C.; Pietrucci, F.; Silveira, A.; Tkatchenko, A.; Trstanova, Z.; Wiewiora, R.; Lelièvre, T. Machine learning force fields and coarse-grained variables in molecular dynamics: Application to materials and biological systems. J. Chem. Theory Comput., 2020, 16(8), 4757-4775. doi: 10.1021/acs.jctc.0c00355 PMID: 32559068
- Bitencourt-Ferreira, G.; Duarte da Silva, A.; Filgueira de Azevedo, W., J.r. Application of machine learning techniques to predict binding affinity for drug targets: A study of cyclin-dependent kinase 2. Curr. Med. Chem., 2021, 28(2), 253-265. doi: 10.2174/1875533XMTAy4MDQm4 PMID: 31729287
- Xie, L.; Draizen, E.J.; Bourne, P.E. Harnessing big data for systems pharmacology. Annu. Rev. Pharmacol. Toxicol., 2017, 57(1), 245-262. doi: 10.1146/annurev-pharmtox-010716-104659 PMID: 27814027
- Kandoi, G.; Acencio, M.L.; Lemke, N. Prediction of druggable proteins using machine learning and systems biology: A mini-review. Front. Physiol., 2015, 6, 366. doi: 10.3389/fphys.2015.00366 PMID: 26696900
- Abedi, M.; Marateb, H.R.; Mohebian, M.R.; Aghaee-Bakhtiari, S.H.; Nassiri, S.M.; Gheisari, Y. Systems biology and machine learning approaches identify drug targets in diabetic nephropathy. Sci. Rep., 2021, 11(1), 23452. doi: 10.1038/s41598-021-02282-3 PMID: 34873190
- Huang, Y.W.; Hsu, Y.C.; Chuang, Y.H.; Chen, Y.T.; Lin, X.Y.; Fan, Y.W.; Pathak, N.; Yang, J.M. Discovery of moiety preference by Shapley value in protein kinase family using random forest models. BMC Bioinformatics, 2022, 23(S4), 130. doi: 10.1186/s12859-022-04663-5 PMID: 35428180
- Goldman, S.; Das, R.; Yang, K.K.; Coley, C.W. Machine learning modeling of family wide enzyme-substrate specificity screens. PLOS Comput. Biol., 2022, 18(2), e1009853. doi: 10.1371/journal.pcbi.1009853 PMID: 35143485
- Bohacek, R.S.; McMartin, C.; Guida, W.C. The art and practice of structure-based drug design: A molecular modeling perspective. Med. Res. Rev., 1996, 16(1), 3-50. doi: 10.1002/(SICI)1098-1128(199601)16:13.0.CO;2-6 PMID: 8788213
- Dobson, C.M. Chemical space and biology. Nature, 2004, 432(7019), 824-828. doi: 10.1038/nature03192 PMID: 15602547
- Kirkpatrick, P.; Ellis, C. Chemical space. Nature, 2004, 432(7019), 823. doi: 10.1038/432823a
- Lipinski, C.; Hopkins, A. Navigating chemical space for biology and medicine. Nature, 2004, 432(7019), 855-861. doi: 10.1038/nature03193 PMID: 15602551
- Shoichet, B.K. Virtual screening of chemical libraries. Nature, 2004, 432(7019), 862-865. doi: 10.1038/nature03197 PMID: 15602552
- Stockwell, B.R. Exploring biology with small organic molecules. Nature, 2004, 432(7019), 846-854. doi: 10.1038/nature03196 PMID: 15602550
- Maynard Smith, J. Natural selection and the concept of a protein space. Nature, 1970, 225(5232), 563-564. doi: 10.1038/225563a0 PMID: 5411867
- Hou, J.; Jun, S.R.; Zhang, C.; Kim, S.H. Global mapping of the protein structure space and application in structure-based inference of protein function. Proc. Natl. Acad. Sci., 2005, 102(10), 3651-3656. doi: 10.1073/pnas.0409772102 PMID: 15705717
- Bepler, T.; Berger, B. Learning the protein language: Evolution, structure, and function. Cell Syst., 2021, 12(6), 654-669.e3. doi: 10.1016/j.cels.2021.05.017 PMID: 34139171
- Vila, J.A. About the protein space vastness. Protein J., 2020, 39(5), 472-475. doi: 10.1007/s10930-020-09939-4 PMID: 33130957
- Hecht, N.; Monteil, C.L.; Perrière, G.; Vishkautzan, M.; Gur, E. Exploring protein space: From hydrolase to ligase by substitution. Mol. Biol. Evol., 2021, 38(3), 761-776. doi: 10.1093/molbev/msaa215 PMID: 32870983
- Ogbunugafor, C.B. A Reflection on 50 Years of John Maynard Smiths "Protein Space". Genetics, 2020, 214(4), 749-754. doi: 10.1534/genetics.119.302764 PMID: 32291354
- Ogbunugafor, C.B.; Hartl, D.L. A New Take on John Maynard Smiths concept of protein space for understanding molecular evolution. PLOS Comput. Biol., 2016, 12(10), e1005046. doi: 10.1371/journal.pcbi.1005046 PMID: 27736867
- Gorse, A.D. Diversity in medicinal chemistry space. Curr. Top. Med. Chem., 2006, 6(1), 3-18. doi: 10.2174/156802606775193310 PMID: 16454754
- Langdon, S.R.; Brown, N.; Blagg, J. Scaffold diversity of exemplified medicinal chemistry space. J. Chem. Inf. Model., 2011, 51(9), 2174-2185. doi: 10.1021/ci2001428 PMID: 21877753
- Westerhoff, H.V.; Palsson, B.O. The evolution of molecular biology into systems biology. Nat. Biotechnol., 2004, 22(10), 1249-1252. doi: 10.1038/nbt1020 PMID: 15470464
- Limbu, S.; Dakshanamurthy, S. A new hybrid neural network deep learning method for proteinligand binding affinity prediction and de novo drug design. Int. J. Mol. Sci., 2022, 23(22), 13912. doi: 10.3390/ijms232213912 PMID: 36430386
- Hahn, D.F.; Bayly, C.I.; Boby, M.L.; Bruce Macdonald, H.E.; Chodera, J.D.; Gapsys, V.; Mey, A.S.J.S.; Mobley, D.L.; Benito, L.P.; Schindler, C.E.M.; Tresadern, G.; Warren, G.L. Best practices for constructing, preparing, and evaluating protein-ligand binding affinity benchmarks. Living J. Comput. Mol. Sci., 2022, 4(1), 1497. doi: 10.33011/livecoms.4.1.1497 PMID: 36382113
- Scott, O.B.; Gu, J.; Chan, A.W.E. Classification of protein-binding sites using a spherical convolutional neural network. J. Chem. Inf. Model., 2022, 62(22), 5383-5396. doi: 10.1021/acs.jcim.2c00832 PMID: 36341715
- Sauer, S.; Matter, H.; Hessler, G.; Grebner, C. Optimizing interactions to protein binding sites by integrating docking-scoring strategies into generative AI methods. Front Chem., 2022, 10, 1012507. doi: 10.3389/fchem.2022.1012507 PMID: 36339033
- Bieniek, M.K.; Cree, B.; Pirie, R.; Horton, J.T.; Tatum, N.J.; Cole, D.J. An open-source molecular builder and free energy preparation workflow. Commun. Chem., 2022, 5(1), 136. doi: 10.1038/s42004-022-00754-9 PMID: 36320862
- Mudedla, S.K.; Braka, A.; Wu, S. Quantum-based machine learning and AI models to generate force field parameters for drug-like small molecules. Front. Mol. Biosci., 2022, 9, 1002535. doi: 10.3389/fmolb.2022.1002535 PMID: 36304919
- Ballester, P.J.; Mitchell, J.B.O. A machine learning approach to predicting proteinligand binding affinity with applications to molecular docking. Bioinformatics, 2010, 26(9), 1169-1175. doi: 10.1093/bioinformatics/btq112 PMID: 20236947
- Ballester, P.J.; Schreyer, A.; Blundell, T.L. Does a more precise chemical description of protein-ligand complexes lead to more accurate prediction of binding affinity? J. Chem. Inf. Model., 2014, 54(3), 944-955. doi: 10.1021/ci500091r PMID: 24528282
- Li, H.; Leung, K-S.; Wong, M-H.; Ballester, P.J. The impact of docking pose generation error on the prediction of binding affinity. In: Computational intelligence methods for bioinformatics and biostatistics, 11th International Meeting, CIBB, Cambridge, UK, June 26-28, 2014, Springer: Cambridge, UK2015, pp. 231-241. doi: 10.1007/978-3-319-24462-4_20
- Li, H.; Leung, K.S.; Ballester, P.J.; Wong, M.H. istar: A web platform for large-scale protein-ligand docking. PLoS One, 2014, 9(1), e85678. doi: 10.1371/journal.pone.0085678 PMID: 24475049
- Murugan, N.A.; Muvva, C.; Jeyarajpandian, C.; Jeyakanthan, J.; Subramanian, V. Performance of force-field- and machine learning-based scoring functions in ranking MAO-B proteininhibitor complexes in relevance to developing Parkinsons therapeutics. Int. J. Mol. Sci., 2020, 21(20), 7648. doi: 10.3390/ijms21207648 PMID: 33081086
- Mohanan, A.; Melge, A.R.; Mohan, C.G. Predicting the molecular mechanism of EGFR domain II dimer binding interface by machine learning to identify potent small molecule inhibitor for treatment of cancer. J. Pharm. Sci., 2021, 110(2), 727-737. doi: 10.1016/j.xphs.2020.10.015 PMID: 33058896
- Decherchi, S.; Cavalli, A. Thermodynamics and kinetics of drug-target binding by molecular simulation. Chem. Rev., 2020, 120(23), 12788-12833. doi: 10.1021/acs.chemrev.0c00534 PMID: 33006893
- Barra, C.; Ackaert, C.; Reynisson, B.; Schockaert, J.; Jessen, L.E.; Watson, M.; Jang, A.; Comtois-Marotte, S.; Goulet, J.P.; Pattijn, S.; Paramithiotis, E.; Nielsen, M. Immunopeptidomic data integration to artificial neural networks enhances protein-drug immunogenicity prediction. Front. Immunol., 2020, 11, 1304. doi: 10.3389/fimmu.2020.01304 PMID: 32655572
- Stepniewska-Dziubinska, M.M.; Zielenkiewicz, P.; Siedlecki, P. Improving detection of protein-ligand binding sites with 3D segmentation. Sci. Rep., 2020, 10(1), 5035. doi: 10.1038/s41598-020-61860-z PMID: 32193447
- DSouza, S.; Prema, K.V.; Balaji, S. Machine learning models for drugtarget interactions: Current knowledge and future directions. Drug Discov. Today, 2020, 25(4), 748-756. doi: 10.1016/j.drudis.2020.03.003 PMID: 32171918
- Boyles, F.; Deane, C.M.; Morris, G.M. Learning from the ligand: using ligand-based features to improve binding affinity prediction. Bioinformatics, 2020, 36(3), 758-764. PMID: 31598630
- Aranha, M.P.; Spooner, C.; Demerdash, O.; Czejdo, B.; Smith, J.C.; Mitchell, J.C. Prediction of peptide binding to MHC using machine learning with sequence and structure-based feature sets. Biochim. Biophys. Acta, 2020, 1864(4), 129535. doi: 10.1016/j.bbagen.2020.129535 PMID: 31954798
- Zhao, L.; Wang, J.; Pang, L.; Liu, Y.; Zhang, J. GANsDTA: Predicting drug-target binding affinity using GANs. Front. Genet., 2020, 10, 1243. doi: 10.3389/fgene.2019.01243 PMID: 31993067
- Miyazaki, Y.; Ono, N.; Huang, M.; Altaf-Ul-Amin, M.; Kanaya, S. Comprehensive exploration of target-specific ligands using a graph convolution neural network. Mol. Inform., 2020, 39(1-2), 1900095. doi: 10.1002/minf.201900095 PMID: 31815371
- Zheng, L.; Fan, J.; Mu, Y. OnionNet: A multiple-layer intermolecular-contact-based convolutional neural network for proteinligand binding affinity prediction. ACS Omega, 2019, 4(14), 15956-15965. doi: 10.1021/acsomega.9b01997 PMID: 31592466
- Smith, C.C.; Chai, S.; Washington, A.R.; Lee, S.J.; Landoni, E.; Field, K.; Garness, J.; Bixby, L.M.; Selitsky, S.R.; Parker, J.S.; Savoldo, B.; Serody, J.S.; Vincent, B.G. Machine-learning prediction of tumor antigen immunogenicity in the selection of therapeutic epitopes. Cancer Immunol. Res., 2019, 7(10), 1591-1604. doi: 10.1158/2326-6066.CIR-19-0155 PMID: 31515258
- Vincenzi, M.; Mercurio, F.A.; Leone, M. Protein interaction domains and post-translational modifications: Structural features and drug discovery applications. Curr. Med. Chem., 2020, 27(37), 6306-6355. doi: 10.2174/0929867326666190620101637 PMID: 31250750
- Vincenzi, M.; Mercurio, F.A.; Leone, M. Protein interaction domains: Structural features and drug discovery applications (Part 2). Curr. Med. Chem., 2021, 28(5), 854-892. doi: 10.2174/0929867327666200114114142 PMID: 31942846
- Guzenko, D.; Burley, S.K.; Duarte, J.M. Real time structural search of the protein data bank. PLOS Comput. Biol., 2020, 16(7), e1007970. doi: 10.1371/journal.pcbi.1007970 PMID: 32639954
- Bittrich, S.; Burley, S.K.; Rose, A.S. Real-time structural motif searching in proteins using an inverted index strategy. PLOS Comput. Biol., 2020, 16(12), e1008502. doi: 10.1371/journal.pcbi.1008502 PMID: 33284792
- Sehnal, D.; Bittrich, S.; Velankar, S.; Koča, J.; Svobodová, R.; Burley, S.K.; Rose, A.S. BinaryCIF and CIFToolsLightweight, efficient and extensible macromolecular data management. PLOS Comput. Biol., 2020, 16(10), e1008247. doi: 10.1371/journal.pcbi.1008247 PMID: 33075050
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M.; Dutta, S.; Feng, Z.; Ganesan, S.; Goodsell, D.S.; Ghosh, S.; Green, R.K.; Guranović, V.; Guzenko, D.; Hudson, B.P.; Lawson, C.L.; Liang, Y.; Lowe, R.; Namkoong, H.; Peisach, E.; Persikova, I.; Randle, C.; Rose, A.; Rose, Y.; Sali, A.; Segura, J.; Sekharan, M.; Shao, C.; Tao, Y.P.; Voigt, M.; Westbrook, J.D.; Young, J.Y.; Zardecki, C.; Zhuravleva, M. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res., 2021, 49(D1), D437-D451. doi: 10.1093/nar/gkaa1038 PMID: 33211854
- Berman, H.M.; Vallat, B.; Lawson, C.L. The data universe of structural biology. IUCrJ, 2020, 7(4), 630-638. doi: 10.1107/S205225252000562X PMID: 32695409
- Sehnal, D.; Svobodová, R.; Berka, K.; Rose, A.S.; Burley, S.K.; Velankar, S.; Koča, J. High-performance macromolecular data delivery and visualization for the web. Acta Crystallogr. D Struct. Biol., 2020, 76(12), 1167-1173. doi: 10.1107/S2059798320014515 PMID: 33263322
- Rose, Y.; Duarte, J.M.; Lowe, R.; Segura, J.; Bi, C.; Bhikadiya, C.; Chen, L.; Rose, A.S.; Bittrich, S.; Burley, S.K.; Westbrook, J.D. RCSB Protein Data Bank: Architectural advances towards integrated searching and efficient access to macromolecular structure data from the PDB archive. J. Mol. Biol., 2021, 433(11), 166704. doi: 10.1016/j.jmb.2020.11.003 PMID: 33186584
- Canduri, F.; de Azevedo, W., J.r. Protein crystallography in drug discovery. Curr. Drug Targets, 2008, 9(12), 1048-1053. doi: 10.2174/138945008786949423 PMID: 19128214
- Coates, L.; Myles, D.A. Prospects for atomic resolution and neutron crystallography in drug design. Curr. Drug Targets, 2004, 5(2), 173-178. doi: 10.2174/1389450043490613 PMID: 15011950
- Van Drie, J.H.; Tong, L. Cryo-EM as a powerful tool for drug discovery. Bioorg. Med. Chem. Lett., 2020, 30(22), 127524. doi: 10.1016/j.bmcl.2020.127524 PMID: 32890683
- Shimada, I.; Ueda, T.; Kofuku, Y.; Eddy, M.T.; Wüthrich, K. GPCR drug discovery: Integrating solution NMR data with crystal and cryo-EM structures. Nat. Rev. Drug Discov., 2019, 18(1), 59-82. doi: 10.1038/nrd.2018.180 PMID: 30410121
- Fadel, V.; Bettendorff, P.; Herrmann, T.; de Azevedo, W.F., J.r. ; Oliveira, E.B.; Yamane, T.; Wüthrich, K. Automated NMR structure determination and disulfide bond identification of the myotoxin crotamine from Crotalus durissus terrificus. Toxicon, 2005, 46(7), 759-767. doi: 10.1016/j.toxicon.2005.07.018 PMID: 16185738
- Behzadi, P.; Gajdács, M. Worldwide Protein Data Bank (wwPDB): A virtual treasure for research in biotechnology. Eur. J. Microbiol. Immunol., 2022, 11(4), 77-86. doi: 10.1556/1886.2021.00020 PMID: 34908533
- Perez, M.A.S.; Cuendet, M.A.; Röhrig, U.F.; Michielin, O.; Zoete, V. Structural prediction of PeptideMHC binding modes. Methods Mol. Biol., 2022, 2405, 245-282. doi: 10.1007/978-1-0716-1855-4_13 PMID: 35298818
- Dey, S.; Prilusky, J.; Levy, E.D. QSalignWeb: A server to predict and analyze protein quaternary structure. Front. Mol. Biosci., 2022, 8, 787510. doi: 10.3389/fmolb.2021.787510 PMID: 35071324
- Christoffer, C.; Bharadwaj, V.; Luu, R.; Kihara, D. LZerD protein-protein docking webserver enhanced with de novo structure prediction. Front. Mol. Biosci., 2021, 8, 724947. doi: 10.3389/fmolb.2021.724947 PMID: 34466411
- Westbrook, J.D.; Soskind, R.; Hudson, B.P.; Burley, S.K. Impact of the Protein Data Bank on antineoplastic approvals. Drug Discov. Today, 2020, 25(5), 837-850. doi: 10.1016/j.drudis.2020.02.002 PMID: 32068073
- Ionescu, M.I. An overview of the crystallized structures of the SARS-CoV-2. Protein J., 2020, 39(6), 600-618. doi: 10.1007/s10930-020-09933-w PMID: 33098476
- Goodsell, D.S.; Burley, S.K. RCSB Protein Data Bank tools for 3D structure-guided cancer research: Human papillomavirus (HPV) case study. Oncogene, 2020, 39(43), 6623-6632. doi: 10.1038/s41388-020-01461-2 PMID: 32939013
- Di Costanzo, L.; Geremia, S. Atomic details of carbon-based nanomolecules interacting with proteins. Molecules, 2020, 25(15), 3555. doi: 10.3390/molecules25153555 PMID: 32759758
- Wang, J.; Yazdani, S.; Han, A.; Schapira, M. Structure-based view of the druggable genome. Drug Discov. Today, 2020, 25(3), 561-567. doi: 10.1016/j.drudis.2020.02.006 PMID: 32084498
- Copoiu, L.; Malhotra, S. The current structural glycome landscape and emerging technologies. Curr. Opin. Struct. Biol., 2020, 62, 132-139. doi: 10.1016/j.sbi.2019.12.020 PMID: 32006784
- Haas, D.J. The early history of cryo-cooling for macromolecular crystallography. IUCrJ, 2020, 7(2), 148-157. doi: 10.1107/S2052252519016993 PMID: 32148843
- Bascos, N.A.D.; Landry, S.J. A history of molecular chaperone structures in the Protein Data Bank. Int. J. Mol. Sci., 2019, 20(24), 6195. doi: 10.3390/ijms20246195 PMID: 31817979
- Weber, P.; Pissis, C.; Navaza, R.; Mechaly, A.E.; Saul, F.; Alzari, P.M.; Haouz, A. High-throughput crystallization pipeline at the crystallography core facility of the institut pasteur. Molecules, 2019, 24(24), 4451. doi: 10.3390/molecules24244451 PMID: 31817305
- Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321. doi: 10.1021/jm051197e PMID: 16722650
- Heberlé, G.; de Azevedo, W.F., J.r. Bio-inspired algorithms applied to molecular docking simulations. Curr. Med. Chem., 2011, 18(9), 1339-1352. doi: 10.2174/092986711795029573 PMID: 21366530
- Bitencourt-Ferreira, G.; de Azevedo, W.F., J.r. Molegro virtual docker for docking. Methods Mol. Biol., 2019, 2053, 149-167. doi: 10.1007/978-1-4939-9752-7_10 PMID: 31452104
- Sterling, T.; Irwin, J.J. ZINC 15 ligand discovery for everyone. J. Chem. Inf. Model., 2015, 55(11), 2324-2337. doi: 10.1021/acs.jcim.5b00559 PMID: 26479676
- Irwin, J.J.; Sterling, T.; Mysinger, M.M.; Bolstad, E.S.; Coleman, R.G. ZINC: A free tool to discover chemistry for biology. J. Chem. Inf. Model., 2012, 52(7), 1757-1768. doi: 10.1021/ci3001277 PMID: 22587354
- Irwin, J.J.; Shoichet, B.K. ZINC - a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model., 2005, 45(1), 177-182. doi: 10.1021/ci049714+ PMID: 15667143
- Anwar, F.; Naqvi, S.; Al-Abbasi, F.A.; Neelofar, N.; Kumar, V.; Sahoo, A.; Kamal, M.A. Targeting COVID-19 in Parkinsons patients: Drugs repurposed. Curr. Med. Chem., 2021, 28(12), 2392-2408. PMID: 32881656
- Wang, N.; Qiu, P.; Cui, W.; Yan, X.; Zhang, B.; He, S. Recent advances in multi-target anti-alzheimer disease compounds (2013 Up to the Present). Curr. Med. Chem., 2019, 26(30), 5684-5710. doi: 10.2174/0929867326666181203124102 PMID: 30501591
- Konreddy, A.K.; Rani, G.U.; Lee, K.; Choi, Y. Recent drug-repurposing-driven advances in the discovery of novel antibiotics. Curr. Med. Chem., 2019, 26(28), 5363-5388. doi: 10.2174/0929867325666180706101404 PMID: 29984648
- Mernea, M.; Martin, E.C.; Petrescu, A.J.; Avram, S. Deep learning in the quest for compound nomination for fighting COVID-19. Curr. Med. Chem., 2021, 28(28), 5699-5732. doi: 10.2174/0929867328666210113170222 PMID: 33441063
- Grassi, G.; Grassi, M. Drug repurposing in human cancers. Curr. Med. Chem., 2020, 27(42), 7213. doi: 10.2174/092986732742201105104417 PMID: 33342397
- Musella, S.; Verna, G.; Fasano, A.; Di Micco, S. New perspectives on machine learning in drug discovery. Curr. Med. Chem., 2021, 28(32), 6704-6728. doi: 10.2174/0929867327666201111144048 PMID: 33176630
- Schcolnik-Cabrera, A.; Juárez-López, D.; Duenas-Gonzalez, A. Perspectives on drug repurposing. Curr. Med. Chem., 2021, 28(11), 2085-2099. doi: 10.2174/0929867327666200831141337 PMID: 32867630
- Bitencourt-Ferreira, G.; de Azevedo, W.F., J.r. Molecular docking simulations with arguslab. Methods Mol. Biol., 2019, 2053, 203-220. doi: 10.1007/978-1-4939-9752-7_13 PMID: 31452107
- Bitencourt-Ferreira, G.; de Azevedo, W.F., J.r. Docking with SwissDock. Methods Mol. Biol., 2019, 2053, 189-202. doi: 10.1007/978-1-4939-9752-7_12
- Bitencourt-Ferreira, G.; de Azevedo, W.F., J.r. How docking programs work. Methods Mol. Biol., 2019, 2053, 35-50. doi: 10.1007/978-1-4939-9752-7_3 PMID: 31452097
- Bitencourt-Ferreira, G.; Pintro, V.O.; de Azevedo, W.F., J.r. Docking with AutoDock4. Methods Mol. Biol., 2019, 2053, 125-148. doi: 10.1007/978-1-4939-9752-7_9 PMID: 31452103
- Bitencourt-Ferreira, G.; de Azevedo, W.F., J.r. Docking with GemDock. Methods Mol. Biol., 2019, 2053, 169-188. doi: 10.1007/978-1-4939-9752-7_11 PMID: 31452105
- Pintro, V.O.; de Azevedo, W.F., J.r. Optimized virtual screening workflow: Towards target-based polynomial scoring functions for HIV-1 protease. Comb. Chem. High Throughput Screen., 2018, 20(9), 820-827. doi: 10.2174/1386207320666171121110019 PMID: 29165067
- Santana Azevedo, L.; Pretto Moraes, F.; Morrone Xavier, M.; Ozorio Pantoja, E.; Villavicencio, B.; Aline Finck, J.; Menegaz Proenca, A.; Beiestorf Rocha, K.; Filgueira de Azevedo, W. Recent progress of molecular docking simulations applied to development of drugs. Curr. Bioinform., 2012, 7(4), 352-365. doi: 10.2174/157489312803901063
- De Azevedo, W.F., J.r. Structure-based virtual screening. Curr. Drug Targets, 2010, 11(3), 261-263. PMID: 20214598
- De Azevedo, W., J.r. MolDock applied to structure-based virtual screening. Curr. Drug Targets, 2010, 11(3), 327-334. doi: 10.2174/138945010790711941 PMID: 20210757
- Breda, A.; Basso, L.; Santos, D.; de Azevedo, W., J.r. Virtual screening of drugs: Score functions, docking, and drug design. Curr. Computeraided Drug Des., 2008, 4(4), 265-272. doi: 10.2174/157340908786786047
- Jimenez, M.; Campillo, N.E.; Canelles, M. COVID-19 vaccine race: Analysis of age-dependent immune responses against SARS-CoV-2 indicates that more than just one strategy may be needed. Curr. Med. Chem., 2021, 28(20), 3964-3979. doi: 10.2174/1875533XMTEwBOTYhx PMID: 33109026
- dos Santos Nascimento, I.J.; de Aquino, T.M.; da Silva-Júnior, E.F. Drug repurposing: A strategy for discovering inhibitors against emerging viral infections. Curr. Med. Chem., 2021, 28(15), 2887-2942. doi: 10.2174/1875533XMTA5rMDYp5 PMID: 32787752
- Tarasova, O.; Ivanov, S.; Filimonov, D.A.; Poroikov, V. Data and text mining help identify key proteins involved in the molecular mechanisms shared by SARS-CoV-2 and HIV-1. Molecules, 2020, 25(12), 2944. doi: 10.3390/molecules25122944 PMID: 32604797
- Luan, B.; Huynh, T.; Cheng, X.; Lan, G.; Wang, H.R. Targeting proteases for treating COVID-19. J. Proteome Res., 2020, 19(11), 4316-4326. doi: 10.1021/acs.jproteome.0c00430 PMID: 33090793
- Li, J.; Zhou, X.; Zhang, Y.; Zhong, F.; Lin, C.; McCormick, P.J.; Jiang, F.; Luo, J.; Zhou, H.; Wang, Q.; Fu, Y.; Duan, J.; Zhang, J. Crystal structure of SARS-CoV-2 main protease in complex with the natural product inhibitor shikonin illuminates a unique binding mode. Sci. Bull., 2021, 66(7), 661-663. doi: 10.1016/j.scib.2020.10.018 PMID: 33163253
- Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 2020, 368(6489), 409-412. doi: 10.1126/science.abb3405 PMID: 32198291
- Mengist, H.M.; Fan, X.; Jin, T. Designing of improved drugs for COVID-19: Crystal structure of SARS-CoV-2 main protease Mpro. Signal Transduct. Target. Ther., 2020, 5(1), 67. doi: 10.1038/s41392-020-0178-y PMID: 32388537
- Hussein, R.K.; Elkhair, H.M. Molecular docking identification for the efficacy of some zinc complexes with chloroquine and hydroxychloroquine against main protease of COVID-19. J. Mol. Struct., 2021, 1231, 129979. doi: 10.1016/j.molstruc.2021.129979 PMID: 33518801
- Ronsisvalle, S.; Panarello, F.; Di Mauro, R.; Bernardini, R.; Volti, G.L.; Cantarella, G. Anti-malarial drugs are not created equal for SARS-CoV-2 treatment: A computational analysis evidence. Curr. Pharm. Des., 2021, 27(10), 1323-1329. doi: 10.2174/1381612826666201210092736 PMID: 33302855
- Li, Z.; Li, X.; Huang, Y.Y.; Wu, Y.; Liu, R.; Zhou, L.; Lin, Y.; Wu, D.; Zhang, L.; Liu, H.; Xu, X.; Yu, K.; Zhang, Y.; Cui, J.; Zhan, C.G.; Wang, X.; Luo, H.B. Identify potent SARS-CoV-2 main protease inhibitors via accelerated free energy perturbation-based virtual screening of existing drugs. Proc. Natl. Acad. Sci. USA, 2020, 117(44), 27381-27387. doi: 10.1073/pnas.2010470117 PMID: 33051297
- Achutha, A.S.; Pushpa, V.L.; Suchitra, S. Theoretical insights into the Anti-SARS-CoV-2 activity of chloroquine and its analogs and in silico screening of main protease inhibitors. J. Proteome Res., 2020, 19(11), 4706-4717. doi: 10.1021/acs.jproteome.0c00683 PMID: 32960061
- Tripathi, P.K.; Upadhyay, S.; Singh, M.; Raghavendhar, S.; Bhardwaj, M.; Sharma, P.; Patel, A.K. Screening and evaluation of approved drugs as inhibitors of main protease of SARS-CoV-2. Int. J. Biol. Macromol., 2020, 164, 2622-2631. doi: 10.1016/j.ijbiomac.2020.08.166 PMID: 32853604
- Nandi, S.; Kumar, M.; Saxena, M.; Saxena, A.K. The antiviral and antimalarial drug repurposing in quest of chemotherapeutics to combat COVID-19 utilizing structure-based molecular docking. Comb. Chem. High Throughput Screen., 2021, 24(7), 1055-1068. doi: 10.2174/1386207323999200824115536 PMID: 32838713
- Baildya, N.; Ghosh, N.N.; Chattopadhyay, A.P. Inhibitory activity of hydroxychloroquine on COVID-19 main protease: An insight from MD-simulation studies. J. Mol. Struct., 2020, 1219, 128595. doi: 10.1016/j.molstruc.2020.128595 PMID: 32834108
- Mukherjee, S.; Dasgupta, S.; Adhikary, T.; Adhikari, U.; Panja, S.S. Structural insight to hydroxychloroquine-3C-like proteinase complexation from SARS-CoV-2: Inhibitor modelling study through molecular docking and MD-simulation study. J. Biomol. Struct. Dyn., 2021, 39(18), 7322-7334. doi: 10.1080/07391102.2020.1804458 PMID: 32772895
- Braz, H.L.B.; Silveira, J.A.M.; Marinho, A.D.; de Moraes, M.E.A.; Moraes Filho, M.O.; Monteiro, H.S.A.; Jorge, R.J.B. In silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection. Int. J. Antimicrob. Agents, 2020, 56(3), 106119. doi: 10.1016/j.ijantimicag.2020.106119 PMID: 32738306
- Silva Arouche, T.D.; Reis, A.F.; Martins, A.Y.; S Costa, J.F.; Carvalho Junior, R.N.; J C Neto, A.M. Interactions between remdesivir, ribavirin, favipiravir, galidesivir, hydroxychloroquine and chloroquine with fragment molecular of the COVID-19 main protease with inhibitor N3 complex (PDB ID:6LU7) using molecular docking. J. Nanosci. Nanotechnol., 2020, 20(12), 7311-7323. doi: 10.1166/jnn.2020.18955 PMID: 32711596
- Marinho, E.M.; Batista de Andrade Neto, J.; Silva, J.; Rocha da Silva, C.; Cavalcanti, B.C.; Marinho, E.S.; Nobre Júnior, H.V. Virtual screening based on molecular docking of possible inhibitors of COVID-19 main protease. Microb. Pathog., 2020, 148, 104365. doi: 10.1016/j.micpath.2020.104365 PMID: 32619669
- Fantini, J.; Chahinian, H.; Yahi, N. Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal. Int. J. Antimicrob. Agents, 2020, 56(2), 106020. doi: 10.1016/j.ijantimicag.2020.106020
- Enmozhi, S.K.; Raja, K.; Sebastine, I.; Joseph, J. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach. J. Biomol. Struct. Dyn., 2020, 5, 1-7. doi: 10.1080/07391102.2020.1760136 PMID: 32329419
- Hagar, M.; Ahmed, H.A.; Aljohani, G.; Alhaddad, O.A. Investigation of some antiviral N-heterocycles as COVID 19 drug: Molecular docking and DFT calculations. Int. J. Mol. Sci., 2020, 21(11), 3922. doi: 10.3390/ijms21113922 PMID: 32486229
- Rehman, M.T.; AlAjmi, M.F.; Hussain, A. Natural compounds as inhibitors of SARS-CoV-2 main protease (3CLpro): A molecular docking and simulation approach to combat COVID-19. Curr. Pharm. Des., 2021, 27(33), 3577-3589. doi: 10.2174/18734286MTEx9NTUg2 PMID: 33200697
- Hoffmann, M.; Mösbauer, K.; Hofmann-Winkler, H.; Kaul, A.; Kleine-Weber, H.; Krüger, N.; Gassen, N.C.; Müller, M.A.; Drosten, C.; Pöhlmann, S. Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature, 2020, 585(7826), 588-590. doi: 10.1038/s41586-020-2575-3 PMID: 32698190
- Kupferschmidt, K. Big studies dim hopes for hydroxychloroquine. Science, 2020, 368(6496), 1166-1167. doi: 10.1126/science.368.6496.1166 PMID: 32527806
- Kuhn, D.; Weskamp, N.; Hüllermeier, E.; Klebe, G. Functional classification of protein kinase binding sites using Cavbase. ChemMedChem, 2007, 2(10), 1432-1447. doi: 10.1002/cmdc.200700075 PMID: 17694525
- Cao, D.S.; Zhou, G.H.; Liu, S.; Zhang, L.X.; Xu, Q.S.; He, M.; Liang, Y.Z. Large-scale prediction of human kinaseinhibitor interactions using protein sequences and molecular topological structures. Anal. Chim. Acta, 2013, 792, 10-18. doi: 10.1016/j.aca.2013.07.003 PMID: 23910962
- Rask-Andersen, M.; Masuram, S.; Schiöth, H.B. The druggable genome: Evaluation of drug targets in clinical trials suggests major shifts in molecular class and indication. Annu. Rev. Pharmacol. Toxicol., 2014, 54(1), 9-26. doi: 10.1146/annurev-pharmtox-011613-135943 PMID: 24016212
- Carles, F.; Bourg, S.; Meyer, C.; Bonnet, P. PKIDB: A curated, annotated and updated database of protein kinase inhibitors in clinical trials. Molecules, 2018, 23(4), 908. doi: 10.3390/molecules23040908 PMID: 29662024
- Li, L.; Koh, C.C.; Reker, D.; Brown, J.B.; Wang, H.; Lee, N.K.; Liow, H.; Dai, H.; Fan, H.M.; Chen, L.; Wei, D.Q. Predicting protein-ligand interactions based on bow-pharmacological space and Bayesian additive regression trees. Sci. Rep., 2019, 9(1), 7703. doi: 10.1038/s41598-019-43125-6 PMID: 31118426
- Mathai, N.; Stork, C.; Kirchmair, J. BonMOLière: Small-sized libraries of readily purchasable compounds, optimized to produce genuine hits in biological screens across the protein space. Int. J. Mol. Sci., 2021, 22(15), 7773. doi: 10.3390/ijms22157773 PMID: 34360558
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; ídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873), 583-589. doi: 10.1038/s41586-021-03819-2 PMID: 34265844
- Stern, J.; Hedelius, B.; Fisher, O.; Billings, W.M.; Della Corte, D. Evaluation of deep neural network prospr for accurate protein distance predictions on CASP14 targets. Int. J. Mol. Sci., 2021, 22(23), 12835. doi: 10.3390/ijms222312835 PMID: 34884640
- Roche, R.; Bhattacharya, S.; Bhattacharya, D. Hybridized distance- and contact-based hierarchical structure modeling for folding soluble and membrane proteins. PLOS Comput. Biol., 2021, 17(2), e1008753. doi: 10.1371/journal.pcbi.1008753 PMID: 33621244
- Cretin, G.; Galochkina, T.; de Brevern, A.G.; Gelly, J.C. PYTHIA: Deep learning approach for local protein conformation prediction. Int. J. Mol. Sci., 2021, 22(16), 8831. doi: 10.3390/ijms22168831 PMID: 34445537
- Callaway, E. Whats next for AlphaFold and the AI protein-folding revolution. Nature, 2022, 604(7905), 234-238. doi: 10.1038/d41586-022-00997-5 PMID: 35418629
- Sapoval, N.; Aghazadeh, A.; Nute, M.G.; Antunes, D.A.; Balaji, A.; Baraniuk, R.; Barberan, C.J.; Dannenfelser, R.; Dun, C.; Edrisi, M.; Elworth, R.A.L.; Kille, B.; Kyrillidis, A.; Nakhleh, L.; Wolfe, C.R.; Yan, Z.; Yao, V.; Treangen, T.J. Current progress and open challenges for applying deep learning across the biosciences. Nat. Commun., 2022, 13(1), 1728. doi: 10.1038/s41467-022-29268-7 PMID: 35365602
- Bayly-Jones, C.; Whisstock, J.C. Mining folded proteomes in the era of accurate structure prediction. PLOS Comput. Biol., 2022, 18(3), e1009930. doi: 10.1371/journal.pcbi.1009930 PMID: 35333855
- Ornes, S. Researchers turn to deep learning to decode protein structures. Proc. Natl. Acad. Sci. USA, 2022, 119(10), e2202107119. doi: 10.1073/pnas.2202107119 PMID: 35235461
- Orlando, G.; Raimondi, D.; Duran-Romaña, R.; Moreau, Y.; Schymkowitz, J.; Rousseau, F. PyUUL provides an interface between biological structures and deep learning algorithms. Nat. Commun., 2022, 13(1), 961. doi: 10.1038/s41467-022-28327-3 PMID: 35181656
- Lee, D.; Xiong, D.; Wierbowski, S.; Li, L.; Liang, S.; Yu, H. Deep learning methods for 3D structural proteome and interactome modeling. Curr. Opin. Struct. Biol., 2022, 73, 102329. doi: 10.1016/j.sbi.2022.102329 PMID: 35139457
- Pakhrin, S.C.; Shrestha, B.; Adhikari, B.; Kc, D.B. Deep learning-based advances in protein structure prediction. Int. J. Mol. Sci., 2021, 22(11), 5553. doi: 10.3390/ijms22115553 PMID: 34074028
- Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; Millán, C.; Park, H.; Adams, C.; Glassman, C.R.; DeGiovanni, A.; Pereira, J.H.; Rodrigues, A.V.; van Dijk, A.A.; Ebrecht, A.C.; Opperman, D.J.; Sagmeister, T.; Buhlheller, C.; Pavkov-Keller, T.; Rathinaswamy, M.K.; Dalwadi, U.; Yip, C.K.; Burke, J.E.; Garcia, K.C.; Grishin, N.V.; Adams, P.D.; Read, R.J.; Baker, D. Accurate prediction of protein structures and interactions using a three-track neural network. Science, 2021, 373(6557), 871-876. doi: 10.1126/science.abj8754 PMID: 34282049
- Anderson, E.; Havener, T.M.; Zorn, K.M.; Foil, D.H.; Lane, T.R.; Capuzzi, S.J.; Morris, D.; Hickey, A.J.; Drewry, D.H.; Ekins, S. Synergistic drug combinations and machine learning for drug repurposing in chordoma. Sci. Rep., 2020, 10(1), 12982. doi: 10.1038/s41598-020-70026-w PMID: 32737414
- Noor, A.; Bindal, P.; Ramirez, M.; Vredenburgh, J. Chordoma: A case report and review of literature. Am. J. Case Rep., 2020, 21, e918927. doi: 10.12659/AJCR.918927 PMID: 31969553
- Wójcikowski, M.; Siedlecki, P.; Ballester, P.J. Building machine-learning scoring functions for structure-based prediction of intermolecular binding affinity. Methods Mol. Biol., 2019, 2053, 1-12. doi: 10.1007/978-1-4939-9752-7_1 PMID: 31452095
- Xavier, M.M.; Heck, G.S.; Avila, M.B.; Levin, N.M.B.; Pintro, V.O.; Carvalho, N.L.; Azevedo, W.F., J.r. SAnDReS a computational tool for statistical analysis of docking results and development of scoring functions. Comb. Chem. High Throughput Screen., 2016, 19(10), 801-812. PMID: 27686428
- da Silva, A.D.; Bitencourt-Ferreira, G.; Azevedo, W.F., J.r. Taba: A tool to analyze the binding affinity. J. Comput. Chem., 2020, 41(1), 69-73. doi: 10.1002/jcc.26048 PMID: 31410856
- McNutt, A.T.; Francoeur, P.; Aggarwal, R.; Masuda, T.; Meli, R.; Ragoza, M.; Sunseri, J.; Koes, D.R. GNINA 1.0: Molecular docking with deep learning. J. Cheminform., 2021, 13(1), 43. doi: 10.1186/s13321-021-00522-2 PMID: 34108002
- Sunseri, J.; Koes, D.R. Virtual Screening with Gnina 1.0. Molecules, 2021, 26(23), 7369. doi: 10.3390/molecules26237369 PMID: 34885952
- Koes, D.R.; Baumgartner, M.P.; Camacho, C.J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model., 2013, 53(8), 1893-1904. doi: 10.1021/ci300604z PMID: 23379370
- Baumgartner, M.P.; Evans, D.A. Lessons learned in induced fit docking and metadynamics in the drug design data resource grand challenge 2. J. Comput. Aided Mol. Des., 2018, 32(1), 45-58. doi: 10.1007/s10822-017-0081-y PMID: 29127581
- Canduri, F.; Teodoro, L.G.V.L.; Fadel, V.; Lorenzi, C.C.B.; Hial, V.; Gomes, R.A.S.; Neto, J.R.; de Azevedo, W.F., J.r. Structure of human uropepsin at 2.45 Å resolution. Acta Crystallogr. D Biol. Crystallogr., 2001, 57(11), 1560-1570. doi: 10.1107/S0907444901013865 PMID: 11679720
- de Azevedo, W.F., J.r. ; Canduri, F.; dos Santos, D.M.; Silva, R.G.; de Oliveira, J.S.; de Carvalho, L.P.S.; Basso, L.A.; Mendes, M.A.; Palma, M.S.; Santos, D.S. Crystal structure of human purine nucleoside phosphorylase at 2.3Å resolution. Biochem. Biophys. Res. Commun., 2003, 308(3), 545-552. doi: 10.1016/S0006-291X(03)01431-1 PMID: 12914785
- Pereira, J.H.; de Oliveira, J.S.; Canduri, F.; Dias, M.V.; Palma, M.S.; Basso, L.A.; Santos, D.S.; de Azevedo, W.F., J.r. Structure of shikimate kinase from Mycobacterium tuberculosis reveals the binding of shikimic acid. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(Pt 12), 2310-2319.
- Azevedo, W.F.; Leclerc, S.; Meijer, L.; Havlicek, L.; Strnad, M.; Kim, S.H. Inhibition of cyclin-dependent kinases by purine analogues: Crystal structure of human CDK2 complexed with roscovitine. Eur. J. Biochem., 1997, 243(1-2), 518-526. doi: 10.1111/j.1432-1033.1997.0518a.x PMID: 9030780
- Dias, M.V.B.; Vasconcelos, I.B.; Prado, A.M.X.; Fadel, V.; Basso, L.A.; de Azevedo, W.F., J.r. ; Santos, D.S. Crystallographic studies on the binding of isonicotinyl-NAD adduct to wild-type and isoniazid resistant 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis. J. Struct. Biol., 2007, 159(3), 369-380. doi: 10.1016/j.jsb.2007.04.009 PMID: 17588773
- Bezerra, G.A.; Oliveira, T.M.; Moreno, F.B.M.B.; de Souza, E.P.; da Rocha, B.A.M.; Benevides, R.G.; Delatorre, P.; de Azevedo, W.F., J.r. ; Cavada, B.S. Structural analysis of Canavalia maritima and Canavalia gladiata lectins complexed with different dimannosides: New insights into the understanding of the structurebiological activity relationship in legume lectins. J. Struct. Biol., 2007, 160(2), 168-176. doi: 10.1016/j.jsb.2007.07.012 PMID: 17881248
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461. PMID: 19499576
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model., 2021, 61(8), 3891-3898. doi: 10.1021/acs.jcim.1c00203 PMID: 34278794
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791. doi: 10.1002/jcc.21256 PMID: 19399780
- Ain, Q.U.; Aleksandrova, A.; Roessler, F.D.; Ballester, P.J. Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2015, 5(6), 405-424. doi: 10.1002/wcms.1225 PMID: 27110292
- Quiroga, R.; Villarreal, M.A. Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening. PLoS One, 2016, 11(5), e0155183. doi: 10.1371/journal.pone.0155183 PMID: 27171006
- Shulga, D.A.; Ivanov, N.N.; Palyulin, V.A. In silico structure-based approach for group efficiency estimation in fragment-based drug design using evaluation of fragment contributions. Molecules, 2022, 27(6), 1985. doi: 10.3390/molecules27061985 PMID: 35335347
- Wang, D.D.; Chan, M.T. Protein-ligand binding affinity prediction based on profiles of intermolecular contacts. Comput. Struct. Biotechnol. J., 2022, 20, 1088-1096. doi: 10.1016/j.csbj.2022.02.004 PMID: 35317230
- Singh, N.; Chaput, L.; Villoutreix, B.O. Fast rescoring protocols to improve the performance of structure-based virtual screening performed on proteinprotein interfaces. J. Chem. Inf. Model., 2020, 60(8), 3910-3934. doi: 10.1021/acs.jcim.0c00545 PMID: 32786511
- Lu, H.; Wei, Z.; Wang, C.; Guo, J.; Zhou, Y.; Wang, Z.; Liu, H. Redesigning Vina@QNLM for ultra-large-scale molecular docking and screening on a sunway supercomputer. Front Chem., 2021, 9, 750325. doi: 10.3389/fchem.2021.750325 PMID: 34778205
- Sharma, P.; Vijayan, V.; Pant, P.; Sharma, M.; Vikram, N.; Kaur, P.; Singh, T.P.; Sharma, S. Identification of potential drug candidates to combat COVID-19: A structural study using the main protease (mpro) of SARS-CoV-2. J. Biomol. Struct. Dyn., 2021, 39(17), 6649-6659. doi: 10.1080/07391102.2020.1798286 PMID: 32741313
- Gupta, A.; Rani, C.; Pant, P.; Vijayan, V.; Vikram, N.; Kaur, P.; Singh, T.P.; Sharma, S.; Sharma, P. Structure-based virtual screening and biochemical validation to discover a potential inhibitor of the SARS-CoV-2 main protease. ACS Omega, 2020, 5(51), 33151-33161. doi: 10.1021/acsomega.0c04808 PMID: 33398250
- Shytaj, I.L.; Fares, M.; Gallucci, L.; Lucic, B.; Tolba, M.M.; Zimmermann, L.; Adler, J.M.; Xing, N.; Bushe, J.; Gruber, A.D.; Ambiel, I.; Taha Ayoub, A.; Cortese, M.; Neufeldt, C.J.; Stolp, B.; Sobhy, M.H.; Fathy, M.; Zhao, M.; Laketa, V.; Diaz, R.S.; Sutton, R.E.; Chlanda, P.; Boulant, S.; Bartenschlager, R.; Stanifer, M.L.; Fackler, O.T.; Trimpert, J.; Savarino, A.; Lusic, M. The FDA-approved drug cobicistat synergizes with remdesivir to inhibit SARS-CoV-2 replication in vitro and decreases viral titers and disease progression in Syrian Hamsters. MBio, 2022, 13(2), e03705-21. doi: 10.1128/mbio.03705-21 PMID: 35229634
- Musarrat, F.; Chouljenko, V.; Dahal, A.; Nabi, R.; Chouljenko, T.; Jois, S.D.; Kousoulas, K.G. The anti-HIV drug nelfinavir mesylate (Viracept) is a potent inhibitor of cell fusion caused by the SARSCoV-2 spike (S) glycoprotein warranting further evaluation as an antiviral against COVID-19 infections. J. Med. Virol., 2020, 92(10), 2087-2095. doi: 10.1002/jmv.25985 PMID: 32374457
- Jalalvand, A.; Khatouni, S.B.; Najafi, Z.B.; Fatahinia, F.; Ismailzadeh, N.; Farahmand, B. Computational drug repurposing study of antiviral drugs against main protease, RNA polymerase, and spike proteins of SARS-CoV-2 using molecular docking method. J. Basic Clin. Physiol. Pharmacol., 2022, 33(1), 85-95. doi: 10.1515/jbcpp-2020-0369 PMID: 34265888
- Ohashi, H.; Watashi, K.; Saso, W.; Shionoya, K.; Iwanami, S.; Hirokawa, T.; Shirai, T.; Kanaya, S.; Ito, Y.; Kim, K.S.; Nomura, T.; Suzuki, T.; Nishioka, K.; Ando, S.; Ejima, K.; Koizumi, Y.; Tanaka, T.; Aoki, S.; Kuramochi, K.; Suzuki, T.; Hashiguchi, T.; Maenaka, K.; Matano, T.; Muramatsu, M.; Saijo, M.; Aihara, K.; Iwami, S.; Takeda, M.; McKeating, J.A.; Wakita, T. Potential anti-COVID-19 agents, cepharanthine and nelfinavir, and their usage for combination treatment. iScience, 2021, 24(4), 102367. doi: 10.1016/j.isci.2021.102367 PMID: 33817567
- Tatar, G.; Salmanli, M.; Dogru, Y.; Tuzuner, T. Evaluation of the effects of chlorhexidine and several flavonoids as antiviral purposes on SARS-CoV-2 main protease: Molecular docking, molecular dynamics simulation studies. J. Biomol. Struct. Dyn., 2022, 40(17), 7656-7665. PMID: 33749547
- Rivero-Segura, N.A.; Gomez-Verjan, J.C. In silico screening of natural products isolated from Mexican herbal medicines against COVID-19. Biomolecules, 2021, 11(2), 216. doi: 10.3390/biom11020216 PMID: 33557097
- Zhu, Y.; Scholle, F.; Kisthardt, S.C.; Xie, D.Y. Flavonols and dihydroflavonols inhibit the main protease activity of SARS-CoV-2 and the replication of human coronavirus 229E. Virology, 2022, 571, 21-33. doi: 10.1016/j.virol.2022.04.005 PMID: 35439707
- Bahun, M.; Jukić, M.; Oblak, D.; Kranjc, L.; Bajc, G.; Butala, M.; Bozovičar, K.; Bratkovič, T.; Podlipnik, Č.; Poklar Ulrih, N. Inhibition of the SARS-CoV-2 3CLpro main protease by plant polyphenols. Food Chem., 2022, 373(Pt B), 131594. doi: 10.1016/j.foodchem.2021.131594 PMID: 34838409
- Mavian, C.; Coman, R.M.; Zhang, X.; Pomeroy, S.; Ostrov, D.A.; Dunn, B.M.; Sleasman, J.W.; Goodenow, M.M. Molecular docking-based screening for novel inhibitors of the human immunodeficiency virus type 1 protease that effectively reduce the viral replication in human cells. J. AIDS Clin. Res., 2021, 12(5), 841. PMID: 34950525
- Wei, Y.; Yang, J.; Kishore Sakharkar, M.; Wang, X.; Liu, Q.; Du, J.; Zhang, J.J. Evaluating the inhibitory effect of eight compounds from Daphne papyracea against the NS3/4A protease of hepatitis C virus. Nat. Prod. Res., 2020, 34(11), 1607-1610. doi: 10.1080/14786419.2018.1519825 PMID: 30449158
- Viegas, D.J.; Edwards, T.G.; Bloom, D.C.; Abreu, P.A. Virtual screening identified compounds that bind to cyclin dependent kinase 2 and prevent herpes simplex virus type 1 replication and reactivation in neurons. Antiviral Res., 2019, 172, 104621. doi: 10.1016/j.antiviral.2019.104621 PMID: 31634495
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749. doi: 10.1021/jm0306430 PMID: 15027865
- Ewing, T.J.A.; Makino, S.; Skillman, A.G.; Kuntz, I.D. DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J. Comput. Aided Mol. Des., 2001, 15(5), 411-428. doi: 10.1023/A:1011115820450 PMID: 11394736
- Tahir ul Qamar, M.; Zhu, X.T.; Chen, L.L.; Alhussain, L.; Alshiekheid, M.A.; Theyab, A.; Algahtani, M. Target-specific machine learning scoring function improved structure-based virtual screening performance for SARS-CoV-2 drugs development. Int. J. Mol. Sci., 2022, 23(19), 11003. doi: 10.3390/ijms231911003 PMID: 36232307
- Gilson, M.K.; Liu, T.; Baitaluk, M.; Nicola, G.; Hwang, L.; Chong, J. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res., 2016, 44(D1), D1045-D1053. doi: 10.1093/nar/gkv1072 PMID: 26481362
- Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293. doi: 10.1038/s41586-020-2223-y PMID: 32272481
- Wójcikowski, M.; Zielenkiewicz, P.; Siedlecki, P. Open Drug Discovery Toolkit (ODDT): A new open-source player in the drug discovery field. J. Cheminform., 2015, 7(1), 26. doi: 10.1186/s13321-015-0078-2 PMID: 26101548
- de Azevedo, W.F., J.r. Molecular dynamics simulations of protein targets identified in Mycobacterium tuberculosis. Curr. Med. Chem., 2011, 18(9), 1353-1366. doi: 10.2174/092986711795029519 PMID: 21366529
- Bitencourt-Ferreira, G.; de Azevedo, W.F., J.r. Molecular dynamics simulations with NAMD2. Methods Mol. Biol., 2019, 2053, 109-124. doi: 10.1007/978-1-4939-9752-7_8 PMID: 31452102
- Santos, L.H.S.; Ferreira, R.S.; Caffarena, E.R. Integrating molecular docking and molecular dynamics simulations. Methods Mol. Biol., 2019, 2053, 13-34. doi: 10.1007/978-1-4939-9752-7_2 PMID: 31452096
- Hatamipour, M.; Hadizadeh, F.; Jaafari, M.R.; Khashyarmanesh, Z.; Sathyapalan, T.; Sahebkar, A. Anti-proliferative potential of fluorinated curcumin analogues: Experimental and computational analysis and review of the literature. Curr. Med. Chem., 2022, 29(8), 1459-1471. doi: 10.2174/0929867328666210910141316 PMID: 34514978
- Kim, C.; Kim, E. Rational drug design approach of receptor tyrosine kinase type III inhibitors. Curr. Med. Chem., 2020, 26(42), 7623-7640. doi: 10.2174/0929867325666180622143548 PMID: 29932031
- Hernández-Rodríguez, M.; Rosales-Hernández, M.C.; Mendieta-Wejebe, J.E.; Martínez-Archundia, M.; Basurto, J.C. Current tools and methods in Molecular Dynamics (MD) simulations for drug design. Curr. Med. Chem., 2016, 23(34), 3909-3924. doi: 10.2174/0929867323666160530144742 PMID: 27237821
- Azam, F.; Eid, E.E.M.; Almutairi, A. Targeting SARS-CoV-2 main protease by teicoplanin: A mechanistic insight by docking, MM/GBSA and molecular dynamics simulation. J. Mol. Struct., 2021, 1246, 131124. doi: 10.1016/j.molstruc.2021.131124 PMID: 34305175
- Dutta, K.; Elmezayen, A.D.; Al-Obaidi, A.; Zhu, W.; Morozova, O.V.; Shityakov, S.; Khalifa, I. Seq12, Seq12m, and Seq13m, peptide analogues of the spike glycoprotein shows antiviral properties against SARS-CoV-2: An in silico study through molecular docking, molecular dynamics simulation, and MM-PB/GBSA calculations. J. Mol. Struct., 2021, 1246, 131113. doi: 10.1016/j.molstruc.2021.131113 PMID: 34305174
- Zarezade, V.; Rezaei, H.; Shakerinezhad, G.; Safavi, A.; Nazeri, Z.; Veisi, A.; Azadbakht, O.; Hatami, M.; Sabaghan, M.; Shajirat, Z. The identification of novel inhibitors of human angiotensin-converting enzyme 2 and main protease of Sars-Cov-2: A combination of in silico methods for treatment of COVID-19. J. Mol. Struct., 2021, 1237, 130409. doi: 10.1016/j.molstruc.2021.130409 PMID: 33840836
- Sepay, N.; Sekar, A.; Halder, U.C.; Alarifi, A.; Afzal, M. Anti-COVID-19 terpenoid from marine sources: A docking, admet and molecular dynamics study. J. Mol. Struct., 2021, 1228, 129433. doi: 10.1016/j.molstruc.2020.129433 PMID: 33071352
- Walsh, I.; Fishman, D.; Garcia-Gasulla, D.; Titma, T.; Pollastri, G.; Capriotti, E.; Casadio, R.; Capella-Gutierrez, S.; Cirillo, D.; Del Conte, A.; Dimopoulos, A.C.; Del Angel, V.D.; Dopazo, J.; Fariselli, P.; Fernández, J.M.; Huber, F.; Kreshuk, A.; Lenaerts, T.; Martelli, P.L.; Navarro, A.; Broin, P.Ó.; Piñero, J.; Piovesan, D.; Reczko, M.; Ronzano, F.; Satagopam, V.; Savojardo, C.; Spiwok, V.; Tangaro, M.A.; Tartari, G.; Salgado, D.; Valencia, A.; Zambelli, F.; Harrow, J.; Psomopoulos, F.E.; Tosatto, S.C.E. DOME: Recommendations for supervised machine learning validation in biology. Nat. Methods, 2021, 18(10), 1122-1127. doi: 10.1038/s41592-021-01205-4 PMID: 34316068
Supplementary files
