Peptide-based PROTACs: Current Challenges and Future Perspectives


Цитировать

Полный текст

Аннотация

Proteolysis-targeting chimeras (PROTACs) are an attractive means to target previously undruggable or drug-resistant mutant proteins. While small molecule-based PROTACs are stable and can cross cell membranes, there is limited availability of suitable small molecule warheads capable of recruiting proteins to an E3 ubiquitin ligase for degradation. With advances in structural biology and in silico protein structure prediction, it is now becoming easier to define highly selective peptides suitable for PROTAC design. As a result, peptide-based PROTACs are becoming a feasible proposition for targeting previously "undruggable" proteins not amenable to small molecule inhibition. In this review, we summarize recent progress in the design and application of peptide-based PROTACs as well as several practical approaches for obtaining candidate peptides for PROTACs. We also discuss the major hurdles preventing the translation of peptide-based PROTACs from bench to bedside, such as their delivery and bioavailability, with the aim of stimulating discussion about how best to accelerate the clinical development of peptide- based PROTACs in the near future.

Об авторах

Huidan Wang

School of Life Sciences and Medicine, Shandong University of Technology

Email: info@benthamscience.net

Miao Chen

School of Life Sciences and Medicine, Shandong University of Technology

Email: info@benthamscience.net

Xiaoyuan Zhang

School of Life Sciences and Medicine, Shandong University of Technology

Email: info@benthamscience.net

Songbo Xie

School of Life Sciences and Medicine, Shandong University of Technology

Email: info@benthamscience.net

Jie Qin

School of Life Sciences and Medicine, Shandong University of Technology

Автор, ответственный за переписку.
Email: info@benthamscience.net

Jingrui Li

School of Life Sciences and Medicine, Shandong University of Technology

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Nakamura, Y.; Kawazoe, A.; Lordick, F.; Janjigian, Y.Y.; Shitara, K. Biomarker-targeted therapies for advanced- stage gastric and gastro-oesophageal junction cancers: an emerging paradigm. Nat. Rev. Clin. Oncol., 2021, 18(8), 473-487. doi: 10.1038/s41571-021-00492-2 PMID: 33790428
  2. Hanzl, A.; Winter, G.E. Targeted protein degradation: current and future challenges. Curr. Opin. Chem. Biol., 2020, 56, 35-41. doi: 10.1016/j.cbpa.2019.11.012 PMID: 31901786
  3. Waddell, A.R.; Liao, D. Assays for validating histone acetyltransferase inhibitors. J Vis Exp, 2020, 162, 61289. doi: 10.3791/61289
  4. Zhang, D.; Baek, S.H.; Ho, A.; Lee, H.; Jeong, Y.S.; Kim, K. Targeted degradation of proteins by small molecules: a novel tool for functional proteomics. Comb. Chem. High Throughput Screen., 2004, 7(7), 689-697. doi: 10.2174/1386207043328364 PMID: 15578931
  5. Kashani, B.; Zandi, Z.; Kaveh, V.; Pourbagheri-Sigaroodi, A.; Ghaffari, S.H.; Bashash, D. Small molecules with huge impacts: the role of miRNA-regulated PI3K pathway in human malignancies. Mol. Biol. Rep., 2021, 48(12), 8045-8059. doi: 10.1007/s11033-021-06739-6 PMID: 34689281
  6. Gonzalvez, F.; Vincent, S.; Baker, T.E.; Gould, A.E.; Li, S.; Wardwell, S.D.; Nadworny, S.; Ning, Y.; Zhang, S.; Huang, W.S.; Hu, Y.; Li, F.; Greenfield, M.T.; Zech, S.G.; Das, B.; Narasimhan, N.I.; Clackson, T.; Dalgarno, D.; Shakespeare, W.C.; Fitzgerald, M.; Chouitar, J.; Griffin, R.J.; Liu, S.; Wong, K.; Zhu, X.; Rivera, V.M. Mobocertinib (TAK-788): A targeted inhibitor of EGFR exon 20 insertion mutants in non–small cell lung cancer. Cancer Discov., 2021, 11(7), 1672-1687. doi: 10.1158/2159-8290.CD-20-1683 PMID: 33632773
  7. Li, Y.; Song, J.; Zhou, P.; Zhou, J.; Xie, S. Targeting undruggable transcription factors with PROTACs: Advances and perspectives. J. Med. Chem., 2022, 65(15), 10183-10194. doi: 10.1021/acs.jmedchem.2c00691 PMID: 35881047
  8. Zeng, S.; Huang, W.; Zheng, X.; Cheng, L.; Zhang, Z.; Wang, J.; Shen, Z. Proteolysis targeting chimera (PROTAC) in drug discovery paradigm: Recent progress and future challenges. Eur. J. Med. Chem., 2021, 210, 112981. doi: 10.1016/j.ejmech.2020.112981 PMID: 33160761
  9. Békés, M.; Langley, D.R.; Crews, C.M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov., 2022, 21(3), 181-200. doi: 10.1038/s41573-021-00371-6 PMID: 35042991
  10. Yang, Z.; Sun, Y.; Ni, Z.; Yang, C.; Tong, Y.; Liu, Y.; Li, H.; Rao, Y. Merging PROTAC and molecular glue for degrading BTK and GSPT1 proteins concurrently. Cell Res., 2021, 31(12), 1315-1318. doi: 10.1038/s41422-021-00533-6 PMID: 34417569
  11. Guenette, R.G.; Yang, S.W.; Min, J.; Pei, B.; Potts, P.R. Target and tissue selectivity of PROTAC degraders. Chem. Soc. Rev., 2022, 51(14), 5740-5756. doi: 10.1039/D2CS00200K PMID: 35587208
  12. Au, Y.Z.; Wang, T.; Sigua, L.H.; Qi, J. Peptide-based PROTAC: The predator of pathological proteins. Cell Chem. Biol., 2020, 27(6), 637-639. doi: 10.1016/j.chembiol.2020.06.002 PMID: 32559499
  13. Morris, M.C.; Depollier, J.; Mery, J.; Heitz, F.; Divita, G. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat. Biotechnol., 2001, 19(12), 1173-1176. doi: 10.1038/nbt1201-1173 PMID: 11731788
  14. Sekine, K.; Takubo, K.; Kikuchi, R.; Nishimoto, M.; Kitagawa, M.; Abe, F.; Nishikawa, K.; Tsuruo, T.; Naito, M. Small molecules destabilize cIAP1 by activating auto-ubiquitylation. J. Biol. Chem., 2008, 283(14), 8961-8968. doi: 10.1074/jbc.M709525200 PMID: 18230607
  15. Rana, S.; Mallareddy, J.R.; Singh, S.; Boghean, L.; Natarajan, A. Inhibitors, PROTACs and molecular glues as diverse therapeutic modalities to target cyclin-dependent kinase. Cancers (Basel), 2021, 13(21), 5506. doi: 10.3390/cancers13215506 PMID: 34771669
  16. Zhao, Y.; Shu, Y.; Lin, J.; Chen, Z.; Xie, Q.; Bao, Y.; Lu, L.; Sun, N.; Wang, Y. Discovery of novel BTK PROTACs for B-Cell lymphomas. Eur. J. Med. Chem., 2021, 225, 113820. doi: 10.1016/j.ejmech.2021.113820 PMID: 34509879
  17. Wang, H.; Li, C.; Liu, X.; Ma, M. Design, synthesis and activity study of a novel PI3K degradation by hijacking VHL E3 ubiquitin ligase. Bioorg. Med. Chem., 2022, 61, 116707. doi: 10.1016/j.bmc.2022.116707 PMID: 35344835
  18. Xiang, W.; Zhao, L.; Han, X.; Qin, C.; Miao, B.; McEachern, D.; Wang, Y.; Metwally, H.; Kirchhoff, P.D.; Wang, L.; Matvekas, A.; He, M.; Wen, B.; Sun, D.; Wang, S. Discovery of ARD-2585 as an exceptionally potent and orally active PROTAC degrader of androgen receptor for the treatment of advanced prostate cancer. J. Med. Chem., 2021, 64(18), 13487-13509. doi: 10.1021/acs.jmedchem.1c00900 PMID: 34473519
  19. Duan, L.; Xu, X.; Xu, L.; Wen, C.; Ouyang, K.; Li, Z.; Liang, Y. ERα-targeting PROTAC as a chemical knockdown tool to investigate the estrogen receptor function in rat menopausal arthritis. Front. Pharmacol., 2021, 12, 764154. doi: 10.3389/fphar.2021.764154 PMID: 34916941
  20. Backus, K.M.; Correia, B.E.; Lum, K.M.; Forli, S.; Horning, B.D.; González-Páez, G.E.; Chatterjee, S.; Lanning, B.R.; Teijaro, J.R.; Olson, A.J.; Wolan, D.W.; Cravatt, B.F. Proteome-wide covalent ligand discovery in native biological systems. Nature, 2016, 534(7608), 570-574. doi: 10.1038/nature18002 PMID: 27309814
  21. Lee, K.Y.; Chau, C.H.; Price, D.K.; Figg, W.D. Drugging the undruggable: activity-based protein profiling offers opportunities for targeting the KLK activome. Cancer Biol. Ther., 2022, 23(1), 136-138. doi: 10.1080/15384047.2022.2033059 PMID: 35129066
  22. Jiang, Y.; Deng, Q.; Zhao, H.; Xie, M.; Chen, L.; Yin, F.; Qin, X.; Zheng, W.; Zhao, Y.; Li, Z. Development of stabilized peptide-based PROTACs against estrogen receptor α. ACS Chem. Biol., 2018, 13(3), 628-635. doi: 10.1021/acschembio.7b00985 PMID: 29271628
  23. Pelay-Gimeno, M.; Glas, A.; Koch, O.; Grossmann, T.N. Structure-based design of inhibitors of protein-protein interactions: Mimicking peptide binding epitopes. Angew. Chem. Int. Ed., 2015, 54(31), 8896-8927. doi: 10.1002/anie.201412070 PMID: 26119925
  24. Ledsgaard, L.; Ljungars, A.; Rimbault, C.; Sørensen, C.V.; Tulika, T.; Wade, J.; Wouters, Y.; McCafferty, J.; Laustsen, A.H. Advances in antibody phage display technology. Drug Discov. Today, 2022, 27(8), 2151-2169. doi: 10.1016/j.drudis.2022.05.002 PMID: 35550436
  25. Jaroszewicz, W.; Morcinek-Orłowska, J.; Pierzynowska, K.; Gaffke, L.; Węgrzyn, G. Phage display and other peptide display technologies. FEMS Microbiol. Rev., 2022, 46(2), fuab052. doi: 10.1093/femsre/fuab052 PMID: 34673942
  26. Sakamoto, K.M.; Kim, K.B.; Kumagai, A.; Mercurio, F.; Crews, C.M.; Deshaies, R.J. Protacs: Chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. USA, 2001, 98(15), 8554-8559. doi: 10.1073/pnas.141230798 PMID: 11438690
  27. Sakamoto, K.M.; Kim, K.B.; Verma, R.; Ransick, A.; Stein, B.; Crews, C.M.; Deshaies, R.J. Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol. Cell. Proteomics, 2003, 2(12), 1350-1358. doi: 10.1074/mcp.T300009-MCP200 PMID: 14525958
  28. Schneekloth, J.S., Jr; Fonseca, F.N.; Koldobskiy, M.; Mandal, A.; Deshaies, R.; Sakamoto, K.; Crews, C.M. Chemical genetic control of protein levels: selective in vivo targeted degradation. J. Am. Chem. Soc., 2004, 126(12), 3748-3754. doi: 10.1021/ja039025z PMID: 15038727
  29. Poongavanam, V.; Kihlberg, J. PROTAC cell permeability and oral bioavailability: a journey into uncharted territory. Future Med. Chem., 2022, 14(3), 123-126. doi: 10.4155/fmc-2021-0208 PMID: 34583518
  30. Klein, V.G.; Townsend, C.E.; Testa, A.; Zengerle, M.; Maniaci, C.; Hughes, S.J.; Chan, K.H.; Ciulli, A.; Lokey, R.S. Understanding and improving the membrane permeability of VH032-based PROTACs. ACS Med. Chem. Lett., 2020, 11(9), 1732-1738. doi: 10.1021/acsmedchemlett.0c00265 PMID: 32939229
  31. McAndrews, K.M.; Xiao, F.; Chronopoulos, A.; LeBleu, V.S.; Kugeratski, F.G.; Kalluri, R. Exosome-mediated delivery of CRISPR/Cas9 for targeting of oncogenic KrasG12D in pancreatic cancer. Life Sci. Alliance, 2021, 4(9), e202000875. doi: 10.26508/lsa.202000875 PMID: 34282051
  32. Balantič, K.; Miklavčič, D.; Križaj, I.; Kramar, P. The good and the bad of cell membrane electroporation. Acta Chim. Slov., 2021, 68(4), 753-764. doi: 10.17344/acsi.2021.7198 PMID: 34918751
  33. Chen, Z.; Ling, L.; Shi, X.; Li, W.; Zhai, H.; Kang, Z.; Zheng, B.; Zhu, J.; Ye, S.; Wang, H.; Tong, L.; Ni, J.; Huang, C.; Li, Y.; Zheng, K. Microinjection of antisense oligonucleotides into living mouse testis enables lncRNA function study. Cell Biosci., 2021, 11(1), 213. doi: 10.1186/s13578-021-00717-y PMID: 34920761
  34. Wender, P.A.; Mitchell, D.J.; Pattabiraman, K.; Pelkey, E.T.; Steinman, L.; Rothbard, J.B. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: Peptoid molecular transporters. Proc. Natl. Acad. Sci. USA, 2000, 97(24), 13003-13008. doi: 10.1073/pnas.97.24.13003 PMID: 11087855
  35. Kirschberg, T.A.; VanDeusen, C.L.; Rothbard, J.B.; Yang, M.; Wender, P.A. Arginine-based molecular transporters: the synthesis and chemical evaluation of releasable taxol-transporter conjugates. Org. Lett., 2003, 5(19), 3459-3462. doi: 10.1021/ol035234c PMID: 12967299
  36. Zhang, D.; Baek, S.H.; Ho, A.; Kim, K. Degradation of target protein in living cells by small-molecule proteolysis inducer. Bioorg. Med. Chem. Lett., 2004, 14(3), 645-648. doi: 10.1016/j.bmcl.2003.11.042 PMID: 14741260
  37. Lee, H.; Puppala, D.; Choi, E.Y.; Swanson, H.; Kim, K.B. Targeted degradation of the aryl hydrocarbon receptor by the PROTAC approach: a useful chemical genetic tool. ChemBioChem, 2007, 8(17), 2058-2062. doi: 10.1002/cbic.200700438 PMID: 17907127
  38. Bargagna-Mohan, P.; Baek, S.H.; Lee, H.; Kim, K.; Mohan, R. Use of PROTACS as molecular probes of angiogenesis. Bioorg. Med. Chem. Lett., 2005, 15(11), 2724-2727. doi: 10.1016/j.bmcl.2005.04.008 PMID: 15876533
  39. Rodriguez-Gonzalez, A.; Cyrus, K.; Salcius, M.; Kim, K.; Crews, C.M.; Deshaies, R.J.; Sakamoto, K.M. Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer. Oncogene, 2008, 27(57), 7201-7211. doi: 10.1038/onc.2008.320 PMID: 18794799
  40. Montrose, K.; Krissansen, G.W. Design of a PROTAC that antagonizes and destroys the cancer-forming X-protein of the hepatitis B virus. Biochem. Biophys. Res. Commun., 2014, 453(4), 735-740. doi: 10.1016/j.bbrc.2014.10.006 PMID: 25305486
  41. Henning, R.K.; Varghese, J.O.; Das, S.; Nag, A.; Tang, G.; Tang, K.; Sutherland, A.M.; Heath, J.R. Degradation of Akt using protein-catalyzed capture agents. J. Pept. Sci., 2016, 22(4), 196-200. doi: 10.1002/psc.2858 PMID: 26880702
  42. Wang, X.; Feng, S.; Fan, J.; Li, X.; Wen, Q.; Luo, N. New strategy for renal fibrosis: Targeting Smad3 proteins for ubiquitination and degradation. Biochem. Pharmacol., 2016, 116, 200-209. doi: 10.1016/j.bcp.2016.07.017 PMID: 27473774
  43. Chu, T.T.; Gao, N.; Li, Q.Q.; Chen, P.G.; Yang, X.F.; Chen, Y.X.; Zhao, Y.F.; Li, Y.M. Specific knockdown of endogenous tau protein by peptide-directed ubiquitin-proteasome degradation. Cell Chem. Biol., 2016, 23(4), 453-461. doi: 10.1016/j.chembiol.2016.02.016 PMID: 27105281
  44. Hines, J.; Gough, J.D.; Corson, T.W.; Crews, C.M. Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACs. Proc. Natl. Acad. Sci. USA, 2013, 110(22), 8942-8947. doi: 10.1073/pnas.1217206110 PMID: 23674677
  45. Bauer, P.O.; Goswami, A.; Wong, H.K.; Okuno, M.; Kurosawa, M.; Yamada, M.; Miyazaki, H.; Matsumoto, G.; Kino, Y.; Nagai, Y.; Nukina, N. Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein. Nat. Biotechnol., 2010, 28(3), 256-263. doi: 10.1038/nbt.1608 PMID: 20190739
  46. Lu, M.; Liu, T.; Jiao, Q.; Ji, J.; Tao, M.; Liu, Y.; You, Q.; Jiang, Z. Discovery of a Keap1-dependent peptide PROTAC to knockdown Tau by ubiquitination-proteasome degradation pathway. Eur. J. Med. Chem., 2018, 146, 251-259. doi: 10.1016/j.ejmech.2018.01.063 PMID: 29407955
  47. Zou, Y.; Ma, D.; Wang, Y. The PROTAC technology in drug development. Cell Biochem. Funct., 2019, 37(1), 21-30. doi: 10.1002/cbf.3369 PMID: 30604499
  48. Zheng, J.; Tan, C.; Xue, P.; Cao, J.; Liu, F.; Tan, Y.; Jiang, Y. Proteolysis targeting peptide (PROTAP) strategy for protein ubiquitination and degradation. Biochem. Biophys. Res. Commun., 2016, 470(4), 936-940. doi: 10.1016/j.bbrc.2016.01.158 PMID: 26826379
  49. Paiva, S.L.; Crews, C.M. Targeted protein degradation: elements of PROTAC design. Curr. Opin. Chem. Biol., 2019, 50, 111-119. doi: 10.1016/j.cbpa.2019.02.022 PMID: 31004963
  50. Liao, H.; Li, X.; Zhao, L.; Wang, Y.; Wang, X.; Wu, Y.; Zhou, X.; Fu, W.; Liu, L.; Hu, H.G.; Chen, Y.G. A PROTAC peptide induces durable β-catenin degradation and suppresses Wnt-dependent intestinal cancer. Cell Discov., 2020, 6(1), 35. doi: 10.1038/s41421-020-0171-1 PMID: 32550000
  51. Tanaka, Y.; Luo, Y.; O’Shea, J.J.; Nakayamada, S. Janus kinase-targeting therapies in rheumatology: a mechanisms-based approach. Nat. Rev. Rheumatol., 2022, 18(3), 133-145. doi: 10.1038/s41584-021-00726-8 PMID: 34987201
  52. Alsfouk, A. Small molecule inhibitors of cyclin-dependent kinase 9 for cancer therapy. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 693-706. doi: 10.1080/14756366.2021.1890726 PMID: 33632038
  53. Crews, C.M. Inducing protein degradation as a therapeutic strategy. J. Med. Chem., 2018, 61(2), 403-404. doi: 10.1021/acs.jmedchem.7b01333 PMID: 29164885
  54. Crews, C.M.; Georg, G.; Wang, S. Inducing protein degradation as a therapeutic strategy. J. Med. Chem., 2016, 59(11), 5129-5130. doi: 10.1021/acs.jmedchem.6b00735 PMID: 27199030
  55. Cao, L.; Coventry, B.; Goreshnik, I.; Huang, B.; Sheffler, W.; Park, J.S.; Jude, K.M.; Marković, I.; Kadam, R.U.; Verschueren, K.H.G.; Verstraete, K.; Walsh, S.T.R.; Bennett, N.; Phal, A.; Yang, A.; Kozodoy, L.; DeWitt, M.; Picton, L.; Miller, L.; Strauch, E.M.; DeBouver, N.D.; Pires, A.; Bera, A.K.; Halabiya, S.; Hammerson, B.; Yang, W.; Bernard, S.; Stewart, L.; Wilson, I.A.; Ruohola-Baker, H.; Schlessinger, J.; Lee, S.; Savvides, S.N.; Garcia, K.C.; Baker, D. Design of protein-binding proteins from the target structure alone. Nature, 2022, 605(7910), 551-560. doi: 10.1038/s41586-022-04654-9 PMID: 35332283
  56. Linkous, R.O.; Sestok, A.E.; Smith, A.T. The crystal structure of Klebsiella pneumoniae FeoA reveals a site for protein-protein interactions. Proteins, 2019, 87(11), 897-903. doi: 10.1002/prot.25755 PMID: 31162843
  57. Zhang, Y.; Zhong, Z.; Ye, J.; Wang, C. Crystal structure of the PDZ4 domain of MAGI2 in complex with PBM of ARMS reveals a canonical PDZ recognition mode. Neurochem. Int., 2021, 149, 105152. doi: 10.1016/j.neuint.2021.105152 PMID: 34371146
  58. Nowak, R.P.; DeAngelo, S.L.; Buckley, D.; He, Z.; Donovan, K.A.; An, J.; Safaee, N.; Jedrychowski, M.P.; Ponthier, C.M.; Ishoey, M.; Zhang, T.; Mancias, J.D.; Gray, N.S.; Bradner, J.E.; Fischer, E.S. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat. Chem. Biol., 2018, 14(7), 706-714. doi: 10.1038/s41589-018-0055-y PMID: 29892083
  59. Jakhmola, S.; Sk, M.F.; Chatterjee, A.; Jain, K.; Kar, P.; Jha, H.C. A plausible contributor to multiple sclerosis; presentation of antigenic myelin protein epitopes by major histocompatibility complexes. Comput. Biol. Med., 2022, 148, 105856. doi: 10.1016/j.compbiomed.2022.105856 PMID: 35863244
  60. Das, L.; Shekhar, S.; Chandrani, P.; Varma, A.K. In silico structural analysis of secretory clusterin to assess pathogenicity of mutations identified in the evolutionarily conserved regions. J. Biomol. Struct. Dyn., 2021, 2007791. doi: 10.1080/07391102.2021.2007791 PMID: 34821197
  61. Choi, J.; Park, T.; Yul Lee, S.; Yang, J.; Seok, C. GalaxyDomDock: An ab initio domain–domain docking web server for multi-domain protein structure prediction. J. Mol. Biol., 2022, 434(11), 167508. doi: 10.1016/j.jmb.2022.167508 PMID: 35662464
  62. Kootery, K.P.; Sarojini, S. Structural and functional characterization of a hypothetical protein in the RD7 region in clinical isolates of Mycobacterium tuberculosis — an in silico approach to candidate vaccines. J. Genet. Eng. Biotechnol., 2022, 20(1), 55. doi: 10.1186/s43141-022-00340-5 PMID: 35394551
  63. Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; Žídek, A.; Green, T.; Tunyasuvunakool, K.; Petersen, S.; Jumper, J.; Clancy, E.; Green, R.; Vora, A.; Lutfi, M.; Figurnov, M.; Cowie, A.; Hobbs, N.; Kohli, P.; Kleywegt, G.; Birney, E.; Hassabis, D.; Velankar, S. AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res., 2022, 50(D1), D439-D444. doi: 10.1093/nar/gkab1061 PMID: 34791371
  64. David, A.; Islam, S.; Tankhilevich, E.; Sternberg, M.J.E. The alphaFold database of protein structures: A biologist’s guide. J. Mol. Biol., 2022, 434(2), 167336. doi: 10.1016/j.jmb.2021.167336 PMID: 34757056
  65. Bagdonas, H.; Fogarty, C.A.; Fadda, E.; Agirre, J. The case for post-predictional modifications in the alphaFold protein structure database. Nat. Struct. Mol. Biol., 2021, 28(11), 869-870. doi: 10.1038/s41594-021-00680-9 PMID: 34716446
  66. Wheeler, R.J. A resource for improved predictions of Trypanosoma and Leishmania protein three-dimensional structure. PLoS One, 2021, 16(11), e0259871. doi: 10.1371/journal.pone.0259871 PMID: 34762696
  67. Pla-Prats, C.; Thomä, N.H. Quality control of protein complex assembly by the ubiquitin–proteasome system. Trends Cell Biol., 2022, 32(8), 696-706. doi: 10.1016/j.tcb.2022.02.005 PMID: 35300891
  68. Ottis, P.; Toure, M.; Cromm, P.M.; Ko, E.; Gustafson, J.L.; Crews, C.M. Assessing different E3 ligases for small molecule induced protein ubiquitination and degradation. ACS Chem. Biol., 2017, 12(10), 2570-2578. doi: 10.1021/acschembio.7b00485 PMID: 28767222
  69. Qu, J.; Ren, X.; Xue, F.; He, Y.; Zhang, R.; Zheng, Y.; Huang, H.; Wang, W.; Zhang, J. Specific knockdown of α-synuclein by peptide-directed proteasome degradation rescued its associated neurotoxicity. Cell Chem. Biol., 2020, 27(6), 751-762.e4. doi: 10.1016/j.chembiol.2020.03.010 PMID: 32359427
  70. An, S.; Fu, L. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine, 2018, 36, 553-562. doi: 10.1016/j.ebiom.2018.09.005 PMID: 30224312
  71. Arvinas, Pfizer team up on PROTACs. Cancer Discov., 2018, 8(4), 377-378. doi: 10.1158/2159-8290.CD-NB2018-015 PMID: 29453240
  72. Itoh, Y. Chemical protein degradation approach and its application to epigenetic targets. Chem. Rec., 2018, 18(12), 1681-1700. doi: 10.1002/tcr.201800032 PMID: 29893461
  73. Yang, Y.; Yang, Y.; Xie, X.; Cai, X.; Mei, X. Preparation and characterization of photo-responsive cell-penetrating peptide-mediated nanostructured lipid carrier. J. Drug Target., 2014, 22(10), 891-900. doi: 10.3109/1061186X.2014.940589 PMID: 25045925
  74. Visca, H.; DuPont, M.; Moshnikova, A.; Crawford, T.; Engelman, D.M.; Andreev, O.A.; Reshetnyak, Y.K. pHLIP peptides target acidity in activated macrophages. Mol. Imaging Biol., 2022, 24(6), 874-885. doi: 10.1007/s11307-022-01737-x PMID: 35604527
  75. Sun, Y.; Hu, L.; Yang, P.; Zhang, M.; Wang, X.; Xiao, H.; Qiao, C.; Wang, J.; Luo, L.; Feng, J.; Zheng, Y.; Wang, Y.; Shi, Y.; Chen, G. H low insertion peptide-modified programmed cell death-ligand 1 potently suppresses T-Cell activation under acidic condition. Front. Immunol., 2021, 12, 794226. doi: 10.3389/fimmu.2021.794226 PMID: 35003115
  76. Otieno, S.A.; Qiang, W. Roles of key residues and lipid dynamics reveal pHLIP-membrane interactions at intermediate pH. Biophys. J., 2021, 120(21), 4649-4662. doi: 10.1016/j.bpj.2021.10.001 PMID: 34624273
  77. Andreev, O.A.; Engelman, D.M.; Reshetnyak, Y.K. pH-sensitive membrane peptides (pHLIPs) as a novel class of delivery agents. Mol. Membr. Biol., 2010, 27(7), 341-352. doi: 10.3109/09687688.2010.509285 PMID: 20939768
  78. a) Gao, X.; Ran, N.; Dong, X.; Zuo, B.; Yang, R.; Zhou, Q.; Moulton, H.M.; Seow, Y.; Yin, H. Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy. Sci. Transl. Med., 2018, 10(444), eaat0195. doi: 10.1126/scitranslmed.aat0195 PMID: 29875202; b) Dong, X.; Lei, Y.; Yu, Z.; Wang, T.; Liu, Y.; Han, G.; Zhang, X.; Li, Y.; Song, Y.; Xu, H.; Du, M.; Yin, H.; Wang, X.; Yan, H. Exosome-mediated delivery of an anti-angiogenic peptide inhibits pathological retinal angiogenesis. Theranostics, 2021, 11, 5107-5126.
  79. Okuda, A.; Futaki, S. Protein delivery to cytosol by cell-penetrating peptide bearing tandem repeat penetration-accelerating sequence. Methods Mol. Biol., 2022, 2383, 265-273. doi: 10.1007/978-1-0716-1752-6_18 PMID: 34766296
  80. Yang, Q.; Tang, J.; Xu, C.; Zhao, H.; Zhou, Y.; Wang, Y.; Yang, M.; Chen, X.; Chen, J. Histone deacetylase 4 inhibits NF-κB activation by facilitating IκBα sumoylation. J. Mol. Cell Biol., 2021, 12(12), 933-945. doi: 10.1093/jmcb/mjaa043 PMID: 32770227
  81. Nguyen, H.C.; Yang, H.; Fribourgh, J.L.; Wolfe, L.S.; Xiong, Y. Insights into Cullin-RING E3 ubiquitin ligase recruitment: structure of the VHL-EloBC-Cul2 complex. Structure, 2015, 23(3), 441-449. doi: 10.1016/j.str.2014.12.014 PMID: 25661653
  82. Zengerle, M.; Chan, K.H.; Ciulli, A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol., 2015, 10(8), 1770-1777. doi: 10.1021/acschembio.5b00216 PMID: 26035625
  83. Lebraud, H.; Wright, D.J.; Johnson, C.N.; Heightman, T.D. Protein degradation by in-cell self-assembly of proteolysis targeting chimeras. ACS Cent. Sci., 2016, 2(12), 927-934. doi: 10.1021/acscentsci.6b00280 PMID: 28058282
  84. Wurz, R.P.; Dellamaggiore, K.; Dou, H.; Javier, N.; Lo, M.C.; McCarter, J.D.; Mohl, D.; Sastri, C.; Lipford, J.R.; Cee, V.J. "Click Chemistry Platform" for the rapid synthesis of bispecific molecules for inducing protein degradation. J. Med. Chem., 2018, 61(2), 453-461. doi: 10.1021/acs.jmedchem.6b01781 PMID: 28378579
  85. Rong, G. Fluoroalkylation promotes cytosolic peptide delivery. Sci Adv, 2020, 6(33), eaaz1774. doi: 10.1126/sciadv.aaz1774
  86. Rueping, M.; Mahajan, Y.; Sauer, M.; Seebach, D. Cellular uptake studies with beta-peptides. ChemBioChem, 2002, 3(2-3), 257-259. doi: 10.1002/1439-7633(20020301)3:2/33.0.CO;2-S PMID: 11921409
  87. Valeur, E.; Guéret, S.M.; Adihou, H.; Gopalakrishnan, R.; Lemurell, M.; Waldmann, H.; Grossmann, T.N.; Plowright, A.T. New modalities for challenging targets in drug discovery. Angew. Chem. Int. Ed., 2017, 56(35), 10294-10323. doi: 10.1002/anie.201611914 PMID: 28186380
  88. Fuller, J.C.; Burgoyne, N.J.; Jackson, R.M. Predicting druggable binding sites at the protein–protein interface. Drug Discov. Today, 2009, 14(3-4), 155-161. doi: 10.1016/j.drudis.2008.10.009 PMID: 19041415
  89. Schneider, M.; Radoux, C.J.; Hercules, A.; Ochoa, D.; Dunham, I.; Zalmas, L.P.; Hessler, G.; Ruf, S.; Shanmugasundaram, V.; Hann, M.M.; Thomas, P.J.; Queisser, M.A.; Benowitz, A.B.; Brown, K.; Leach, A.R. The PROTACtable genome. Nat. Rev. Drug Discov., 2021, 20(10), 789-797. doi: 10.1038/s41573-021-00245-x PMID: 34285415
  90. Cromm, P.M.; Crews, C.M. Targeted protein degradation: from chemical biology to drug discovery. Cell Chem. Biol., 2017, 24(9), 1181-1190. doi: 10.1016/j.chembiol.2017.05.024 PMID: 28648379

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024