Research Progress of Chitosan-based Multifunctional Nanoparticles in Cancer Targeted Therapy


Citar

Texto integral

Resumo

Conventional tumor therapeutic modalities, such as radiotherapy, chemotherapy, and surgery, involve low tumor inhibition efficiency, non-targeted drug delivery, and side effects. The development of novel and practical nano-drug delivery systems (DDSs) for targeted tumor therapy has become particularly important. Among various bioactive nanoparticles, chitosan is considered a suitable candidate for drug delivery due to its nontoxicity, good biocompatibility, and biodegradability. The amino and hydroxyl groups of chitosan endow it with the diverse function of chemical modification, thereby improving its physical and biological properties to meet the requirements of advanced biomedical applications. Therefore, it is necessary to review the property and applications of chitosan- based materials in biomedicine. In this review, the characteristics of chitosan related to its applications are first introduced, and then the preparation and modification of chitosan-based nanoparticles, including the function tailoring of chitosan-modified nanoparticles, are demonstrated and discussed. Finally, the opportunities and challenges of chitosan- based nanomaterials in this emerging field are proposed from the perspective of the rational and systematic design for the biomedicine field.

Sobre autores

Chunmei Lai

College of Materials Science and Engineering, Fuzhou University

Email: info@benthamscience.net

Simin Lin

College of Materials Science and Engineering, Fuzhou University

Email: info@benthamscience.net

Wei Liu

Fujian College Association Instrumental Analysis Center of Fuzhou University, Fuzhou University

Email: info@benthamscience.net

Yanqiao Jin

College of Materials Science and Engineering, Fuzhou University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Sohail, M.; Guo, W.; Li, Z.; Xu, H.; Zhao, F.; Chen, D.; Fu, F. Nanocarrier-based drug delivery system for cancer therapeutics: A review of the last decade. Curr. Med. Chem., 2021, 28(19), 3753-3772. doi: 10.2174/1875533XMTEwbNDMs2 PMID: 33019919
  2. Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm., 2012, 2012, 1-10. doi: 10.5402/2012/195727 PMID: 22830056
  3. Klimpel, A.; Lützenburg, T.; Neundorf, I. Recent advances of anti-cancer therapies including the use of cell-penetrating peptides. Curr. Opin. Pharmacol., 2019, 47, 8-13. doi: 10.1016/j.coph.2019.01.003 PMID: 30771730
  4. Pedziwiatr-Werbicka, E.; Horodecka, K.; Shcharbin, D.; Bryszewska, M. Nanoparticles in combating cancer: Opportunities and limitations: A brief review. Curr. Med. Chem., 2021, 28(2), 346-359. doi: 10.2174/1875533XMTA0kMDkhw PMID: 32000637
  5. Yu, H.; He, J.; Lu, Q.; Huo, D.; Yuan, S.; Zhou, Z.; Xu, P.; Hu, Y. Anti-fas Antibody conjugated nanoparticles enhancing the antitumor effect of camptothecin by activating the fas–fasl apoptotic pathway. ACS Appl. Mater. Interfaces, 2016, 8(44), 29950-29959. doi: 10.1021/acsami.6b09760 PMID: 27754664
  6. Liu, B.; Yang, Y.; Chao, Y.; Xiao, Z.; Xu, J.; Wang, C.; Dong, Z.; Hou, L.; Li, Q.; Liu, Z. Equipping cancer cell membrane vesicles with functional DNA as a targeted vaccine for cancer immunotherapy. Nano Lett., 2021, 21(22), 9410-9418. doi: 10.1021/acs.nanolett.1c02582 PMID: 34730968
  7. Cheung, R.; Ng, T.; Wong, J.; Chan, W. Chitosan: An update on potential biomedical and pharmaceutical applications. Mar. Drugs, 2015, 13(8), 5156-5186. doi: 10.3390/md13085156 PMID: 26287217
  8. Lee, J.; Lee, C.; Kim, T.H.; Lee, E.S.; Shin, B.S.; Chi, S.C.; Park, E.S.; Lee, K.C.; Youn, Y.S. Self-assembled glycol chitosan nanogels containing palmityl-acylated exendin-4 peptide as a long-acting anti-diabetic inhalation system. J. Control. Release, 2012, 161(3), 728-734. doi: 10.1016/j.jconrel.2012.05.029 PMID: 22634071
  9. Chen, G.; Svirskis, D.; Lu, W.; Ying, M.; Huang, Y.; Wen, J. N -trimethyl chitosan nanoparticles and CSKSSDYQC peptide: N -trimethyl chitosan conjugates enhance the oral bioavailability of gemcitabine to treat breast cancer. J. Control. Release, 2018, 277, 142-153. doi: 10.1016/j.jconrel.2018.03.013 PMID: 29548985
  10. Ding, Y.; Lv, B.; Zheng, J.; Lu, C.; Liu, J.; Lei, Y.; Yang, M.; Wang, Y.; Li, Z.; Yang, Y.; Gong, W.; Han, J.; Gao, C. RBC-hitchhiking chitosan nanoparticles loading methylprednisolone for lung-targeting delivery. J. Control. Release, 2022, 341, 702-715. doi: 10.1016/j.jconrel.2021.12.018 PMID: 34933051
  11. Vikas; Viswanadh, M.K.; Mehata, A.K.; Sharma, V.; Priya, V.; Varshney, N.; Mahto, S.K.; Muthu, M.S. Bioadhesive chitosan nanoparticles: Dual targeting and pharmacokinetic aspects for advanced lung cancer treatment. Carbohydr. Polym., 2021, 274, 118617. doi: 10.1016/j.carbpol.2021.118617
  12. Heydari, A.; Darroudi, M.; Lacík, I. Efficient N -sulfopropylation of chitosan with 1,3-propane sultone in aqueous solutions: Neutral pH as the key condition. React. Chem. Eng., 2021, 6(11), 2146-2158. doi: 10.1039/D1RE00089F
  13. Johari, M.A.; Azmi, A.S.; Jamaluddin, J.; Hasham, R.; Chee, C.F.; Ali, F. Comparison study between encapsulation of acalypha indica linn extracts with chitosan-PCL and chitosan-OA. 6th International Conference on Biotechnology Engineering (ICBioE 2021), 22nd-23rd June 2021 Kuala Lumpur, Malaysia 2021, pp. 012007. doi: 10.1088/1757-899X/1192/1/012007
  14. Xia, W.; Liu, P.; Zhang, J.; Chen, J. Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll., 2011, 25(2), 170-179. doi: 10.1016/j.foodhyd.2010.03.003
  15. Zhao, D.; Yu, S.; Sun, B.; Gao, S.; Guo, S.; Zhao, K. Biomedical applications of chitosan and its derivative nanoparticles. Polymers, 2018, 10(4), 462. doi: 10.3390/polym10040462 PMID: 30966497
  16. Fathi, M.; Majidi, S.; Zangabad, P.S.; Barar, J.; Erfan-Niya, H.; Omidi, Y. Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer. Med. Res. Rev., 2018, 38(6), 2110-2136. doi: 10.1002/med.21506 PMID: 29846948
  17. Attaran Dowom, S.; Karimian, Z.; Mostafaei Dehnavi, M.; Samiei, L. Chitosan nanoparticles improve physiological and biochemical responses of Salvia abrotanoides (Kar.) under drought stress. BMC Plant Biol., 2022, 22(1), 364. doi: 10.1186/s12870-022-03689-4 PMID: 35869431
  18. Holyavka, M.; Faizullin, D.; Koroleva, V.; Olshannikova, S.; Zakhartchenko, N.; Zuev, Y.; Kondratyev, M.; Zakharova, E.; Artyukhov, V. Novel biotechnological formulations of cysteine proteases, immobilized on chitosan. Structure, stability and activity. Int. J. Biol. Macromol., 2021, 180, 161-176. doi: 10.1016/j.ijbiomac.2021.03.016 PMID: 33676977
  19. Wang, F.; Yang, S.; Yuan, J.; Gao, Q.; Huang, C. Effective method of chitosan-coated alginate nanoparticles for target drug delivery applications. J. Biomater. Appl., 2016, 31(1), 3-12. doi: 10.1177/0885328216648478 PMID: 27164869
  20. Han, H.D.; Byeon, Y.; Jang, J.H.; Jeon, H.N.; Kim, G.H.; Kim, M.G.; Pack, C.G.; Kang, T.H.; Jung, I.D.; Lim, Y.T.; Lee, Y.J.; Lee, J.W.; Shin, B.C.; Ahn, H.J.; Sood, A.K.; Park, Y.M. In vivo stepwise immunomodulation using chitosan nanoparticles as a platform nanotechnology for cancer immunotherapy. Sci. Rep., 2016, 6(1), 38348. doi: 10.1038/srep38348 PMID: 27910914
  21. Anitha, A.; Chennazhi, K.P.; Nair, S.V.; Jayakumar, R. 5-flourouracil loaded N,O-carboxymethyl chitosan nanoparticles as an anticancer nanomedicine for breast cancer. J. Biomed. Nanotechnol., 2012, 8(1), 29-42. doi: 10.1166/jbn.2012.1365 PMID: 22515092
  22. Song, P.; Du, W.; Li, W.; Zhu, L.; Zhang, W.; Gao, X.; Tao, Y.; Ge, F. Preparation, characterization, and in vitro evaluation of amphiphilic peptide P12 and P12-DOX nanomicelles as antitumor drug carriers. Nanomater. Nanotechnol., 2020, 10 doi: 10.1177/1847980420911519
  23. Liu, Q.; Li, B.; Li, Y.; Yang, X.; Qiao, C.; Hu, W.; Liu, M. Solution properties of N-(2-allyl-butyl ether)-O-carboxymethyl chitosan and N-(2-allyl-isooctyl ether)-O-carboxymethyl chitosan. Int. J. Biol. Macromol., 2021, 190, 93-100. doi: 10.1016/j.ijbiomac.2021.08.208 PMID: 34481851
  24. Anitha, A.; Maya, S.; Deepa, N.; Chennazhi, K.P.; Nair, S.V.; Tamura, H.; Jayakumar, R. Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells. Carbohydr. Polym., 2011, 83(2), 452-461. doi: 10.1016/j.carbpol.2010.08.008
  25. Chen, L.; Tian, Z.; Du, Y. Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials, 2004, 25(17), 3725-3732. doi: 10.1016/j.biomaterials.2003.09.100 PMID: 15020148
  26. Jayakumar, R.; Prabaharan, M.; Nair, S.V.; Tokura, S.; Tamura, H.; Selvamurugan, N. Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog. Mater. Sci., 2010, 55(7), 675-709. doi: 10.1016/j.pmatsci.2010.03.001
  27. Mahmoudzadeh, M.; Fassihi, A.; Emami, J.; Davies, N.M.; Dorkoosh, F. Physicochemical, pharmaceutical and biological approaches toward designing optimized and efficient hydrophobically modified chitosan-based polymeric micelles as a nanocarrier system for targeted delivery of anticancer drugs. J. Drug Target., 2013, 21(8), 693-709. doi: 10.3109/1061186X.2013.824455 PMID: 23915108
  28. Xie, P.; Liu, P. pH-responsive surface charge reversal carboxymethyl chitosan-based drug delivery system for pH and reduction dual-responsive triggered DOX release. Carbohydr. Polym., 2020, 236, 116093. doi: 10.1016/j.carbpol.2020.116093 PMID: 32172895
  29. Su, Y.; Hu, Y.; Du, Y.; Huang, X.; He, J.; You, J.; Yuan, H.; Hu, F. Redox-responsive polymer-drug conjugates based on doxorubicin and chitosan oligosaccharide-g-stearic acid for cancer therapy. Mol. Pharm., 2015, 12(4), 1193-1202. doi: 10.1021/mp500710x PMID: 25751168
  30. Sakloetsakun, D.; Iqbal, J.; Millotti, G.; Vetter, A.; Bernkop-Schnürch, A. Thiolated chitosans: Influence of various sulfhydryl ligands on permeation-enhancing and P-gp inhibitory properties. Drug Dev. Ind. Pharm., 2011, 37(6), 648-655. doi: 10.3109/03639045.2010.534484 PMID: 21561400
  31. Othman, N.; Masarudin, M.J.; Kuen, C.Y.; Dasuan, N.A.; Abdullah, L.C.; Md Jamil, S.N.A. S.N.A. Synthesis and optimization of chitosan nanoparticles loaded with L-ascorbic acid and thymoquinone. Nanomaterials, 2018, 8(11), 920. doi: 10.3390/nano8110920 PMID: 30405074
  32. Yu, B.; Zhang, Y.; Zheng, W.; Fan, C.; Chen, T. Positive surface charge enhances selective cellular uptake and anticancer efficacy of selenium nanoparticles. Inorg. Chem., 2012, 51(16), 8956-8963. doi: 10.1021/ic301050v PMID: 22873404
  33. Tan, C.; Feng, B.; Zhang, X.; Xia, W.; Xia, S. Biopolymer-coated liposomes by electrostatic adsorption of chitosan (chitosomes) as novel delivery systems for carotenoids. Food Hydrocoll., 2016, 52, 774-784. doi: 10.1016/j.foodhyd.2015.08.016
  34. Hassani Najafabadi, A.; Abdouss, M.; Faghihi, S. Synthesis and evaluation of PEG-O-chitosan nanoparticles for delivery of poor water soluble drugs: Ibuprofen. Mater. Sci. Eng. C, 2014, 41, 91-99. doi: 10.1016/j.msec.2014.04.035 PMID: 24907742
  35. Gabriele, F.; Donnadio, A.; Casciola, M.; Germani, R.; Spreti, N. Ionic and covalent crosslinking in chitosan-succinic acid membranes: Effect on physicochemical properties. Carbohydr. Polym., 2021, 251, 117106. doi: 10.1016/j.carbpol.2020.117106 PMID: 33142643
  36. Liu, J.; Yu, S.; Qu, W.; Jin, Z.; Zhao, K. Self-assembly of soluble chitosan derivatives nanoparticles for vaccine: synthesis, characterization and evaluation. Polymers, 2021, 13(23), 4097. doi: 10.3390/polym13234097 PMID: 34883601
  37. Nguyen, G.H.; Le, X.T. Palmarosa essential oil encapsulated in chitosan nanoparticles by ionotropic gelation: Formulation and characterization. The 5th International Conference on Chemical Engineering, Food and Biotechnology (ICCFB 2021), 4th-5th November 2021 Ho Chi Minh City, Viet Nam 2021, pp. 012002. doi: 10.1088/1755-1315/947/1/012002
  38. Özkahraman, B.; Tamahkar, E.; İdil, N.; Kılıç Suloglu, A.; Perçin, I. Evaluation of hyaluronic acid nanoparticle embedded chitosan–gelatin hydrogels for antibiotic release. Drug Dev. Res., 2021, 82(2), 241-250. doi: 10.1002/ddr.21747 PMID: 33009868
  39. Liu, H.; Wang, C.; Li, C.; Qin, Y.; Wang, Z.; Yang, F.; Li, Z.; Wang, J. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Advances, 2018, 8(14), 7533-7549. doi: 10.1039/C7RA13510F PMID: 35539132
  40. Zhang, Y.; Yu, J.; Ren, K.; Zuo, J.; Ding, J.; Chen, X. Thermosensitive hydrogels as scaffolds for cartilage tissue engineering. Biomacromolecules, 2019, 20(4), 1478-1492. doi: 10.1021/acs.biomac.9b00043 PMID: 30843390
  41. Qiao, Z.; Lv, X.; He, S.; Bai, S.; Liu, X.; Hou, L.; He, J.; Tong, D.; Ruan, R.; Zhang, J.; Ding, J.; Yang, H. A mussel-inspired supramolecular hydrogel with robust tissue anchor for rapid hemostasis of arterial and visceral bleedings. Bioact. Mater., 2021, 6(9), 2829-2840. doi: 10.1016/j.bioactmat.2021.01.039 PMID: 33718665
  42. Wang, H.; Mu, Q.; Revia, R.; Wang, K.; Zhou, X.; Pauzauskie, P.J.; Zhou, S.; Zhang, M. Chitosan-gated magnetic-responsive nanocarrier for dual-modal optical imaging, switchable drug release, and synergistic therapy. Adv. Healthc. Mater., 2017, 6(6), 1601080. doi: 10.1002/adhm.201601080 PMID: 28121065
  43. Tian, H.; He, Z.; Sun, C.; Yang, C.; Zhao, P.; Liu, L.; Leong, K.W.; Mao, H.Q.; Liu, Z.; Chen, Y. Uniform core-shell nanoparticles with thiolated hyaluronic acid coating to enhance oral delivery of insulin. Adv. Healthc. Mater., 2018, 7(17), 1800285. doi: 10.1002/adhm.201800285 PMID: 29984479
  44. Lee, J.Y.; Crake, C.; Teo, B.; Carugo, D.; de Saint Victor, M.; Seth, A.; Stride, E. Ultrasound-enhanced siRNA delivery using magnetic nanoparticle-loaded chitosan-deoxycholic acid nanodroplets. Adv. Healthc. Mater., 2017, 6(8), 1601246. doi: 10.1002/adhm.201601246 PMID: 28195673
  45. Luo, L.; Bian, Y.; Liu, Y.; Zhang, X.; Wang, M.; Xing, S.; Li, L.; Gao, D. Combined near infrared photothermal therapy and chemotherapy using gold nanoshells coated liposomes to enhance antitumor effect. Small, 2016, 12(30), 4103-4112. doi: 10.1002/smll.201503961 PMID: 27294601
  46. Sun, J.Z.; Sun, Y.C.; Sun, L. Synthesis of surface modified Fe3O4 super paramagnetic nanoparticles for ultra sound examination and magnetic resonance imaging for cancer treatment. J. Photochem. Photobiol. B, 2019, 197, 111547. doi: 10.1016/j.jphotobiol.2019.111547 PMID: 31325773
  47. Miguel, S.P.; Moreira, A.F.; Correia, I.J. Chitosan based-asymmetric membranes for wound healing: A review. Int. J. Biol. Macromol., 2019, 127, 460-475. doi: 10.1016/j.ijbiomac.2019.01.072 PMID: 30660567
  48. Ma, Q.; Lin, Z.H.; Yang, N.; Li, Y.; Su, X.G. A novel carboxymethyl chitosan–quantum dot-based intracellular probe for Zn2+ ion sensing in prostate cancer cells. Acta Biomater., 2014, 10(2), 868-874. doi: 10.1016/j.actbio.2013.10.039 PMID: 24211611
  49. Tan, W.B.; Jiang, S.; Zhang, Y. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials, 2007, 28(8), 1565-1571. doi: 10.1016/j.biomaterials.2006.11.018 PMID: 17161865
  50. Yuan, Q.; Hein, S.; Misra, R.D.K. New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: Synthesis, characterization and in vitro drug delivery response. Acta Biomater., 2010, 6(7), 2732-2739. doi: 10.1016/j.actbio.2010.01.025 PMID: 20100604
  51. Yu, W.; Yu, N.; Wang, Z.; Li, X.; Song, C.; Jiang, R.; Geng, P.; Li, M.; Yin, S.; Chen, Z. Chitosan-mediated green synthesis and folic-acid modification of CuS quantum dots for photoacoustic imaging guided photothermal therapy of tumor. J. Colloid Interface Sci., 2019, 555, 480-488. doi: 10.1016/j.jcis.2019.08.001 PMID: 31401480
  52. Thangam, R.; Sundarraj, S.; Vivek, R.; Suresh, V.; Sivasubramanian, S.; Paulpandi, M.; Karthick, S.V.; Ragavi, A.S.; Kannan, S. Theranostic potentials of multifunctional chitosan–silver–phycoerythrin nanocomposites against triple negative breast cancer cells. RSC Advances, 2015, 5(16), 12209-12223. doi: 10.1039/C4RA14043E
  53. Zhu, H.; Liu, F.; Guo, J.; Xue, J.; Qian, Z.; Gu, Y. Folate-modified chitosan micelles with enhanced tumor targeting evaluated by near infrared imaging system. Carbohydr. Polym., 2011, 86(3), 1118-1129. doi: 10.1016/j.carbpol.2011.05.061
  54. Rosière, R.; Van Woensel, M.; Gelbcke, M.; Mathieu, V.; Hecq, J.; Mathivet, T.; Vermeersch, M.; Van Antwerpen, P.; Amighi, K.; Wauthoz, N. New folate-grafted chitosan derivative to improve delivery of paclitaxel-loaded solid lipid nanoparticles for lung tumor therapy by inhalation. Mol. Pharm., 2018, 15(3), 899-910. doi: 10.1021/acs.molpharmaceut.7b00846 PMID: 29341619
  55. Wang, F.; Zhang, D.; Duan, C.; Jia, L.; Feng, F.; Liu, Y.; Wang, Y.; Hao, L.; Zhang, Q. Preparation and characterizations of a novel deoxycholic acid–O-carboxymethylated chitosan–folic acid conjugates and self-aggregates. Carbohydr. Polym., 2011, 84(3), 1192-1200. doi: 10.1016/j.carbpol.2011.01.017
  56. Wang, F.; Chen, Y.; Zhang, D.; Zhang, Q.; Zheng, D.; Hao, L.; Liu, Y.; Duan, C.; Jia, L.; Liu, G. Folate-mediated targeted and intracellular delivery of paclitaxel using a novel deoxycholic acid-O-carboxymethylated chitosan-folic acid micelles. Int. J. Nanomedicine, 2012, 7, 325-337. PMID: 22287842
  57. Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett., 2010, 10(9), 3318-3323. doi: 10.1021/nl100996u PMID: 20684528
  58. Zhang, S.; Liu, Y.; Gan, Y.; Qiu, N.; Gu, Y.; Zhu, H. Conjugates of TAT and folate with DOX-loaded chitosan micelles offer effective intracellular delivery ability. Pharm. Dev. Technol., 2019, 24(2), 253-261. doi: 10.1080/10837450.2018.1469147 PMID: 29688120
  59. Chen, H.P.; Chen, M.H.; Tung, F.I.; Liu, T.Y. A novel micelle-forming material used for preparing a theranostic vehicle exhibiting enhanced in vivo therapeutic efficacy. J. Med. Chem., 2015, 58(9), 3704-3719. doi: 10.1021/jm501996y PMID: 25933159
  60. Cheng, M.; Zhu, W.; Li, Q.; Dai, D.; Hou, Y. Anti-cancer efficacy of biotinylated chitosan nanoparticles in liver cancer. Oncotarget, 2017, 8(35), 59068-59085. doi: 10.18632/oncotarget.19146 PMID: 28938619
  61. Fujii, F. Semiconductor nanocrystals for biological imaging and fluorescence spectroscopy. Adv. Exp. Med. Biol., 2021, 1310, 449-473. doi: 10.1007/978-981-33-6064-8_16 PMID: 33834445
  62. Twu, Y.K.; Chen, Y.W.; Shih, C.M. Preparation of silver nanoparticles using chitosan suspensions. Powder Technol., 2008, 185(3), 251-257. doi: 10.1016/j.powtec.2007.10.025
  63. Wahid, F.; Wang, H.S.; Zhong, C.; Chu, L.Q. Facile fabrication of moldable antibacterial carboxymethyl chitosan supramolecular hydrogels cross-linked by metal ions complexation. Carbohydr. Polym., 2017, 165, 455-461. doi: 10.1016/j.carbpol.2017.02.085 PMID: 28363572
  64. Wahid, F.; Wang, H.S.; Lu, Y.S.; Zhong, C.; Chu, L.Q. Preparation, characterization and antibacterial applications of carboxymethyl chitosan/CuO nanocomposite hydrogels. Int. J. Biol. Macromol., 2017, 101, 690-695. doi: 10.1016/j.ijbiomac.2017.03.132 PMID: 28356237
  65. Wang, Z.; Dong, J.; Zhao, Q.; Ying, Y.; Zhang, L.; Zou, J.; Zhao, S.; Wang, J.; Zhao, Y.; Jiang, S. Gold nanoparticle-mediated delivery of paclitaxel and nucleic acids for cancer therapy (Review). Mol. Med. Rep., 2020, 22(6), 4475-4484. doi: 10.3892/mmr.2020.11580 PMID: 33173972
  66. Zhang, C.; Huang, P.; Bao, L.; He, M.; Luo, T.; Gao, G.; Cui, D. Enhancement of gastric cell radiation sensitivity by chitosan-modified gold nanoparticles. J. Nanosci. Nanotechnol., 2011, 11(11), 9528-9535. doi: 10.1166/jnn.2011.5318 PMID: 22413242
  67. Sahoo, A.K.; Banerjee, S.; Ghosh, S.S.; Chattopadhyay, A. Simultaneous RGB emitting Au nanoclusters in chitosan nanoparticles for anticancer gene theranostics. ACS Appl. Mater. Interfaces, 2014, 6(1), 712-724. doi: 10.1021/am4051266 PMID: 24281656
  68. Yan, E.; Cao, M.; Wang, Y.; Hao, X.; Pei, S.; Gao, J.; Wang, Y.; Zhang, Z.; Zhang, D. Gold nanorods contained polyvinyl alcohol/chitosan nanofiber matrix for cell imaging and drug delivery. Mater. Sci. Eng. C, 2016, 58, 1090-1097. doi: 10.1016/j.msec.2015.09.080 PMID: 26478408
  69. Feng, L.; Wu, L.; Qu, X. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv. Mater., 2013, 25(2), 168-186. doi: 10.1002/adma.201203229 PMID: 23161646
  70. Priya Swetha, P.D.; Manisha, H.; Sudhakaraprasad, K. Graphene and graphene-based materials in biomedical science. Part. Part. Syst. Charact., 2018, 35(8), 1800105. doi: 10.1002/ppsc.201800105
  71. Liu, J.; Cui, L.; Losic, D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater., 2013, 9(12), 9243-9257. doi: 10.1016/j.actbio.2013.08.016 PMID: 23958782
  72. Yim, Y.; Shin, H.; Ahn, S.M.; Min, D.H. Graphene oxide-based fluorescent biosensors and their biomedical applications in diagnosis and drug discovery. Chem. Commun., 2021, 57(77), 9820-9833. doi: 10.1039/D1CC02157E PMID: 34494621
  73. Fu, G.; Zhu, L.; Yang, K.; Zhuang, R.; Xie, J.; Zhang, F. Diffusion-weighted magnetic resonance imaging for therapy response monitoring and early treatment prediction of photothermal therapy. ACS Appl. Mater. Interfaces, 2016, 8(8), 5137-5147. doi: 10.1021/acsami.5b11936 PMID: 26845246
  74. Ghaz-Jahanian, M.A.; Abbaspour-Aghdam, F.; Anarjan, N.; Berenjian, A.; Jafarizadeh-Malmiri, H. Application of chitosan-based nanocarriers in tumor-targeted drug delivery. Mol. Biotechnol., 2015, 57(3), 201-218. doi: 10.1007/s12033-014-9816-3 PMID: 25385004
  75. Prabaharan, M. Chitosan-based nanoparticles for tumor-targeted drug delivery. Int. J. Biol. Macromol., 2015, 72, 1313-1322. doi: 10.1016/j.ijbiomac.2014.10.052 PMID: 25450550
  76. Kwon, I.K.; Lee, S.C.; Han, B.; Park, K. Analysis on the current status of targeted drug delivery to tumors. J. Control. Release, 2012, 164(2), 108-114. doi: 10.1016/j.jconrel.2012.07.010 PMID: 22800574
  77. Mushtaq, A.; Li, L.; A, A.; Grøndahl, L. Chitosan nanomedicine in cancer therapy: Targeted delivery and cellular uptake. Macromol. Biosci., 2021, 21(5), 2100005. doi: 10.1002/mabi.202100005 PMID: 33738977
  78. Ichikawa, H.; Uneme, T.; Andoh, T.; Arita, Y.; Fujimoto, T.; Suzuki, M.; Sakurai, Y.; Shinto, H.; Fukasawa, T.; Fujii, F.; Fukumori, Y. Gadolinium-loaded chitosan nanoparticles for neutron-capture therapy: Influence of micrometric properties of the nanoparticles on tumor-killing effect. Appl. Radiat. Isot., 2014, 88, 109-113. doi: 10.1016/j.apradiso.2013.12.018 PMID: 24462286
  79. Cheng, B.; Gao, F.; Maissy, E.; Xu, P. Repurposing suramin for the treatment of breast cancer lung metastasis with glycol chitosan-based nanoparticles. Acta Biomater., 2019, 84, 378-390. doi: 10.1016/j.actbio.2018.12.010 PMID: 30528604
  80. Fan, C.; Gao, W.; Chen, Z.; Fan, H.; Li, M.; Deng, F.; Chen, Z. Tumor selectivity of stealth multi-functionalized superparamagnetic iron oxide nanoparticles. Int. J. Pharm., 2011, 404(1-2), 180-190. doi: 10.1016/j.ijpharm.2010.10.038 PMID: 21087660
  81. Termsarasab, U.; Cho, H.J.; Kim, D.H.; Chong, S.; Chung, S.J.; Shim, C.K.; Moon, H.T.; Kim, D.D. Chitosan oligosaccharide–arachidic acid-based nanoparticles for anti-cancer drug delivery. Int. J. Pharm., 2013, 441(1-2), 373-380. doi: 10.1016/j.ijpharm.2012.11.018 PMID: 23174411
  82. Lee, J.Y.; Termsarasab, U.; Lee, M.Y.; Kim, D.H.; Lee, S.Y.; Kim, J.S.; Cho, H.J.; Kim, D.D. Chemosensitizing indomethacin-conjugated chitosan oligosaccharide nanoparticles for tumor-targeted drug delivery. Acta Biomater., 2017, 57, 262-273. doi: 10.1016/j.actbio.2017.05.012 PMID: 28483700
  83. Muntimadugu, E.; Kommineni, N.; Khan, W. Exploring the potential of nanotherapeutics in targeting tumor microenvironment for cancer therapy. Pharmacol. Res., 2017, 126, 109-122. doi: 10.1016/j.phrs.2017.05.010 PMID: 28511988
  84. Yhee, J.Y.; Jeon, S.; Yoon, H.Y.; Shim, M.K.; Ko, H.; Min, J.; Na, J.H.; Chang, H.; Han, H.; Kim, J.H.; Suh, M.; Lee, H.; Park, J.H.; Kim, K.; Kwon, I.C. Effects of tumor microenvironments on targeted delivery of glycol chitosan nanoparticles. J. Control. Release, 2017, 267, 223-231. doi: 10.1016/j.jconrel.2017.09.015 PMID: 28917532
  85. Alonso, M.J.; Garcia-Fuentes, M. Nano-Oncologicals: New Targeting and Delivery Approaches In: Advances in Delivery Science and Technology (ADST); Springer, 2014.
  86. Vandghanooni, S.; Eskandani, M.; Barar, J.; Omidi, Y. Recent advances in aptamer-armed multimodal theranostic nanosystems for imaging and targeted therapy of cancer. Eur. J. Pharm. Sci., 2018, 117, 301-312. doi: 10.1016/j.ejps.2018.02.027 PMID: 29499349
  87. You, J.; Li, X.; de Cui, F.; Du, Y.Z.; Yuan, H.; Hu, F. Folate-conjugated polymer micelles for active targeting to cancer cells: Preparation, in vitro evaluation of targeting ability and cytotoxicity. Nanotechnology, 2008, 19(4), 045102. doi: 10.1088/0957-4484/19/04/045102 PMID: 21817496
  88. Yeh, Y.C.; Huang, T.H.; Yang, S.C.; Chen, C.C.; Fang, J.Y. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: A review of recent advances. Front Chem., 2020, 8, 286. doi: 10.3389/fchem.2020.00286 PMID: 32391321
  89. Chan, P.; Kurisawa, M.; Chung, J.E.; Yang, Y.Y. Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery. Biomaterials, 2007, 28(3), 540-549. doi: 10.1016/j.biomaterials.2006.08.046 PMID: 16999995
  90. Bhattacharya, D.; Das, M.; Mishra, D.; Banerjee, I.; Sahu, S.K.; Maiti, T.K.; Pramanik, P. Folate receptor targeted, carboxymethyl chitosan functionalized iron oxide nanoparticles: A novel ultradispersed nanoconjugates for bimodal imaging. Nanoscale, 2011, 3(4), 1653-1662. doi: 10.1039/c0nr00821d PMID: 21331392
  91. Jana, D.; Jia, S.; Bindra, A.K.; Xing, P.; Ding, D.; Zhao, Y. Clearable black phosphorus nanoconjugate for targeted cancer phototheranostics. ACS Appl. Mater. Interfaces, 2020, 12(16), 18342-18351. doi: 10.1021/acsami.0c02718 PMID: 32223204
  92. Hu, Z.; Chen, J.; Zhou, S.; Yang, N.; Duan, S.; Zhang, Z.; Su, J.; He, J.; Zhang, Z.; Lu, X.; Zhao, Y. Mouse IP-10 Gene delivered by folate-modified chitosan nanoparticles and dendritic/tumor cells fusion vaccine effectively inhibit the growth of hepatocellular carcinoma in mice. Theranostics, 2017, 7(7), 1942-1952. doi: 10.7150/thno.16236 PMID: 28638480
  93. Menon, J.U.; Kuriakose, A.; Iyer, R.; Hernandez, E.; Gandee, L.; Zhang, S.; Takahashi, M.; Zhang, Z.; Saha, D.; Nguyen, K.T. Dual-drug containing core-shell nanoparticles for lung cancer therapy. Sci. Rep., 2017, 7(1), 13249. doi: 10.1038/s41598-017-13320-4 PMID: 29038584
  94. Heidari Majd, M.; Asgari, D.; Barar, J.; Valizadeh, H.; Kafil, V.; Coukos, G.; Omidi, Y. Specific targeting of cancer cells by multifunctional mitoxantrone-conjugated magnetic nanoparticles. J. Drug Target., 2013, 21(4), 328-340. doi: 10.3109/1061186X.2012.750325 PMID: 23293842
  95. Johari-Ahar, M.; Barar, J.; Alizadeh, A.M.; Davaran, S.; Omidi, Y.; Rashidi, M.R. Methotrexate-conjugated quantum dots: Synthesis, characterisation and cytotoxicity in drug resistant cancer cells. J. Drug Target., 2016, 24(2), 120-133. doi: 10.3109/1061186X.2015.1058801 PMID: 26176269
  96. Ranjbar-Navazi, Z.; Eskandani, M.; Johari-Ahar, M.; Nemati, A.; Akbari, H.; Davaran, S.; Omidi, Y. Doxorubicin-conjugated D-glucosamine- and folate- bi-functionalised InP/ZnS quantum dots for cancer cells imaging and therapy. J. Drug Target., 2018, 26(3), 267-277. doi: 10.1080/1061186X.2017.1365876 PMID: 28795849
  97. Heidari Majd, M.; Asgari, D.; Barar, J.; Valizadeh, H.; Kafil, V.; Abadpour, A.; Moumivand, E.; Mojarrad, J.S.; Rashidi, M.R.; Coukos, G.; Omidi, Y. Tamoxifen loaded folic acid armed PEGylated magnetic nanoparticles for targeted imaging and therapy of cancer. Colloids Surf. B Biointerfaces, 2013, 106, 117-125. doi: 10.1016/j.colsurfb.2013.01.051 PMID: 23434700
  98. Qindeel, M.; Ahmed, N.; Khan, G.M.; Rehman, A. Ligand decorated chitosan as an advanced nanocarrier for targeted delivery: A critical review. Nanomedicine, 2019, 14(12), 1623-1642. doi: 10.2217/nnm-2018-0490 PMID: 31166147
  99. Park, E.K.; Lee, S.B.; Lee, Y.M. Preparation and characterization of methoxy poly(ethylene glycol)/poly(ε-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials, 2005, 26(9), 1053-1061. doi: 10.1016/j.biomaterials.2004.04.008 PMID: 15369694
  100. Singh, R.P.; Sharma, G.; Sonali; Singh, S.; Bharti, S.; Pandey, B.L.; Koch, B.; Muthu, M.S. Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery. Mater. Sci. Eng. C, 2017, 77, 446-458. doi: 10.1016/j.msec.2017.03.225
  101. Barar, J.; Kafil, V.; Majd, M.H.; Barzegari, A.; Khani, S.; Johari-Ahar, M.; Asgari, D.; Cokous, G.; Omidi, Y.J. Multifunctional mitoxantrone-conjugated magnetic nanosystem for targeted therapy of folate receptor-overexpressing malignant cells. J. Nanobiotechnology, 2015, 13(1), 1-16.
  102. Zheng, Z.; Li, Z.; Xu, C.; Guo, B.; Guo, P. Folate-displaying exosome mediated cytosolic delivery of siRNA avoiding endosome trapping. J. Control. Release, 2019, 311-312, 43-49. doi: 10.1016/j.jconrel.2019.08.021 PMID: 31446085
  103. Bu, L.; Gan, L.C.; Guo, X.Q.; Chen, F.Z.; Song, Q.; Qi-Zhao; Gou, X.J.; Hou, S.X.; Yao, Q. Trans-resveratrol loaded chitosan nanoparticles modified with biotin and avidin to target hepatic carcinoma. Int. J. Pharm., 2013, 452(1-2), 355-362. doi: 10.1016/j.ijpharm.2013.05.007 PMID: 23685116
  104. Bonferoni, M.C.; Gavini, E.; Rassu, G.; Maestri, M.; Giunchedi, P. Chitosan nanoparticles for therapy and theranostics of hepatocellular carcinoma (HCC) and liver-targeting. Nanomaterials, 2020, 10(5), 870. doi: 10.3390/nano10050870 PMID: 32365938
  105. Zhou, N.; Zan, X.; Wang, Z.; Wu, H.; Yin, D.; Liao, C.; Wan, Y. Galactosylated chitosan–polycaprolactone nanoparticles for hepatocyte-targeted delivery of curcumin. Carbohydr. Polym., 2013, 94(1), 420-429. doi: 10.1016/j.carbpol.2013.01.014 PMID: 23544558
  106. Babu, K.R.; Muckenthaler, M.U. miR-148a regulates expression of the transferrin receptor 1 in hepatocellular carcinoma. Sci. Rep., 2019, 9(1), 1518. doi: 10.1038/s41598-018-35947-7 PMID: 30728365
  107. Schuster, S.J. Bispecific antibodies for the treatment of lymphomas: Promises and challenges. Hematol. Oncol., 2021, 39(S1), 113-116. doi: 10.1002/hon.2858 PMID: 34105818
  108. Agrawal, P.; Sonali; Singh, R.P.; Sharma, G.; Mehata, A.K.; Singh, S.; Rajesh, C.V.; Pandey, B.L.; Koch, B.; Muthu, M.S. Bioadhesive micelles of d -α-tocopherol polyethylene glycol succinate 1000: Synergism of chitosan and transferrin in targeted drug delivery. Colloids Surf. B Biointerfaces, 2017, 152, 277-288. doi: 10.1016/j.colsurfb.2017.01.021 PMID: 28122295

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024