A Quinquennial Review of Potent LSD1 Inhibitors Explored for the Treatment of Different Cancers, with Special Focus on SAR Studies


如何引用文章

全文:

详细

Cancer bears a significant share of global mortality. The enzyme Lysine Specific Demethylase 1 (LSD1, also known as KDM1A), since its discovery in 2004, has captured the attention of cancer researchers due to its overexpression in several cancers like acute myeloid leukaemia (AML), solid tumours, etc. The Lysine Specific Demethylase (LSD1) downregulation is reported to have an effect on cancer proliferation, migration, and invasion. Therefore, research to discover safer and more potent LSD1 inhibitors can pave the way for the development of better cancer therapeutics. These efforts have resulted in the synthesis of many types of derivatives containing diverse structural nuclei. The present manuscript describes the role of Lysine Specific Demethylase 1 (LSD1) in carcinogenesis, reviews the LSD1 inhibitors explored in the past five years and discusses their comprehensive structural activity characteristics apart from the thorough description of LSD1. Besides, the potential challenges, opportunities, and future perspectives in the development of LSD1 inhibitors are also discussed. The review suggests that tranylcypromine derivatives are the most promising potent LSD1 inhibitors, followed by triazole and pyrimidine derivatives with IC50 values in the nanomolar and sub-micromolar range. A number of potent LSD1 inhibitors derived from natural sources like resveratrol, protoberberine alkaloids, curcumin, etc. are also discussed. The structural-activity relationships discussed in the manuscript can be exploited to design potent and relatively safer LSD1 inhibitors as anticancer agents.

作者简介

Khursheed Sheikh

Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard

Email: info@benthamscience.net

Ashif Iqubal

Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard

Email: info@benthamscience.net

Mohammad Alam

Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard

编辑信件的主要联系方式.
Email: info@benthamscience.net

Mymoona Akhter

Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research,, Jamia Hamdard

Email: info@benthamscience.net

Mohammad Khan

Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard

Email: info@benthamscience.net

Syed Ehtaishamul Haque

Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard

Email: info@benthamscience.net

Suhel Parvez

Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard

Email: info@benthamscience.net

Umar Jahangir

Department of Amraaz-e-Jild wa Tazeeniyat, School of Unani Medical Education & Research, Jamia Hamdard

Email: info@benthamscience.net

Mohammad Amir

Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard

Email: info@benthamscience.net

Suruchi Khanna

Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard

Email: info@benthamscience.net

Mohammad Shaquiquzzaman

Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Nepali, K.; Sharma, S.; Sharma, M.; Bedi, P.M.S.; Dhar, K.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur. J. Med. Chem., 2014, 77, 422-487. doi: 10.1016/j.ejmech.2014.03.018 PMID: 24685980
  2. Mareel, M.; Leroy, A. Clinical, cellular, and molecular aspects of cancer invasion. Physiol. Rev., 2003, 83(2), 337-376. doi: 10.1152/physrev.00024.2002 PMID: 12663862
  3. Wesche, J.; Haglund, K.; Haugsten, E.M. Fibroblast growth factors and their receptors in cancer. Biochem. J., 2011, 437(2), 199-213. doi: 10.1042/BJ20101603 PMID: 21711248
  4. GLOBOCAN. The global cancer observatory - All cancers. Int. Agency Res. Cancer, 2020, 419, 199-200.
  5. Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90. doi: 10.3322/caac.20107 PMID: 21296855
  6. Kim, S.K. Handbook of Anticancer Drugs from Marine Origin; Springer, 2015, pp. 1-805. doi: 10.1007/978-3-319-07145-9
  7. Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386. doi: 10.1002/ijc.29210 PMID: 25220842
  8. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
  9. de Martel, C.; Georges, D.; Bray, F.; Ferlay, J.; Clifford, G.M. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob. Health, 2020, 8(2), e180-e190. doi: 10.1016/S2214-109X(19)30488-7 PMID: 31862245
  10. Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108. doi: 10.3322/caac.21262 PMID: 25651787
  11. Akavia, U.D.; Litvin, O.; Kim, J.; Sanchez-Garcia, F.; Kotliar, D.; Causton, H.C.; Pochanard, P.; Mozes, E.; Garraway, L.A.; Pe’er, D. An integrated approach to uncover drivers of cancer. Cell, 2010, 143(6), 1005-1017. doi: 10.1016/j.cell.2010.11.013 PMID: 21129771
  12. Zhou, Y.; Li, Y.; Wang, W.J.; Xiang, P.; Luo, X.M.; Yang, L.; Yang, S.Y.; Zhao, Y.L. Synthesis and biological evaluation of novel (E)-N′-(2,3-dihydro-1H-inden-1-ylidene) benzohydrazides as potent LSD1 inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(18), 4552-4557. doi: 10.1016/j.bmcl.2015.06.054 PMID: 27524309
  13. Tsai, H.C.; Baylin, S.B. Cancer epigenetics: linking basic biology to clinical medicine. Cell Res., 2011, 21(3), 502-517. doi: 10.1038/cr.2011.24 PMID: 21321605
  14. Metzger, E.; Wissmann, M.; Yin, N.; Müller, J.M.; Schneider, R.; Peters, A.H.F.M.; Günther, T.; Buettner, R.; Schüle, R. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature, 2005, 437(7057), 436-439. doi: 10.1038/nature04020 PMID: 16079795
  15. Karytinos, A.; Forneris, F.; Profumo, A.; Ciossani, G.; Battaglioli, E.; Binda, C.; Mattevi, A. A novel mammalian flavin-dependent histone demethylase. J. Biol. Chem., 2009, 284(26), 17775-17782. doi: 10.1074/jbc.M109.003087 PMID: 19407342
  16. Kim, S.; Benoiton, L.; Paik, W.K. ε-Alkyllysinase. J. Biol. Chem., 1964, 239(11), 3790-3796. doi: 10.1016/S0021-9258(18)91206-8 PMID: 14257609
  17. Shi, Y.; Lan, F.; Matson, C.; Mulligan, P.; Whetstine, J.R.; Cole, P.A.; Casero, R.A.; Shi, Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 2004, 119(7), 941-953. doi: 10.1016/j.cell.2004.12.012 PMID: 15620353
  18. Hakimi, M.A.; Bochar, D.A.; Chenoweth, J.; Lane, W.S.; Mandel, G.; Shiekhattar, R. A core–BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes. Proc. Natl. Acad. Sci. USA, 2002, 99(11), 7420-7425. doi: 10.1073/pnas.112008599 PMID: 12032298
  19. You, A.; Tong, J.K.; Grozinger, C.M.; Schreiber, S.L. CoREST is an integral component of the CoREST- human histone deacetylase complex. Proc. Natl. Acad. Sci. USA, 2001, 98(4), 1454-1458. doi: 10.1073/pnas.98.4.1454 PMID: 11171972
  20. Battaglioli, E.; Andrés, M.E.; Rose, D.W.; Chenoweth, J.G.; Rosenfeld, M.G.; Anderson, M.E.; Mandel, G. REST repression of neuronal genes requires components of the hSWI.SNF complex. J. Biol. Chem., 2002, 277(43), 41038-41045. doi: 10.1074/jbc.M205691200 PMID: 12192000
  21. Lee, M.G.; Wynder, C.; Cooch, N.; Shiekhattar, R. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature, 2005, 437(7057), 432-435. doi: 10.1038/nature04021 PMID: 16079794
  22. Tsukada, Y.; Fang, J.; Erdjument-Bromage, H.; Warren, M.E.; Borchers, C.H.; Tempst, P.; Zhang, Y. Histone demethylation by a family of JmjC domain-containing proteins. Nature, 2006, 439(7078), 811-816. doi: 10.1038/nature04433 PMID: 16362057
  23. Johansson, C.; Velupillai, S.; Tumber, A.; Szykowska, A.; Hookway, E.S.; Nowak, R.P.; Strain-Damerell, C.; Gileadi, C.; Philpott, M.; Burgess-Brown, N.; Wu, N.; Kopec, J.; Nuzzi, A.; Steuber, H.; Egner, U.; Badock, V.; Munro, S.; LaThangue, N.B.; Westaway, S.; Brown, J.; Athanasou, N.; Prinjha, R.; Brennan, P.E.; Oppermann, U. Structural analysis of human KDM5B guides histone demethylase inhibitor development. Nat. Chem. Biol., 2016, 12(7), 539-545. doi: 10.1038/nchembio.2087 PMID: 27214403
  24. Gaweska, H.; Fitzpatrick, P.F. Structures and mechanism of the monoamine oxidase family. Biomol. Concepts, 2011, 2(5), 365-377. doi: 10.1515/BMC.2011.030 PMID: 22022344
  25. Lienhart, W.D.; Gudipati, V.; Macheroux, P. The human flavoproteome. Arch. Biochem. Biophys., 2013, 535(2), 150-162. doi: 10.1016/j.abb.2013.02.015 PMID: 23500531
  26. Spannhoff, A.; Hauser, A.T.; Heinke, R.; Sippl, W.; Jung, M. The emerging therapeutic potential of histone methyltransferase and demethylase inhibitors. ChemMedChem, 2009, 4(10), 1568-1582. doi: 10.1002/cmdc.200900301 PMID: 19739196
  27. Fang, R.; Barbera, A.J.; Xu, Y.; Rutenberg, M.; Leonor, T.; Bi, Q.; Lan, F.; Mei, P.; Yuan, G.C.; Lian, C.; Peng, J.; Cheng, D.; Sui, G.; Kaiser, U.B.; Shi, Y.; Shi, Y.G. Human LSD2/KDM1b/AOF1 regulates gene transcription by modulating intragenic H3K4me2 methylation. Mol. Cell, 2010, 39(2), 222-233. doi: 10.1016/j.molcel.2010.07.008 PMID: 20670891
  28. Forneris, F.; Binda, C.; Battaglioli, E.; Mattevi, A. LSD1: oxidative chemistry for multifaceted functions in chromatin regulation. Trends Biochem. Sci., 2008, 33(4), 181-189. doi: 10.1016/j.tibs.2008.01.003 PMID: 18343668
  29. Yang, M.; Gocke, C.B.; Luo, X.; Borek, D.; Tomchick, D.R.; Machius, M.; Otwinowski, Z.; Yu, H. Structural basis for CoREST-dependent demethylation of nucleosomes by the human LSD1 histone demethylase. Mol. Cell, 2006, 23(3), 377-387. doi: 10.1016/j.molcel.2006.07.012 PMID: 16885027
  30. Ciccone, D.N.; Su, H.; Hevi, S.; Gay, F.; Lei, H.; Bajko, J.; Xu, G.; Li, E.; Chen, T. KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature, 2009, 461(7262), 415-418. doi: 10.1038/nature08315 PMID: 19727073
  31. Shi, Y.J.; Matson, C.; Lan, F.; Iwase, S.; Baba, T.; Shi, Y. Regulation of LSD1 histone demethylase activity by its associated factors. Mol. Cell, 2005, 19(6), 857-864. doi: 10.1016/j.molcel.2005.08.027 PMID: 16140033
  32. Culhane, J.C.; Cole, P.A. LSD1 and the chemistry of histone demethylation. Curr. Opin. Chem. Biol., 2007, 11(5), 561-568. doi: 10.1016/j.cbpa.2007.07.014 PMID: 17851108
  33. Yang, M.; Culhane, J.C.; Szewczuk, L.M.; Gocke, C.B.; Brautigam, C.A.; Tomchick, D.R.; Machius, M.; Cole, P.A.; Yu, H. Structural basis of histone demethylation by LSD1 revealed by suicide inactivation. Nat. Struct. Mol. Biol., 2007, 14(6), 535-539. doi: 10.1038/nsmb1255 PMID: 17529991
  34. Forneris, F.; Binda, C.; Vanoni, M.A.; Battaglioli, E.; Mattevi, A. Human histone demethylase LSD1 reads the histone code. J. Biol. Chem., 2005, 280(50), 41360-41365. doi: 10.1074/jbc.M509549200 PMID: 16223729
  35. Forneris, F.; Binda, C.; Dall’Aglio, A.; Fraaije, M.W.; Battaglioli, E.; Mattevi, A. A highly specific mechanism of histone H3-K4 recognition by histone demethylase LSD1. J. Biol. Chem., 2006, 281(46), 35289-35295. doi: 10.1074/jbc.M607411200 PMID: 16987819
  36. Tu, W.J.; McCuaig, R.D.; Tan, A.H.Y.; Hardy, K.; Seddiki, N.; Ali, S.; Dahlstrom, J.E.; Bean, E.G.; Dunn, J.; Forwood, J.; Tsimbalyuk, S.; Smith, K.; Yip, D.; Malik, L.; Prasanna, T.; Milburn, P.; Rao, S. Targeting nuclear LSD1 to reprogram cancer cells and reinvigorate exhausted T cells via a novel LSD1-EOMES switch. Front. Immunol., 2020, 11, 1228. doi: 10.3389/fimmu.2020.01228 PMID: 32612611
  37. Fang, Y.; Yang, C.; Yu, Z.; Li, X.; Mu, Q.; Liao, G.; Yu, B. Natural products as LSD1 inhibitors for cancer therapy. Acta Pharm. Sin. B, 2021, 11(3), 621-631. doi: 10.1016/j.apsb.2020.06.007 PMID: 32837872
  38. Yang, G.J.; Lei, P.M.; Wong, S.Y.; Ma, D.L.; Leung, C.H. Pharmacological inhibition of LSD1 for cancer treatment. Molecules, 2018, 23(12), 3194. doi: 10.3390/molecules23123194 PMID: 30518104
  39. Lim, S.; Janzer, A.; Becker, A.; Zimmer, A.; Schüle, R.; Buettner, R.; Kirfel, J. Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology. Carcinogenesis, 2010, 31(3), 512-520. doi: 10.1093/carcin/bgp324 PMID: 20042638
  40. Sheng, W.; LaFleur, M.W.; Nguyen, T.H.; Chen, S.; Chakravarthy, A.; Conway, J.R.; Li, Y.; Chen, H.; Yang, H.; Hsu, P.H.; Van Allen, E.M.; Freeman, G.J.; De Carvalho, D.D.; He, H.H.; Sharpe, A.H.; Shi, Y. LSD1 Ablation stimulates anti-tumor immunity and enables checkpoint blockade. Cell, 2018, 174(3), 549-563.e19. doi: 10.1016/j.cell.2018.05.052 PMID: 29937226
  41. Zheng, Y.C.; Yu, B.; Chen, Z.S.; Liu, Y.; Liu, H.M. TCPs: privileged scaffolds for identifying potent LSD1 inhibitors for cancer therapy. Epigenomics, 2016, 8(5), 651-666. doi: 10.2217/epi-2015-0002 PMID: 27102879
  42. Hoshino, I.; Takahashi, M.; Akutsu, Y.; Murakami, K.; Matsumoto, Y.; Suito, H.; Sekino, N.; Komatsu, A.; Iida, K.; Suzuki, T.; Inoue, I.; Ishige, F.; Iwatate, Y.; Matsubara, H. Genome wide ChIP seq data with a transcriptome analysis reveals the groups of genes regulated by histone demethylase LSD1 inhibition in esophageal squamous cell carcinoma cells. Oncol. Lett., 2019, 18(1), 872-881. doi: 10.3892/ol.2019.10350 PMID: 31289565
  43. Ueda, R.; Suzuki, T.; Mino, K.; Tsumoto, H.; Nakagawa, H.; Hasegawa, M.; Sasaki, R.; Mizukami, T.; Miyata, N. Identification of cell-active lysine specific demethylase 1-selective inhibitors. J. Am. Chem. Soc., 2009, 131(48), 17536-17537. doi: 10.1021/ja907055q PMID: 19950987
  44. Binda, C.; Valente, S.; Romanenghi, M.; Pilotto, S.; Cirilli, R.; Karytinos, A.; Ciossani, G.; Botrugno, O.A.; Forneris, F.; Tardugno, M.; Edmondson, D.E.; Minucci, S.; Mattevi, A.; Mai, A. Biochemical, structural, and biological evaluation of tranylcypromine derivatives as inhibitors of histone demethylases LSD1 and LSD2. J. Am. Chem. Soc., 2010, 132(19), 6827-6833. doi: 10.1021/ja101557k PMID: 20415477
  45. Mimasu, S.; Sengoku, T.; Fukuzawa, S.; Umehara, T.; Yokoyama, S. Crystal structure of histone demethylase LSD1 and tranylcypromine at 2.25 Å. Biochem. Biophys. Res. Commun., 2008, 366(1), 15-22. doi: 10.1016/j.bbrc.2007.11.066 PMID: 18039463
  46. Escoubet-Lozach, L.; Lin, I.L.; Jensen-Pergakes, K.; Brady, H.A.; Gandhi, A.K.; Schafer, P.H.; Muller, G.W.; Worland, P.J.; Chan, K.W.H.; Verhelle, D. Pomalidomide and lenalidomide induce p21 WAF-1 expression in both lymphoma and multiple myeloma through a LSD1-mediated epigenetic mechanism. Cancer Res., 2009, 69(18), 7347-7356. doi: 10.1158/0008-5472.CAN-08-4898 PMID: 19738071
  47. Shi, Y.; Wu, Y.R.; Su, M.B.; Shen, D.H.; Gunosewoyo, H.; Yang, F.; Li, J.; Tang, J.; Zhou, Y.B.; Yu, L.F. Novel spirocyclic tranylcypromine derivatives as lysine-specific demethylase 1 (LSD1) inhibitors. RSC Advances, 2018, 8(3), 1666-1676. doi: 10.1039/C7RA13097J PMID: 35540911
  48. Zhou, C.; Wu, F.; Lu, L.; Wei, L.; Pai, E.; Yao, Y.; Song, Y. Structure activity relationship and modeling studies of inhibitors of lysine specific demethylase 1. PLoS One, 2017, 12(2), e0170301. doi: 10.1371/journal.pone.0170301 PMID: 28158205
  49. Liang, L.; Wang, H.; Du, Y.; Luo, B.; Meng, N.; Cen, M.; Huang, P.; Ganesan, A.; Wen, S. New tranylcypromine derivatives containing sulfonamide motif as potent LSD1 inhibitors to target acute myeloid leukemia: Design, synthesis and biological evaluation. Bioorg. Chem., 2020, 99, 103808. doi: 10.1016/j.bioorg.2020.103808 PMID: 32334189
  50. Sun, K.; Peng, J.D.; Suo, F.Z.; Zhang, T.; Fu, Y.D.; Zheng, Y.C.; Liu, H.M. Discovery of tranylcypromine analogs with an acylhydrazone substituent as LSD1 inactivators: Design, synthesis and their biological evaluation. Bioorg. Med. Chem. Lett., 2017, 27(22), 5036-5039. doi: 10.1016/j.bmcl.2017.10.003 PMID: 29037950
  51. Trifirò, P.; Cappa, A.; Brambillasca, S.; Botrugno, O.A.; Cera, M.R.; Zuffo, R.D.; Dessanti, P.; Meroni, G.; Thaler, F.; Villa, M.; Minucci, S.; Mercurio, C.; Varasi, M.; Vianello, P. Novel potent inhibitors of the histone demethylase KDM1A (LSD1), orally active in a murine promyelocitic leukemia model. Future Med. Chem., 2017, 9(11), 1161-1174. doi: 10.4155/fmc-2017-0003 PMID: 28722470
  52. Kakizawa, T.; Ota, Y.; Itoh, Y.; Suzuki, T. Histone H3 peptides incorporating modified lysine residues as lysine-specific demethylase 1 inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(2), 167-169. doi: 10.1016/j.bmcl.2017.11.035 PMID: 29198865
  53. Borrello, M.T.; Schinor, B.; Bartels, K.; Benelkebir, H.; Pereira, S.; Al-Jamal, W.T.; Douglas, L.; Duriez, P.J.; Packham, G.; Haufe, G.; Ganesan, A. Fluorinated tranylcypromine analogues as inhibitors of lysine-specific demethylase 1 (LSD1, KDM1A). Bioorg. Med. Chem. Lett., 2017, 27(10), 2099-2101. doi: 10.1016/j.bmcl.2017.03.081 PMID: 28390942
  54. Fioravanti, R.; Romanelli, A.; Mautone, N.; Di Bello, E.; Rovere, A.; Corinti, D.; Zwergel, C.; Valente, S.; Rotili, D.; Botrugno, O.A.; Dessanti, P.; Vultaggio, S.; Vianello, P.; Cappa, A.; Binda, C.; Mattevi, A.; Minucci, S.; Mercurio, C.; Varasi, M.; Mai, A. Tranylcypromine-based LSD1 inhibitors: Structure-activity relationships, antiproliferative effects in leukemia, and gene target modulation. ChemMedChem, 2020, 15(7), 643-658. doi: 10.1002/cmdc.201900730 PMID: 32003940
  55. Duan, Y.C.; Ma, Y.C.; Qin, W.P.; Ding, L.N.; Zheng, Y.C.; Zhu, Y.L.; Zhai, X.Y.; Yang, J.; Ma, C.Y.; Guan, Y.Y. Design and synthesis of tranylcypromine derivatives as novel LSD1/HDACs dual inhibitors for cancer treatment. Eur. J. Med. Chem., 2017, 140, 392-402. doi: 10.1016/j.ejmech.2017.09.038 PMID: 28987602
  56. Ota, Y.; Miyamura, S.; Araki, M.; Itoh, Y.; Yasuda, S.; Masuda, M.; Taniguchi, T.; Sowa, Y.; Sakai, T.; Itami, K.; Yamaguchi, J.; Suzuki, T. Design, synthesis and evaluation of γ-turn mimetics as LSD1-selective inhibitors. Bioorg. Med. Chem., 2018, 26(3), 775-785. doi: 10.1016/j.bmc.2017.12.045 PMID: 29331452
  57. Milelli, A.; Marchetti, C.; Turrini, E.; Catanzaro, E.; Mazzone, R.; Tomaselli, D.; Fimognari, C.; Tumiatti, V.; Minarini, A. Novel polyamine-based Histone deacetylases-Lysine demethylase 1 dual binding inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(6), 1001-1004. doi: 10.1016/j.bmcl.2018.02.034 PMID: 29496367
  58. Ota, Y.; Nakamura, A.; Elboray, E.E.; Itoh, Y.; Suzuki, T. Design, synthesis, and biological evaluation of a conjugate of 5-fluorouracil and an LSD1 inhibitor. Chem. Pharm. Bull. (Tokyo), 2019, 67(3), 192-195. doi: 10.1248/cpb.c18-00577 PMID: 30369513
  59. Ota, Y.; Kakizawa, T.; Itoh, Y.; Suzuki, T. Design, Synthesis, and In Vitro Evaluation of Novel Histone H3 Peptide-based LSD1 inactivators incorporating α,α-disubstituted amino acids with γ-turn-Inducing structures. Molecules, 2018, 23(5), 1099. doi: 10.3390/molecules23051099 PMID: 29734782
  60. Niwa, H.; Sato, S.; Handa, N.; Sengoku, T.; Umehara, T.; Yokoyama, S. Development and Structural evaluation of N-Alkylated trans-2-Phenylcyclopropylamine-based LSD1 inhibitors. ChemMedChem, 2020, 15(9), 787-793. doi: 10.1002/cmdc.202000014 PMID: 32166890
  61. Naveen Sadhu, M.; Sivanandhan, D.; Gajendran, C.; Tantry, S.; Dewang, P.; Murugan, K.; Chickamunivenkatappa, S.; Zainuddin, M.; Nair, S.; Vaithilingam, K.; Rajagopal, S. Novel dual LSD1/HDAC6 inhibitors for the treatment of multiple myeloma. Bioorg. Med. Chem. Lett., 2021, 34(34), 127763. doi: 10.1016/j.bmcl.2020.127763 PMID: 33359604
  62. Huang, M.J.; Guo, J.W.; Fu, Y.D.; You, Y.Z.; Xu, W.Y.; Song, T.Y.; Li, R.; Chen, Z.T.; Huang, L.H.; Liu, H.M. Discovery of new tranylcypromine derivatives as highly potent LSD1 inhibitors. Bioorg. Med. Chem. Lett., 2021, 41(41), 127993. doi: 10.1016/j.bmcl.2021.127993 PMID: 33775841
  63. Teresa Borrello, M.; Benelkebir, H.; Lee, A.; Hin Tam, C.; Shafat, M.; Rushworth, S.A.; Bowles, K.M.; Douglas, L.; Duriez, P.J.; Bailey, S.; Crabb, S.J.; Packham, G.; Ganesan, A. Tranylcypromine Analogues as LSD1 (KDM1A) inhibitors targeting acute myeloid leukemia. ChemMedChem, 2021, 16(8), 1316-1324. doi: 10.1002/cmdc.202000754 PMID: 33533576
  64. Ji, Y.Y.; Lin, S.D.; Wang, Y.J.; Su, M.B.; Zhang, W.; Gunosewoyo, H.; Yang, F.; Li, J.; Tang, J.; Zhou, Y.B.; Yu, L.F. Tying up tranylcypromine: Novel selective histone lysine specific demethylase 1 (LSD1) inhibitors. Eur. J. Med. Chem., 2017, 141, 101-112. doi: 10.1016/j.ejmech.2017.09.073 PMID: 29031059
  65. Holshouser, S.; Dunworth, M.; Stewart, T.M.; Peterson, Y.K.; Burger, P.; Kirkpatrick, J.; Chen, H-H.; Robert, A. Dual inhibitors of LSD1 and spermine oxidase. AIChE Annu. Meet. Conf. Proc, 2019, 10(5), pp. 778-790. doi: 10.1039/c8md00610e
  66. Li, Z.R.; Wang, S.; Yang, L.; Yuan, X.H.; Suo, F.Z.; Yu, B.; Liu, H.M. Experience-based discovery (EBD) of aryl hydrazines as new scaffolds for the development of LSD1/KDM1A inhibitors. Eur. J. Med. Chem., 2019, 166, 432-444. doi: 10.1016/j.ejmech.2019.01.075 PMID: 30739825
  67. Li, Z.H.; Liu, X.Q.; Geng, P.F.; Suo, F.Z.; Ma, J.L.; Yu, B.; Zhao, T.Q.; Zhou, Z.Q.; Huang, C.X.; Zheng, Y.C.; Liu, H.M. Discovery of 1,2,3Triazolo4,5- d pyrimidine derivatives as novel LSD1 inhibitors. ACS Med. Chem. Lett., 2017, 8(4), 384-389. doi: 10.1021/acsmedchemlett.6b00423 PMID: 28435523
  68. Li, Z.H.; Ma, J.L.; Liu, G.Z.; Zhang, X.H.; Qin, T.T.; Ren, W.H.; Zhao, T.Q.; Chen, X.H.; Zhang, Z.Q. 1,2,3Triazolo4,5-dpyrimidine derivatives incorporating (thio)urea moiety as a novel scaffold for LSD1 inhibitors. Eur. J. Med. Chem., 2020, 187, 111989. doi: 10.1016/j.ejmech.2019.111989 PMID: 31881456
  69. Wang, S.; Li, Z.R.; Suo, F.Z.; Yuan, X.H.; Yu, B.; Liu, H.M. Synthesis, structure-activity relationship studies and biological characterization of new 1,2,4triazolo1,5-apyrimidine-based LSD1/KDM1A inhibitors. Eur. J. Med. Chem., 2019, 167, 388-401. doi: 10.1016/j.ejmech.2019.02.039 PMID: 30780087
  70. Li, Z.; Ding, L.; Li, Z.; Wang, Z.; Suo, F.; Shen, D.; Zhao, T.; Sun, X.; Wang, J.; Liu, Y.; Ma, L.; Zhao, B.; Geng, P.; Yu, B.; Zheng, Y.; Liu, H. Development of the triazole-fused pyrimidine derivatives as highly potent and reversible inhibitors of histone lysine specific demethylase 1 (LSD1/KDM1A). Acta Pharm. Sin. B, 2019, 9(4), 794-808. doi: 10.1016/j.apsb.2019.01.001 PMID: 31384539
  71. Wang, S.; Zhao, L.J.; Zheng, Y.C.; Shen, D.D.; Miao, E.F.; Qiao, X.P.; Zhao, L.J.; Liu, Y.; Huang, R.; Yu, B.; Liu, H.M. Design, synthesis and biological evaluation of 1,2,4triazolo1,5-apyrimidines as potent lysine specific demethylase 1 (LSD1/KDM1A) inhibitors. Eur. J. Med. Chem., 2017, 125, 940-951. doi: 10.1016/j.ejmech.2016.10.021 PMID: 27769034
  72. Xu, S.; Zhou, C.; Liu, R.; Zhu, Q.; Xu, Y.; Lan, F.; Zha, X. Optimization of 5-arylidene barbiturates as potent, selective, reversible LSD1 inhibitors for the treatment of acute promyelocytic leukemia. Bioorg. Med. Chem., 2018, 26(17), 4871-4880. doi: 10.1016/j.bmc.2018.08.026 PMID: 30153955
  73. Ma, L.; Wang, H.; You, Y.; Ma, C.; Liu, Y.; Yang, F.; Zheng, Y.; Liu, H. Exploration of 5-cyano-6-phenyl- pyrimidin derivatives containing an 1,2,3-triazole moiety as potent FAD-based LSD1 inhibitors. Acta Pharm. Sin. B, 2020, 10(9), 1658-1668. doi: 10.1016/j.apsb.2020.02.006 PMID: 33088686
  74. Metwally, N.H.; Mohamed, M.S.; Ragb, E.A. Design, synthesis, anticancer evaluation, molecular docking and cell cycle analysis of 3-methyl-4,7-dihydropyrazolo1,5-a pyrimidine derivatives as potent histone lysine demethylases (KDM) inhibitors and apoptosis inducers. Bioorg. Chem., 2019, 88(April), 102929. doi: 10.1016/j.bioorg.2019.102929 PMID: 31015179
  75. Kanouni, T.; Severin, C.; Cho, R.W.; Yuen, N.Y.Y.; Xu, J.; Shi, L.; Lai, C.; Del Rosario, J.R.; Stansfield, R.K.; Lawton, L.N.; Hosfield, D.; O’Connell, S.; Kreilein, M.M.; Tavares-Greco, P.; Nie, Z.; Kaldor, S.W.; Veal, J.M.; Stafford, J.A.; Chen, Y.K. Discovery of CC-90011: A potent and selective reversible inhibitor of lysine specific demethylase 1 (LSD1). J. Med. Chem., 2020, 63(23), 14522-14529. doi: 10.1021/acs.jmedchem.0c00978 PMID: 33034194
  76. Ma, Q.S.; Yao, Y.; Zheng, Y.C.; Feng, S.; Chang, J.; Yu, B.; Liu, H.M. Ligand-based design, synthesis and biological evaluation of xanthine derivatives as LSD1/KDM1A inhibitors. Eur. J. Med. Chem., 2019, 162, 555-567. doi: 10.1016/j.ejmech.2018.11.035 PMID: 30472603
  77. Wang, J.; Zhang, X.; Yan, J.; Li, W.; Jiang, Q.; Wang, X.; Zhao, D.; Cheng, M. Design, synthesis and biological evaluation of curcumin analogues as novel LSD1 inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(23), 126683. doi: 10.1016/j.bmcl.2019.126683 PMID: 31627991
  78. Xi, J.; Xu, S.; Zhang, L.; Bi, X.; Ren, Y.; Liu, Y.C.; Gu, Y.; Xu, Y.; Lan, F.; Zha, X. Design, synthesis and biological activity of 4-(4-benzyloxy)phenoxypiperidines as selective and reversible LSD1 inhibitors. Bioorg. Chem., 2018, 78, 7-16. doi: 10.1016/j.bioorg.2018.02.016 PMID: 29524666
  79. Kumarasinghe, I.R.; Woster, P.M. Synthesis and evaluation of novel cyclic Peptide inhibitors of lysine-specific demethylase 1. ACS Med. Chem. Lett., 2014, 5(1), 29-33. doi: 10.1021/ml4002997 PMID: 24883177
  80. Kumarasinghe, I.R.; Woster, P.M. Cyclic peptide inhibitors of lysine-specific demethylase 1 with improved potency identified by alanine scanning mutagenesis. Eur. J. Med. Chem., 2018, 148, 210-220. doi: 10.1016/j.ejmech.2018.01.098 PMID: 29459279
  81. T. Hart, P.; Openy, J.; Krzyzanowski, A.; Adihou, H.; Waldmann, H. Hot-spot guided design of macrocyclic inhibitors of the LSD1-CoREST1 interaction. Tetrahedron, 2019, 75(48), 130685. doi: 10.1016/j.tet.2019.130685
  82. Xu, Y.; He, Z.; Liu, H.; Chen, Y.; Gao, Y.; Zhang, S.; Wang, M.; Lu, X.; Wang, C.; Zhao, Z.; Liu, Y.; Zhao, J.; Yu, Y.; Yang, M. 3D-QSAR, molecular docking, and molecular dynamics simulation study of thieno3,2-bpyrrole-5-carboxamide derivatives as LSD1 inhibitors. RSC Advances, 2020, 10(12), 6927-6943. doi: 10.1039/C9RA10085G PMID: 35493862
  83. Romussi, A.; Cappa, A.; Vianello, P.; Brambillasca, S.; Cera, M.R.; Dal Zuffo, R.; Fagà, G.; Fattori, R.; Moretti, L.; Trifirò, P.; Villa, M.; Vultaggio, S.; Cecatiello, V.; Pasqualato, S.; Dondio, G.; So, C.W.E.; Minucci, S.; Sartori, L.; Varasi, M.; Mercurio, C. Discovery of reversible inhibitors of KDM1A efficacious in acute myeloid leukemia models. ACS Med. Chem. Lett., 2020, 11(5), 754-759. doi: 10.1021/acsmedchemlett.9b00604 PMID: 32435381
  84. Sartori, L.; Mercurio, C.; Amigoni, F.; Cappa, A.; Fagá, G.; Fattori, R.; Legnaghi, E.; Ciossani, G.; Mattevi, A.; Meroni, G.; Moretti, L.; Cecatiello, V.; Pasqualato, S.; Romussi, A.; Thaler, F.; Trifiró, P.; Villa, M.; Vultaggio, S.; Botrugno, O.A.; Dessanti, P.; Minucci, S.; Zagarrí, E.; Carettoni, D.; Iuzzolino, L.; Varasi, M.; Vianello, P. Thieno3,2- b pyrrole-5-carboxamides as new reversible inhibitors of histone lysine Demethylase KDM1A/LSD1. Part 1: High-throughput screening and preliminary exploration. J. Med. Chem., 2017, 60(5), 1673-1692. doi: 10.1021/acs.jmedchem.6b01018 PMID: 28186755
  85. Vianello, P.; Sartori, L.; Amigoni, F.; Cappa, A.; Fagá, G.; Fattori, R.; Legnaghi, E.; Ciossani, G.; Mattevi, A.; Meroni, G.; Moretti, L.; Cecatiello, V.; Pasqualato, S.; Romussi, A.; Thaler, F.; Trifiró, P.; Villa, M.; Botrugno, O.A.; Dessanti, P.; Minucci, S.; Vultaggio, S.; Zagarrí, E.; Varasi, M.; Mercurio, C. Thieno3,2- b pyrrole-5-carboxamides as new reversible inhibitors of histone lysine demethylase KDM1A/LSD1. Part 2: structure-based drug design and structure–activity relationship. J. Med. Chem., 2017, 60(5), 1693-1715. doi: 10.1021/acs.jmedchem.6b01019 PMID: 28186757
  86. Xi, J.; Xu, S.; Wu, L.; Ma, T.; Liu, R.; Liu, Y.C.; Deng, D.; Gu, Y.; Zhou, J.; Lan, F.; Zha, X. Design, synthesis and biological activity of 3-oxoamino-benzenesulfonamides as selective and reversible LSD1 inhibitors. Bioorg. Chem., 2017, 72, 182-189. doi: 10.1016/j.bioorg.2017.04.006 PMID: 28460360
  87. Wang, X.; Zhang, C.; Zhang, X.; Yan, J.; Wang, J.; Jiang, Q.; Zhao, L.; Zhao, D.; Cheng, M. Design, synthesis and biological evaluation of tetrahydroquinoline-based reversible LSD1 inhibitors. Eur. J. Med. Chem., 2020, 194, 112243. doi: 10.1016/j.ejmech.2020.112243 PMID: 32229389
  88. Li, Z.R.; Suo, F.Z.; Guo, Y.J.; Cheng, H.F.; Niu, S.H.; Shen, D.D.; Zhao, L.J.; Liu, Z.Z.; Maa, M.; Yu, B.; Zheng, Y.C.; Liu, H.M. Natural protoberberine alkaloids, identified as potent selective LSD1 inhibitors, induce AML cell differentiation. Bioorg. Chem., 2020, 97, 103648. doi: 10.1016/j.bioorg.2020.103648 PMID: 32065882
  89. He, X.; Gao, Y.; Hui, Z.; Shen, G.; Wang, S.; Xie, T.; Ye, X.Y. 4-Hydroxy-3-methylbenzofuran-2-carbohydrazones as novel LSD1 inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(10), 127109. doi: 10.1016/j.bmcl.2020.127109 PMID: 32201021
  90. Gehling, V.S.; McGrath, J.P.; Duplessis, M.; Khanna, A.; Brucelle, F.; Vaswani, R.G.; Côté, A.; Stuckey, J.; Watson, V.; Cummings, R.T.; Balasubramanian, S.; Iyer, P.; Sawant, P.; Good, A.C.; Albrecht, B.K.; Harmange, J.C.; Audia, J.E.; Bellon, S.F.; Trojer, P.; Levell, J.R. Design and synthesis of styrenylcyclopropylamine LSD1 inhibitors. ACS Med. Chem. Lett., 2020, 11(6), 1213-1220. doi: 10.1021/acsmedchemlett.0c00060 PMID: 32551003
  91. Liu, H.M.; Suo, F.Z.; Li, X.B.; You, Y.H.; Lv, C.T.; Zheng, C.X.; Zhang, G.C.; Liu, Y.J.; Kang, W.T.; Zheng, Y.C.; Xu, H.W. Discovery and synthesis of novel indole derivatives-containing 3-methylenedihydrofuran-2(3H)- one as irreversible LSD1 inhibitors. Eur. J. Med. Chem., 2019, 175, 357-372. doi: 10.1016/j.ejmech.2019.04.065 PMID: 31096156
  92. Duan, Y.; Qin, W.; Suo, F.; Zhai, X.; Guan, Y.; Wang, X.; Zheng, Y.; Liu, H. Design, synthesis and in vitro evaluation of stilbene derivatives as novel LSD1 inhibitors for AML therapy. Bioorg. Med. Chem., 2018, 26(23-24), 6000-6014. doi: 10.1016/j.bmc.2018.10.037 PMID: 30448189
  93. Duan, Y.C.; Guan, Y.Y.; Zhai, X.Y.; Ding, L.N.; Qin, W.P.; Shen, D.D.; Liu, X.Q.; Sun, X.D.; Zheng, Y.C.; Liu, H.M. Discovery of resveratrol derivatives as novel LSD1 inhibitors: Design, synthesis and their biological evaluation. Eur. J. Med. Chem., 2017, 126, 246-258. doi: 10.1016/j.ejmech.2016.11.035 PMID: 27888721
  94. Nie, Z.; Shi, L.; Lai, C.; Severin, C.; Xu, J.; Del Rosario, J.R.; Stansfield, R.K.; Cho, R.W.; Kanouni, T.; Veal, J.M.; Stafford, J.A.; Chen, Y.K. Structure-based design and discovery of potent and selective lysine-specific demethylase 1 (LSD1) inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(1), 103-106. doi: 10.1016/j.bmcl.2018.11.001 PMID: 30409536
  95. Umezawa, N.; Tsuji, K.; Sato, S.; Kikuchi, M.; Watanabe, H.; Horai, Y.; Yamaguchi, M.; Hisamatsu, Y.; Umehara, T.; Higuchi, T. Inhibition of FAD-dependent lysine-specific demethylases by chiral polyamine analogues. RSC Advances, 2018, 8(64), 36895-36902. doi: 10.1039/C8RA07879C PMID: 35558920
  96. Mould, D.P.; Bremberg, U.; Jordan, A.M.; Geitmann, M.; McGonagle, A.E.; Somervaille, T.C.P.; Spencer, G.J.; Ogilvie, D.J. Development and evaluation of 4-(pyrrolidin-3-yl)benzonitrile derivatives as inhibitors of lysine specific demethylase 1. Bioorg. Med. Chem. Lett., 2017, 27(20), 4755-4759. doi: 10.1016/j.bmcl.2017.08.052 PMID: 28927796
  97. Yang, C.; Wang, W.; Liang, J.X.; Li, G.; Vellaisamy, K.; Wong, C.Y.; Ma, D.L.; Leung, C.H. A Rhodium(III)-based inhibitor of lysine-specific histone demethylase 1 as an epigenetic modulator in prostate cancer cells. J. Med. Chem., 2017, 60(6), 2597-2603. doi: 10.1021/acs.jmedchem.7b00133 PMID: 28219005
  98. Lin, Y.; Luo, J.; Li, L.; Liu, X.; Wang, W.; Zhu, L.; Han, C.; Kong, L. Precise separation of lysine-specific demethylase 1 inhibitors from Corydalis yanhusuo using multi-mode counter-current chromatography guided by virtual screening. J. Chromatogr. A, 2020, 1625, 461294. doi: 10.1016/j.chroma.2020.461294 PMID: 32709337
  99. Jia, G.; Cang, S.; Ma, P.; Song, Z. Capsaicin: A "hot" KDM1A/LSD1 inhibitor from peppers. Bioorg. Chem., 2020, 103(August), 104161. doi: 10.1016/j.bioorg.2020.104161 PMID: 32889380
  100. Wang, L.; Li, L.; Han, Q.; Wang, X.; Zhao, D.; Liu, J. Identification and biological evaluation of natural product Biochanin A. Bioorg. Chem., 2020, 97, 103674. doi: 10.1016/j.bioorg.2020.103674 PMID: 32097796
  101. Lin, Y.; Han, C.; Xu, Q.; Wang, W.; Li, L.; Zhu, D.; Luo, J.; Kong, L. Integrative countercurrent chromatography for the target isolation of lysine-specific demethylase 1 inhibitors from the roots of Salvia miltiorrhiza. Talanta, 2020, 206(206), 120195. doi: 10.1016/j.talanta.2019.120195 PMID: 31514831
  102. Ren, C.; Lin, Y.; Liu, X.; Yan, D.; Xu, X.; Zhu, D.; Kong, L.; Han, C. Target separation and antitumor metastasis activity of sesquiterpene-based lysine-specific demethylase 1 inhibitors from zedoary turmeric oil. Bioorg. Chem., 2021, 108, 104666. doi: 10.1016/j.bioorg.2021.104666 PMID: 33550070
  103. Duan, Y.C.; Jin, L.F.; Ren, H.M.; Zhang, S.J.; Liu, Y.J.; Xu, Y.T.; He, Z.H.; Song, Y.; Yuan, H.; Chen, S.H.; Guan, Y.Y. Design, synthesis, and biological evaluation of novel dual inhibitors targeting lysine specific demethylase 1 (LSD1) and histone deacetylases (HDAC) for treatment of gastric cancer. Eur. J. Med. Chem., 2021, 220, 113453. doi: 10.1016/j.ejmech.2021.113453 PMID: 33957387
  104. He, M.; Ning, W.; Hu, Z.; Huang, J.; Dong, C.; Zhou, H.B. Design, synthesis and biological evaluation of novel dual-acting modulators targeting both estrogen receptor α (ERα) and lysine-specific demethylase 1 (LSD1) for treatment of breast cancer. Eur. J. Med. Chem., 2020, 195, 112281. doi: 10.1016/j.ejmech.2020.112281 PMID: 32283297
  105. Li, Y.; Sun, Y.; Zhou, Y.; Li, X.; Zhang, H.; Zhang, G. Discovery of orally active chalcones as histone lysine specific demethylase 1 inhibitors for the treatment of leukaemia. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 207-217. doi: 10.1080/14756366.2020.1852556 PMID: 33307878
  106. Yan, J.; Gu, Y.; Sun, Y.; Zhang, Z.; Zhang, X.; Wang, X.; Wu, T.; Zhao, D.; Cheng, M. Design, synthesis, and biological evaluation of 5-aminotetrahydroquinoline-based LSD1 inhibitors acting on Asp375. Arch. Pharm. (Weinheim), 2021, 354(8), 2100102. doi: 10.1002/ardp.202100102 PMID: 33987875
  107. Zhang, X.; Huang, H.; Zhang, Z.; Yan, J.; Wu, T.; Yin, W.; Sun, Y.; Wang, X.; Gu, Y.; Zhao, D.; Cheng, M. Design, synthesis and biological evaluation of novel benzofuran derivatives as potent LSD1 inhibitors. Eur. J. Med. Chem., 2021, 220, 113501. doi: 10.1016/j.ejmech.2021.113501 PMID: 33945992
  108. Hattori, Y.; Matsuda, S.; Baba, R.; Matsumiya, K.; Iwasaki, S.; Constantinescu, C.C.; Morley, T.J.; Carroll, V.M.; Papin, C.; Gouasmat, A.; Alagille, D.; Tamagnan, G.; Koike, T. Design, synthesis, and evaluation of (2-Aminocyclopropyl)phenyl derivatives as novel positron emission tomography imaging agents for lysine-specific demethylase 1 in the brain. J. Med. Chem., 2021, 64(7), 3780-3793. doi: 10.1021/acs.jmedchem.0c01937 PMID: 33729758

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024