Advances in Drug Therapy for Gastrointestinal Stromal Tumour


Cite item

Full Text

Abstract

Introduction:Gastrointestinal stromal tumour (GIST) is a common gastrointestinal sarcoma located in the stromal cells of the digestive tract, and molecular studies have revealed the pathogenesis of mutations in KIT and PDGFRA genes. Since imatinib opened the era of targeted therapy for GIST, tyrosine kinase inhibitors (TKIs) that can treat GIST have been developed successively. However, the lack of new drugs with satisfactory therapeutic standards has made addressing resistance a significant challenge for TKIs in the face of the resistance to first-line and second-line drugs. Therefore, we need to find as many drugs and new treatments that block mutated genes as possible.

Methods:We conducted a comprehensive collection of literature using databases, integrated and analysed the selected literature based on keywords and the comprehensive nature of the articles, and finally wrote articles based on the content of the studies.

Results:In this article, we first briefly explained the relationship between GIST and KIT/ PDGFRα and then introduced the related drug treatment. The research progress of TKIs was analyzed according to the resistance of the drugs.

Conclusion:This article describes the research progress of some TKIs and briefly introduces the currently approved TKIs and some drugs under investigation that may have better therapeutic effects, hoping to provide clues to the research of new drugs.

About the authors

Ju Liu

College of Pharmacy, Liaoning University

Email: info@benthamscience.net

Jiawei Li

College of Pharmacy, Liaoning University

Email: info@benthamscience.net

Yan Zhu

College of Pharmacy, Liaoning University

Email: info@benthamscience.net

Rui Jing

College of Pharmacy, Liaoning University

Email: info@benthamscience.net

Shi Ding

College of Pharmacy, Liaoning University

Email: info@benthamscience.net

Jifang Zhang

College of Pharmacy, Liaoning University

Email: info@benthamscience.net

Leyan Zhao

College of Pharmacy, Liaoning University

Email: info@benthamscience.net

Ye Chen

College of Pharmacy, Liaoning University

Author for correspondence.
Email: info@benthamscience.net

Jiwei Shen

College of Pharmacy, Liaoning University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Saluja, S.S.; Varshney, V.K.; Gupta, R.K.; Tyagi, I.; Mishra, P.; Batra, V. Analysis of clinicopathological and immunohistochemical parameters and correlation of outcomes in gastrointestinal stromal tumors. Indian J. Cancer, 2019, 56(2), 135-143. doi: 10.4103/ijc.IJC_352_18 PMID: 31062732
  2. Søreide, K.; Sandvik, O.M.; Søreide, J.A.; Giljaca, V.; Jureckova, A.; Bulusu, V.R. Global epidemiology of gastrointestinal stromal tumours (GIST): A systematic review of population-based cohort studies. Cancer Epidemiol., 2016, 40, 39-46. doi: 10.1016/j.canep.2015.10.031 PMID: 26618334
  3. Mazzocca, A.; Napolitano, A.; Silletta, M.; Spalato, C.M.; Santini, D.; Tonini, G.; Vincenzi, B. New frontiers in the medical management of gastrointestinal stromal tumours. Ther. Adv. Med. Oncol., 2019, 11 doi: 10.1177/1758835919841946 PMID: 31205499
  4. Etherington, M.S.; DeMatteo, R.P. Tailored management of primary gastrointestinal stromal tumors. Cancer, 2019, 125(13), cncr.32067. doi: 10.1002/cncr.32067 PMID: 30933313
  5. Wozniak, A.; Gebreyohannes, Y.K.; Debiec-Rychter, M.; Schöffski, P. New targets and therapies for gastrointestinal stromal tumors. Expert Rev. Anticancer Ther., 2017, 17(12), 1117-1129. doi: 10.1080/14737140.2017.1400386 PMID: 29110548
  6. Fletcher, J.A.; Rubin, B.P. KIT mutations in GIST. Curr. Opin. Genet. Dev., 2007, 17(1), 3-7. doi: 10.1016/j.gde.2006.12.010 PMID: 17208434
  7. Wardelmann, E.; Losen, I.; Hans, V.; Neidt, I.; Speidel, N.; Bierhoff, E.; Heinicke, T.; Pietsch, T.; Büttner, R.; Merkelbach-Bruse, S. Deletion of Trp-557 and Lys-558 in the juxtamembrane domain of the c-kit protooncogene is associated with metastatic behavior of gastrointestinal stromal tumors. Int. J. Cancer, 2003, 106(6), 887-895. doi: 10.1002/ijc.11323 PMID: 12918066
  8. Al-Share, B.; Alloghbi, A.; Al Hallak, M.N.; Uddin, H.; Azmi, A.; Mohammad, R.M.; Kim, S.H.; Shields, A.F.; Philip, P.A. Gastrointestinal stromal tumor: A review of current and emerging therapies. Cancer Metastasis Rev., 2021, 40(2), 625-641. doi: 10.1007/s10555-021-09961-7 PMID: 33876372
  9. von Mehren, M.; Joensuu, H. Gastrointestinal stromal tumors. J. Clin. Oncol., 2018, 36(2), 136-143. doi: 10.1200/JCO.2017.74.9705 PMID: 29220298
  10. Contreras, O.; Córdova-Casanova, A.; Brandan, E. PDGF-PDGFR network differentially regulates the fate, migration, proliferation, and cell cycle progression of myogenic cells. Cell. Signal., 2021, 84, 110036. doi: 10.1016/j.cellsig.2021.110036 PMID: 33971280
  11. Doyle, L.A.; Hornick, J.L. Gastrointestinal stromal tumours: From KIT to succinate dehydrogenase. Histopathology, 2014, 64(1), 53-67. doi: 10.1111/his.12302 PMID: 24117705
  12. Gao, J.; Li, J.; Li, Y.; Li, Z.; Gong, J.; Wu, J.; Liu, N.; Dong, B.; Qi, C.; Li, J.; Shen, L. Intratumoral KIT mutational heterogeneity and recurrent KIT/ PDGFRA mutations in KIT/PDGFRA wild-type gastrointestinal stromal tumors. Oncotarget, 2016, 7(21), 30241-30249. doi: 10.18632/oncotarget.7148 PMID: 26848617
  13. Jové, M.; Mora, J.; Sanjuan, X.; Rodriguez, E.; Robledo, M.; Farran, L.; Garcia del, M.X. Simultaneous KIT mutation and succinate dehydrogenase (SDH) deficiency in a patient with a gastrointestinal stromal tumour and Carney-Stratakis syndrome: A case report. Histopathology, 2014, 65(5), 712-717. doi: 10.1111/his.12506 PMID: 25130709
  14. Delahaye, N.F.; Rusakiewicz, S.; Martins, I.; Ménard, C.; Roux, S.; Lyonnet, L.; Paul, P.; Sarabi, M.; Chaput, N.; Semeraro, M.; Minard-Colin, V.; Poirier-Colame, V.; Chaba, K.; Flament, C.; Baud, V.; Authier, H.; Kerdine-Römer, S.; Pallardy, M.; Cremer, I.; Peaudecerf, L.; Rocha, B.; Valteau-Couanet, D.; Gutierrez, J.C.; Nunès, J.A.; Commo, F.; Bonvalot, S.; Ibrahim, N.; Terrier, P.; Opolon, P.; Bottino, C.; Moretta, A.; Tavernier, J.; Rihet, P.; Coindre, J.M.; Blay, J.Y.; Isambert, N.; Emile, J.F.; Vivier, E.; Lecesne, A.; Kroemer, G.; Zitvogel, L. Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nat. Med., 2011, 17(6), 700-707. doi: 10.1038/nm.2366 PMID: 21552268
  15. Mason, E.F.; Hornick, J.L. Conventional risk stratification fails to predict progression of succinate dehydrogenase–deficient gastrointestinal stromal tumors. Am. J. Surg. Pathol., 2016, 40(12), 1616-1621. doi: 10.1097/PAS.0000000000000685 PMID: 27340750
  16. Agaram, N.P.; Wong, G.C.; Guo, T.; Maki, R.G.; Singer, S.; DeMatteo, R.P.; Besmer, P.; Antonescu, C.R. Novel V600E BRAF mutations in imatinib-naive and imatinib-resistant gastrointestinal stromal tumors. Genes Chromosomes Cancer, 2008, 47(10), 853-859. doi: 10.1002/gcc.20589 PMID: 18615679
  17. Agaimy, A.; Terracciano, L.M.; Dirnhofer, S.; Tornillo, L.; Foerster, A.; Hartmann, A.; Bihl, M.P. V600E BRAF mutations are alternative early molecular events in a subset of KIT/PDGFRA wild-type gastrointestinal stromal tumours. J. Clin. Pathol., 2009, 62(7), 613-616. doi: 10.1136/jcp.2009.064550 PMID: 19561230
  18. Brems, H.; Beert, E.; de Ravel, T.; Legius, E. Mechanisms in the pathogenesis of malignant tumours in neurofibromatosis type 1. Lancet Oncol., 2009, 10(5), 508-515. doi: 10.1016/S1470-2045(09)70033-6 PMID: 19410195
  19. Nannini, M.; Astolfi, A.; Urbini, M.; Indio, V.; Santini, D.; Heinrich, M.C.; Corless, C.L.; Ceccarelli, C.; Saponara, M.; Mandrioli, A.; Lolli, C.; Ercolani, G.; Brandi, G.; Biasco, G.; Pantaleo, M.A. Integrated genomic study of quadruple-WT GIST (KIT/PDGFRA/SDH/RAS pathway wild-type GIST). BMC Cancer, 2014, 14(1), 685. doi: 10.1186/1471-2407-14-685 PMID: 25239601
  20. Chi, P.; Chen, Y.; Zhang, L.; Guo, X.; Wongvipat, J.; Shamu, T.; Fletcher, J.A.; Dewell, S.; Maki, R.G.; Zheng, D.; Antonescu, C.R.; Allis, C.D.; Sawyers, C.L. ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours. Nature, 2010, 467(7317), 849-853. doi: 10.1038/nature09409 PMID: 20927104
  21. Janeway, K.A.; Kim, S.Y.; Lodish, M.; Nosé, V.; Rustin, P.; Gaal, J.; Dahia, P.L.M.; Liegl, B.; Ball, E.R.; Raygada, M.; Lai, A.H.; Kelly, L.; Hornick, J.L.; O’Sullivan, M.; de Krijger, R.R.; Dinjens, W.N.M.; Demetri, G.D.; Antonescu, C.R.; Fletcher, J.A.; Helman, L.; Stratakis, C.A. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc. Natl. Acad. Sci., 2011, 108(1), 314-318. doi: 10.1073/pnas.1009199108 PMID: 21173220
  22. Kim, T.W.; Lee, H.; Kang, Y.K.; Choe, M.S.; Ryu, M.H.; Chang, H.M.; Kim, J.S.; Yook, J.H.; Kim, B.S.; Lee, J.S. Prognostic significance of c-kit mutation in localized gastrointestinal stromal tumors. Clin. Cancer Res., 2004, 10(9), 3076-3081. doi: 10.1158/1078-0432.CCR-03-0581 PMID: 15131046
  23. Wróblewska, J.P.; Dias-Santagata, D.; Ustaszewski, A.; Wu, C.L.; Fujimoto, M.; Selim, M.A.; Biernat, W.; Ryś, J.; Marszalek, A.; Hoang, M.P. Prognostic roles of BRAF, KIT, NRAS, IGF2R and SF3B1 mutations in mucosal melanomas. Cells, 2021, 10(9), 2216. doi: 10.3390/cells10092216 PMID: 34571863
  24. Miettinen, M.; Makhlouf, H.; Sobin, L.H.; Lasota, J. Gastrointestinal stromal tumors of the jejunum and ileum: A clinicopathologic, immunohistochemical, and molecular genetic study of 906 cases before imatinib with long-term follow-up. Am. J. Surg. Pathol., 2006, 30(4), 477-489. doi: 10.1097/00000478-200604000-00008 PMID: 16625094
  25. Woll, P.; Woll, P.J. Treatment of gastrointestinal stromal tumor: Focus on imatinib mesylate. Ther. Clin. Risk Manag., 2008, 4(1), 149-162. doi: 10.2147/TCRM.S1526 PMID: 18728705
  26. Debiec-Rychter, M.; Sciot, R.; Le Cesne, A.; Schlemmer, M.; Hohenberger, P.; van Oosterom, A.T.; Blay, J.Y.; Leyvraz, S.; Stul, M.; Casali, P.G.; Zalcberg, J.; Verweij, J.; Van Glabbeke, M.; Hagemeijer, A.; Judson, I.; Soft Tissue, E.O.R.T.C. KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. Eur. J. Cancer, 2006, 42(8), 1093-1103. doi: 10.1016/j.ejca.2006.01.030 PMID: 16624552
  27. Comandone, A; Boglione, A Importanza delle mutazioni nella prognosi e terapia medica dei GIST The importance of mutational status in prognosis and therapy of GIST. Recenti Prog Med., 2015, 106(1), 17-22. doi: 10.1701/1740.18950
  28. Bauer, S.; Joensuu, H. Emerging agents for the treatment of advanced, imatinib-resistant gastrointestinal stromal tumors: Current status and future directions. Drugs, 2015, 75(12), 1323-1334. doi: 10.1007/s40265-015-0440-8 PMID: 26187774
  29. Mulet-Margalef, N.; Garcia del, M.X. Sunitinib in the treatment of gastrointestinal stromal tumor: Patient selection and perspectives. OncoTargets Ther., 2016, 9, 7573-7582. doi: 10.2147/OTT.S101385 PMID: 28008275
  30. Brzozowska, M.; Wierzba, W.; Szafraniec-Buryło, S.; Czech, M.; Połowinczak-Przybyłek, J.; Potemski, P.; Śliwczyński, A. Real-world evidence of patient outcome following treatment of advanced gastrointestinal stromal tumor (GIST) with imatinib, sunitinib, and sorafenib in publicly funded health care in poland. Med. Sci. Monit., 2019, 25, 3846-3853. doi: 10.12659/MSM.914517 PMID: 31121600
  31. Heinrich, M.C.; Corless, C.L.; Blanke, C.D.; Demetri, G.D.; Joensuu, H.; Roberts, P.J.; Eisenberg, B.L.; von Mehren, M.; Fletcher, C.D.M.; Sandau, K.; McDougall, K.; Ou, W.; Chen, C.J.; Fletcher, J.A. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J. Clin. Oncol., 2006, 24(29), 4764-4774. doi: 10.1200/JCO.2006.06.2265 PMID: 16954519
  32. Kumar, V.; Singh, P.; Gupta, S.K.; Ali, V.; Verma, M. Transport and metabolism of tyrosine kinase inhibitors associated with chronic myeloid leukemia therapy: A review. Mol. Cell. Biochem., 2022, 477(4), 1261-1279. doi: 10.1007/s11010-022-04376-6 PMID: 35129779
  33. Prenen, H.; Guetens, G.; de Boeck, G.; Debiec-Rychter, M.; Manley, P.; Schöffski, P.; van Oosterom, A.T.; de Bruijn, E. Cellular uptake of the tyrosine kinase inhibitors imatinib and AMN107 in gastrointestinal stromal tumor cell lines. Pharmacology, 2006, 77(1), 11-16. doi: 10.1159/000091943 PMID: 16534250
  34. Cho, J.H.; Kim, K.M.; Kwon, M.; Kim, J.H.; Lee, J. Nilotinib in patients with metastatic melanoma harboring KIT gene aberration. Invest. New Drugs, 2012, 30(5), 2008-2014. doi: 10.1007/s10637-011-9763-9 PMID: 22068222
  35. Dewaele, B.; Wasag, B.; Cools, J.; Sciot, R.; Prenen, H.; Vandenberghe, P.; Wozniak, A.; Schöffski, P.; Marynen, P.; Debiec-Rychter, M. Activity of dasatinib, a dual SRC/ABL kinase inhibitor, and IPI-504, a heat shock protein 90 inhibitor, against gastrointestinal stromal tumor-associated PDGFRAD842V mutation. Clin. Cancer Res., 2008, 14(18), 5749-5758. doi: 10.1158/1078-0432.CCR-08-0533 PMID: 18794084
  36. Herold, C.I.; Chadaram, V.; Peterson, B.L.; Marcom, P.K.; Hopkins, J.; Kimmick, G.G.; Favaro, J.; Hamilton, E.; Welch, R.A.; Bacus, S.; Blackwell, K.L. Phase II trial of dasatinib in patients with metastatic breast cancer using real-time pharmacodynamic tissue biomarkers of Src inhibition to escalate dosing. Clin. Cancer Res., 2011, 17(18), 6061-6070. doi: 10.1158/1078-0432.CCR-11-1071 PMID: 21810917
  37. Demetri, G.D. Differential properties of current tyrosine kinase inhibitors in gastrointestinal stromal tumors. Semin. Oncol., 2011, 38(S1), S10-S19. doi: 10.1053/j.seminoncol.2011.01.018 PMID: 21419931
  38. Fondevila, F.; Méndez-Blanco, C.; Fernández-Palanca, P.; González-Gallego, J.; Mauriz, J.L. Anti-tumoral activity of single and combined regorafenib treatments in preclinical models of liver and gastrointestinal cancers. Exp. Mol. Med., 2019, 51(9), 1-15. doi: 10.1038/s12276-019-0308-1 PMID: 31551425
  39. Treiber, H.; von der Brelie, C.; Malinova, V.; Mielke, D.; Rohde, V.; Chapuy, C.I. Regorafenib for recurrent high-grade glioma: A unicentric retrospective analysis of feasibility, efficacy, and toxicity. Neurosurg. Rev., 2022, 45(5), 3201-3208. doi: 10.1007/s10143-022-01826-z PMID: 35725846
  40. Miyake, K.; Kawaguchi, K.; Kiyuna, T.; Miyake, M.; Igarashi, K.; Zhang, Z.; Murakami, T.; Li, Y.; Nelson, S.D.; Elliott, I.; Russell, T.; Singh, A.; Hiroshima, Y.; Momiyama, M.; Matsuyama, R.; Chishima, T.; Endo, I.; Eilber, F.C.; Hoffman, R.M. Regorafenib regresses an imatinib-resistant recurrent gastrointestinal stromal tumor (GIST) with a mutation in exons 11 and 17 of c-kit in a patient-derived orthotopic xenograft (PDOX) nude mouse model. Cell Cycle, 2018, 17(6), 722-727. doi: 10.1080/15384101.2017.1423223 PMID: 29334307
  41. Evans, E.K.; Gardino, A.K.; Kim, J.L.; Hodous, B.L.; Shutes, A.; Davis, A.; Zhu, X.J.; Schmidt-Kittler, O.; Wilson, D.; Wilson, K.; DiPietro, L.; Zhang, Y.; Brooijmans, N.; LaBranche, T.P.; Wozniak, A.; Gebreyohannes, Y.K.; Schöffski, P.; Heinrich, M.C.; DeAngelo, D.J.; Miller, S.; Wolf, B.; Kohl, N.; Guzi, T.; Lydon, N.; Boral, A.; Lengauer, C. A precision therapy against cancers driven by KIT/PDGFRA mutations. Sci. Transl. Med., 2017, 9(414), eaao1690. doi: 10.1126/scitranslmed.aao1690
  42. Dhillon, S. Avapritinib: First approval. Drugs, 2020, 80(4), 433-439. doi: 10.1007/s40265-020-01275-2 PMID: 32100250
  43. Villanueva, M.T. Ripretinib turns off the switch in GIST. Nat. Rev. Drug Discov., 2019, 18(7), 499. doi: 10.1038/d41573-019-00099-4 PMID: 31267077
  44. Schneeweiss, M.; Peter, B.; Bibi, S.; Eisenwort, G.; Smiljkovic, D.; Blatt, K.; Jawhar, M.; Berger, D.; Stefanzl, G.; Herndlhofer, S.; Greiner, G.; Hoermann, G.; Hadzijusufovic, E.; Gleixner, K.V.; Bettelheim, P.; Geissler, K.; Sperr, W.R.; Reiter, A.; Arock, M.; Valent, P. The KIT and PDGFRA switch-control inhibitor DCC-2618 blocks growth and survival of multiple neoplastic cell types in advanced mastocytosis. Haematologica, 2018, 103(5), 799-809. doi: 10.3324/haematol.2017.179895 PMID: 29439183
  45. Dhillon, S. Ripretinib: First approval. Drugs, 2020, 80(11), 1133-1138. doi: 10.1007/s40265-020-01348-2 PMID: 32578014
  46. Reichardt, P. Novel approaches to imatinib-and sunitinib-resistant GIST. Curr. Oncol. Rep., 2008, 10(4), 344-349. doi: 10.1007/s11912-008-0053-4 PMID: 18778561
  47. Heinrich, M.C.; Marino-Enriquez, A.; Presnell, A.; Donsky, R.S.; Griffith, D.J.; McKinley, A.; Patterson, J.; Taguchi, T.; Liang, C.W.; Fletcher, J.A. Sorafenib inhibits many kinase mutations associated with drug-resistant gastrointestinal stromal tumors. Mol. Cancer Ther., 2012, 11(8), 1770-1780. doi: 10.1158/1535-7163.MCT-12-0223 PMID: 22665524
  48. Park, S.H.; Ryu, M.H.; Ryoo, B.Y.; Im, S.A.; Kwon, H.C.; Lee, S.S.; Park, S.R.; Kang, B.Y.; Kang, Y.K. Sorafenib in patients with metastatic gastrointestinal stromal tumors who failed two or more prior tyrosine kinase inhibitors: a phase II study of Korean gastrointestinal stromal tumors study group. Invest. New Drugs, 2012, 30(6), 2377-2383. doi: 10.1007/s10637-012-9795-9 PMID: 22270258
  49. Nishida, T.; Doi, T. Pazopanib for both GIST and soft-tissue sarcoma. Lancet Oncol., 2016, 17(5), 549-550. doi: 10.1016/S1470-2045(16)00101-7 PMID: 27068859
  50. Mir, O.; Cropet, C.; Toulmonde, M.; Cesne, A.L.; Molimard, M.; Bompas, E.; Cassier, P.; Ray-Coquard, I.; Rios, M.; Adenis, A.; Italiano, A.; Bouché, O.; Chauzit, E.; Duffaud, F.; Bertucci, F.; Isambert, N.; Gautier, J.; Blay, J.Y.; Pérol, D. Pazopanib plus best supportive care versus best supportive care alone in advanced gastrointestinal stromal tumours resistant to imatinib and sunitinib (PAZOGIST): A randomised, multicentre, open-label phase 2 trial. Lancet Oncol., 2016, 17(5), 632-641. doi: 10.1016/S1470-2045(16)00075-9 PMID: 27068858
  51. Gelderblom, H.; Jones, R.L.; George, S.; Valverde, M.C.; Benson, C.; Jean-Yves, B.; Renouf, D.J.; Doi, T.; Le Cesne, A.; Leahy, M.; Hertle, S.; Aimone, P.; Brandt, U.; Schӧffski, P. Imatinib in combination with phosphoinositol kinase inhibitor buparlisib in patients with gastrointestinal stromal tumour who failed prior therapy with imatinib and sunitinib: A Phase 1b, multicentre study. Br. J. Cancer, 2020, 122(8), 1158-1165. doi: 10.1038/s41416-020-0769-y PMID: 32147671
  52. Yakes, F.M.; Chen, J.; Tan, J.; Yamaguchi, K.; Shi, Y.; Yu, P.; Qian, F.; Chu, F.; Bentzien, F.; Cancilla, B.; Orf, J.; You, A.; Laird, A.D.; Engst, S.; Lee, L.; Lesch, J.; Chou, Y.C.; Joly, A.H. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther., 2011, 10(12), 2298-2308. doi: 10.1158/1535-7163.MCT-11-0264 PMID: 21926191
  53. Mannsåker, T.A.; Hoang, T.; Aasen, S.N.; Bjørnstad, O.V.; Parajuli, H.; Sundstrøm, T.; Thorsen, F.A. Cabozantinib is effective in melanoma brain metastasis cell lines and affects key signaling pathways. Int. J. Mol. Sci., 2021, 22(22), 12296. doi: 10.3390/ijms222212296 PMID: 34830178
  54. Schoffski, P.; Mir, O.; Kasper, B.; Papai, Z.; Blay, J.Y.; Italiano, A.; Benson, C.; Kopeckova, K.; Ali, N.; Dileo, P.; Le Cesne, A.; Menge, F.; Cousin, S.; Charon-Barra, C.; Wozniak, A.; Marreaud, S.; Litiere, S.; Nzokirantevye, A.; Gelderblom, H. Activity and safety of cabozantinib in patients with gastrointestinal stromal tumor after failure of imatinib and sunitinib: EORTC phase II trial 1317 CaboGIST. J. Clin. Oncol., 2019, 37(S15), 11006-11006. doi: 10.1200/JCO.2019.37.15_suppl.11006
  55. Etchin, J.; Sanda, T.; Mansour, M.R.; Kentsis, A.; Montero, J.; Le, B.T.; Christie, A.L.; McCauley, D.; Rodig, S.J.; Kauffman, M.; Shacham, S.; Stone, R.; Letai, A.; Kung, A.L.; Thomas, L.A. KPT-330 inhibitor of CRM1 (XPO1)-mediated nuclear export has selective anti-leukaemic activity in preclinical models of T-cell acute lymphoblastic leukaemia and acute myeloid leukaemia. Br. J. Haematol., 2013, 161(1), 117-127. doi: 10.1111/bjh.12231 PMID: 23373539
  56. Nie, D.; Huang, K.; Yin, S.; Li, Y.; Xie, S.; Ma, L.; Wang, X.; Wu, Y.; Xiao, J.; Wang, J.; Yang, W.; Liu, H. KPT-330 inhibition of chromosome region maintenance 1 is cytotoxic and sensitizes chronic myeloid leukemia to Imatinib. Cell Death Discov., 2018, 4(1), 48. doi: 10.1038/s41420-018-0049-2 PMID: 29707241
  57. Sartore-Bianchi, A.; Pizzutilo, E.G.; Marrapese, G.; Tosi, F.; Cerea, G.; Siena, S. Entrectinib for the treatment of metastatic NSCLC: Safety and efficacy. Expert Rev. Anticancer Ther., 2020, 20(5), 333-341. doi: 10.1080/14737140.2020.1747439 PMID: 32223357
  58. Sohn, S.H.; Sul, H.J.; Kim, B.J.; Kim, H.S.; Zang, D.Y. Entrectinib induces apoptosis and inhibits the epithelial–mesenchymal transition in gastric cancer with NTRK overexpression. Int. J. Mol. Sci., 2021, 23(1), 395. doi: 10.3390/ijms23010395 PMID: 35008821
  59. Vagiannis, D.; Yu, Z.; Novotna, E.; Morell, A.; Hofman, J. Entrectinib reverses cytostatic resistance through the inhibition of ABCB1 efflux transporter, but not the CYP3A4 drug-metabolizing enzyme. Biochem. Pharmacol., 2020, 178, 114061. doi: 10.1016/j.bcp.2020.114061 PMID: 32497550
  60. Drilon, A.; Laetsch, T.W.; Kummar, S.; DuBois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; Turpin, B.; Dowlati, A.; Brose, M.S.; Mascarenhas, L.; Federman, N.; Berlin, J.; El-Deiry, W.S.; Baik, C.; Deeken, J.; Boni, V.; Nagasubramanian, R.; Taylor, M.; Rudzinski, E.R.; Meric-Bernstam, F.; Sohal, D.P.S.; Ma, P.C.; Raez, L.E.; Hechtman, J.F.; Benayed, R.; Ladanyi, M.; Tuch, B.B.; Ebata, K.; Cruickshank, S.; Ku, N.C.; Cox, M.C.; Hawkins, D.S.; Hong, D.S.; Hyman, D.M. Efficacy of larotrectinib in TRK fusion–positive cancers in adults and children. N. Engl. J. Med., 2018, 378(8), 731-739. doi: 10.1056/NEJMoa1714448 PMID: 29466156
  61. Hong, D.S.; DuBois, S.G.; Kummar, S.; Farago, A.F.; Albert, C.M.; Rohrberg, K.S.; van Tilburg, C.M.; Nagasubramanian, R.; Berlin, J.D.; Federman, N.; Mascarenhas, L.; Geoerger, B.; Dowlati, A.; Pappo, A.S.; Bielack, S.; Doz, F.; McDermott, R.; Patel, J.D.; Schilder, R.J.; Tahara, M.; Pfister, S.M.; Witt, O.; Ladanyi, M.; Rudzinski, E.R.; Nanda, S.; Childs, B.H.; Laetsch, T.W.; Hyman, D.M.; Drilon, A. Larotrectinib in patients with TRK fusion-positive solid tumours: A pooled analysis of three phase 1/2 clinical trials. Lancet Oncol., 2020, 21(4), 531-540. doi: 10.1016/S1470-2045(19)30856-3 PMID: 32105622
  62. Cui, J.J.; Tran-Dubé, M.; Shen, H.; Nambu, M.; Kung, P.P.; Pairish, M.; Jia, L.; Meng, J.; Funk, L.; Botrous, I.; McTigue, M.; Grodsky, N.; Ryan, K.; Padrique, E.; Alton, G.; Timofeevski, S.; Yamazaki, S.; Li, Q.; Zou, H.; Christensen, J.; Mroczkowski, B.; Bender, S.; Kania, R.S.; Edwards, M.P. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J. Med. Chem., 2011, 54(18), 6342-6363. doi: 10.1021/jm2007613 PMID: 21812414
  63. Cohen, N.A.; Zeng, S.; Seifert, A.M.; Kim, T.S.; Sorenson, E.C.; Greer, J.B.; Beckman, M.J.; Santamaria-Barria, J.A.; Crawley, M.H.; Green, B.L.; Rossi, F.; Besmer, P.; Antonescu, C.R.; DeMatteo, R.P. Pharmacological inhibition of KIT activates MET signaling in gastrointestinal stromal tumors. Cancer Res., 2015, 75(10), 2061-2070. doi: 10.1158/0008-5472.CAN-14-2564 PMID: 25836719
  64. Ravegnini, G.; Hrelia, P.; Angelini, S. Somatic pharmacogenomics of gastrointestinal stromal tumor. Cancer Drug Resist., 2019, 2(1), 107-115. doi: 10.20517/cdr.2019.02 PMID: 35582147
  65. Falchook, G.S.; Trent, J.C.; Heinrich, M.C.; Beadling, C.; Patterson, J.; Bastida, C.C.; Blackman, S.C.; Kurzrock, R. BRAF mutant gastrointestinal stromal tumor: First report of regression with BRAF inhibitor dabrafenib (GSK2118436) and whole exomic sequencing for analysis of acquired resistance. Oncotarget, 2013, 4(2), 310-315. doi: 10.18632/oncotarget.864 PMID: 23470635
  66. Suyama, K.; Iwase, H. Lenvatinib. Cancer Contr., 2018, 25(1) doi: 10.1177/1073274818789361 PMID: 30032643
  67. Sun, Y.; Yue, L.; Xu, P.; Hu, W. An overview of agents and treatments for PDGFRA-mutated gastrointestinal stromal tumors. Front. Oncol., 2022, 12, 927587. doi: 10.3389/fonc.2022.927587 PMID: 36119525
  68. Dubreuil, P.; Letard, S.; Ciufolini, M.; Gros, L.; Humbert, M.; Castéran, N.; Borge, L.; Hajem, B.; Lermet, A.; Sippl, W.; Voisset, E.; Arock, M.; Auclair, C.; Leventhal, P.S.; Mansfield, C.D.; Moussy, A.; Hermine, O. Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PLoS One, 2009, 4(9), e7258. doi: 10.1371/journal.pone.0007258 PMID: 19789626
  69. Adenis, A.; Blay, J.Y.; Bui-Nguyen, B.; Bouché, O.; Bertucci, F.; Isambert, N.; Bompas, E.; Chaigneau, L.; Domont, J.; Ray-Coquard, I.; Blésius, A.; Van Tine, B.A.; Bulusu, V.R.; Dubreuil, P.; Mansfield, C.D.; Acin, Y.; Moussy, A.; Hermine, O.; Le Cesne, A. Masitinib in advanced gastrointestinal stromal tumor (GIST) after failure of imatinib: A randomized controlled open-label trial. Ann. Oncol., 2014, 25(9), 1762-1769. doi: 10.1093/annonc/mdu237 PMID: 25122671
  70. Huynh, H.; Chow, P.K.H.; Tai, W.M.; Choo, S.P.; Chung, A.Y.F.; Ong, H.S.; Soo, K.C.; Ong, R.; Linnartz, R.; Shi, M.M. Dovitinib demonstrates antitumor and antimetastatic activities in xenograft models of hepatocellular carcinoma. J. Hepatol., 2012, 56(3), 595-601. doi: 10.1016/j.jhep.2011.09.017 PMID: 22027573
  71. Joensuu, H.; Blay, J.Y.; Comandone, A.; Martin-Broto, J.; Fumagalli, E.; Grignani, G.; Del Muro, X.G.; Adenis, A.; Valverde, C.; Pousa, A.L.; Bouché, O.; Italiano, A.; Bauer, S.; Barone, C.; Weiss, C.; Crippa, S.; Camozzi, M.; Castellana, R.; Le Cesne, A. Dovitinib in patients with gastrointestinal stromal tumour refractory and/or intolerant to imatinib. Br. J. Cancer, 2017, 117(9), 1278-1285. doi: 10.1038/bjc.2017.290 PMID: 28850565
  72. Zhang, H.; Kathawala, R.J.; Wang, Y.J.; Zhang, Y.K.; Patel, A.; Shukla, S.; Robey, R.W.; Talele, T.T.; Ashby, C.R., Jr; Ambudkar, S.V.; Bates, S.E.; Fu, L.W.; Chen, Z.S. Linsitinib (OSI-906) antagonizes ATP-binding cassette subfamily G member 2 and subfamily C member 10-mediated drug resistance. Int. J. Biochem. Cell Biol., 2014, 51, 111-119. doi: 10.1016/j.biocel.2014.03.026 PMID: 24726739
  73. Chen, W.; Kuang, Y.; Qiu, H.B.; Cao, Z.; Tu, Y.; Sheng, Q.; Eilers, G.; He, Q.; Li, H.L.; Zhu, M.; Wang, Y.; Zhang, R.; Wu, Y.; Meng, F.; Fletcher, J.A.; Ou, W.B. Dual targeting of insulin receptor and KIT in imatinib-resistant gastrointestinal stromal tumors. Cancer Res., 2017, 77(18), 5107-5117. doi: 10.1158/0008-5472.CAN-17-0917 PMID: 28760855
  74. Bitting, R.L.; Healy, P.; Creel, P.A.; Turnbull, J.; Morris, K.; Wood, S.Y.; Hurwitz, H.I.; Starr, M.D.; Nixon, A.B.; Armstrong, A.J.; George, D.J. A phase Ib study of combined VEGFR and mTOR inhibition with vatalanib and everolimus in patients with advanced renal cell carcinoma. Clin. Genitourin. Cancer, 2014, 12(4), 241-250. doi: 10.1016/j.clgc.2013.11.020 PMID: 24685058
  75. Joensuu, H.; De Braud, F.; Grignagni, G.; De Pas, T.; Spitalieri, G.; Coco, P.; Spreafico, C.; Boselli, S.; Toffalorio, F.; Bono, P.; Jalava, T.; Kappeler, C.; Aglietta, M.; Laurent, D.; Casali, P.G. Vatalanib for metastatic gastrointestinal stromal tumour (GIST) resistant to imatinib: final results of a phase II study. Br. J. Cancer, 2011, 104(11), 1686-1690. doi: 10.1038/bjc.2011.151 PMID: 21540861
  76. Wang, Y.J.; Kathawala, R.J.; Zhang, Y.K.; Patel, A.; Kumar, P.; Shukla, S.; Fung, K.L.; Ambudkar, S.V.; Talele, T.T.; Chen, Z.S. Motesanib (AMG706), a potent multikinase inhibitor, antagonizes multidrug resistance by inhibiting the efflux activity of the ABCB1. Biochem. Pharmacol., 2014, 90(4), 367-378. doi: 10.1016/j.bcp.2014.06.006 PMID: 24937702
  77. Benjamin, R.S.; Schöffski, P.; Hartmann, J.T.; Van Oosterom, A.; Bui, B.N.; Duyster, J.; Schuetze, S.; Blay, J.Y.; Reichardt, P.; Rosen, L.S.; Skubitz, K.; McCoy, S.; Sun, Y.N.; Stepan, D.E.; Baker, L. Efficacy and safety of motesanib, an oral inhibitor of VEGF, PDGF, and Kit receptors, in patients with imatinib-resistant gastrointestinal stromal tumors. Cancer Chemother. Pharmacol., 2011, 68(1), 69-77. doi: 10.1007/s00280-010-1431-9 PMID: 20838998
  78. Kettle, J.G.; Anjum, R.; Barry, E.; Bhavsar, D.; Brown, C.; Boyd, S.; Campbell, A.; Goldberg, K.; Grondine, M.; Guichard, S.; Hardy, C.J.; Hunt, T.; Jones, R.D.O.; Li, X.; Moleva, O.; Ogg, D.; Overman, R.C.; Packer, M.J.; Pearson, S.; Schimpl, M.; Shao, W.; Smith, A.; Smith, J.M.; Stead, D.; Stokes, S.; Tucker, M.; Ye, Y. Discovery of N -(4-5-Fluoro-7-(2-methoxyethoxy)quinazolin-4-ylaminophenyl)-2-4-(propan-2-yl)-1 H -1,2,3-triazol-1-ylacetamide (AZD3229), a potent Pan-KIT mutant inhibitor for the treatment of gastrointestinal stromal tumors. J. Med. Chem., 2018, 61(19), 8797-8810. doi: 10.1021/acs.jmedchem.8b00938 PMID: 30204441
  79. Pilla Reddy, V.; Anjum, R.; Grondine, M.; Smith, A.; Bhavsar, D.; Barry, E.; Guichard, S.M.; Shao, W.; Kettle, J.G.; Brown, C.; Banks, E.; Jones, R.D.O. The pharmacokinetic–pharmacodynamic (PKPD) relationships of AZD3229, a Novel and selective inhibitor of KIT, in a range of mouse xenograft models of GIST. Clin. Cancer Res., 2020, 26(14), 3751-3759. doi: 10.1158/1078-0432.CCR-19-2848 PMID: 32220888
  80. Vahidfar, N.; Eppard, E.; Farzanehfar, S.; Yordanova, A.; Fallahpoor, M.; Ahmadzadehfar, H. An impressive approach in nuclear medicine. PET Clin., 2021, 16(3), 327-340. doi: 10.1016/j.cpet.2021.03.011 PMID: 34053577
  81. Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; Bushnell, D.; O’Dorisio, T.M.; Baum, R.P.; Kulkarni, H.R.; Caplin, M.; Lebtahi, R.; Hobday, T.; Delpassand, E.; Van Cutsem, E.; Benson, A.; Srirajaskanthan, R.; Pavel, M.; Mora, J.; Berlin, J.; Grande, E.; Reed, N.; Seregni, E.; Öberg, K.; Lopera, S.M.; Santoro, P.; Thevenet, T.; Erion, J.L.; Ruszniewski, P.; Kwekkeboom, D.; Krenning, E. Phase 3 Trial of 177 Lu-dotatate for midgut neuroendocrine tumors. N. Engl. J. Med., 2017, 376(2), 125-135. doi: 10.1056/NEJMoa1607427 PMID: 28076709
  82. Loaiza-Bonilla, A.; Bonilla-Reyes, P.A. Somatostatin receptor avidity in gastrointestinal stromal tumors: Theranostic implications of Gallium-68 scan and eligibility for peptide receptor radionuclide therapy. Cureus, 2017, 9(9), e1710. doi: 10.7759/cureus.1710 PMID: 29188154
  83. Prause, M.; Niedermoser, S.; Wängler, C.; Decristoforo, C.; Seibold, U.; Riester, S.; Taguchi, T.; Schirrmacher, R.; Fricker, G.; Wängler, B. Synthesis, in vitro and in vivo evaluation of 18F-fluoronorimatinib as radiotracer for Imatinib-sensitive gastrointestinal stromal tumors. Nucl. Med. Biol., 2018, 57, 1-11. doi: 10.1016/j.nucmedbio.2017.11.004 PMID: 29175467
  84. Arshad, J.; Costa, P.A.; Barreto-Coelho, P.; Valdes, B.N.; Trent, J.C. Immunotherapy strategies for gastrointestinal stromal tumor. Cancers, 2021, 13(14), 3525. doi: 10.3390/cancers13143525 PMID: 34298737
  85. Cameron, S.; Gieselmann, M.; Blaschke, M.; Ramadori, G.; Füzesi, L. Immune cells in primary and metastatic gastrointestinal stromal tumors (GIST). Int. J. Clin. Exp. Pathol., 2014, 7(7), 3563-3579. doi: 10.1016/B978-0-12-800092-2.00013-7 PMID: 25120735
  86. Tan, Y.; Trent, J.C.; Wilky, B.A.; Kerr, D.A.; Rosenberg, A.E. Current status of immunotherapy for gastrointestinal stromal tumor. Cancer Gene Ther., 2017, 24(3), 130-133. doi: 10.1038/cgt.2016.58 PMID: 28186088
  87. Roulleaux, D.M.; Jones, R.L.; Trent, J.; Champiat, S.; Dumont, S. Beyond the driver mutation: Immunotherapies in gastrointestinal stromal tumors. Front. Immunol., 2021, 12, 715727. doi: 10.3389/fimmu.2021.715727 PMID: 34489967

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers