Multiple Protein Biomarkers and Different Treatment Strategies for Colorectal Carcinoma: A Comprehensive Prospective


Цитировать

Полный текст

Аннотация

In this review, we emphasized important biomarkers, pathogenesis, and newly developed therapeutic approaches in the treatment of colorectal cancer (CRC). This includes a complete description of small-molecule inhibitors, phytopharmaceuticals with antiproliferative potential, monoclonal antibodies for targeted therapy, vaccinations as immunotherapeutic agents, and many innovative strategies to intervene in the interaction of oncogenic proteins. Many factors combine to determine the clinical behavior of colorectal cancer and it is still difficult to comprehend the molecular causes of a person's vulnerability to CRC. It is also challenging to identify the causes of the tumor's onset, progression, and responsiveness or resistance to antitumor treatment. Current recommendations for targeted medications are being updated by guidelines throughout the world in light of the growing number of high-quality clinical studies. So, being concerned about the aforementioned aspects, we have tried to present a summarized pathogenic view, including a brief description of biomarkers and an update of compounds with their underlying mechanisms that are currently under various stages of clinical testing. This will help to identify gaps or shortfalls that can be addressed in upcoming colorectal cancer research.

Об авторах

Biswadip Chakraborty

Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences,, Dr. Harisingh Gour University (A Central University)

Email: info@benthamscience.net

Shivangi Agarwal

Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University)

Email: info@benthamscience.net

Shivam Kori

Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences,, Dr. Harisingh Gour University (A Central University)

Email: info@benthamscience.net

Ratnesh Das

Department of Chemistry, ISF College of Pharmacy

Email: info@benthamscience.net

Varsha Kashaw

, Sagar Institute of Pharmaceutical Sciences,

Email: info@benthamscience.net

Arun Iyer

Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University

Email: info@benthamscience.net

Sushil Kashaw

Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences,, Dr. Harisingh Gour University (A Central University)

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol., 2021, 14(10), 101174. doi: 10.1016/j.tranon.2021.101174 PMID: 34243011
  2. Chu, KC; Tarone, KE; Chow, WH; Hankey, BF; Gloeckler-Ries, LA Temporal patterns in colorectal cancer incidence, survival, and mortality from 1950 through 1990. J Nat1 Cancer Inst, 1994, 86, 997-1006. doi: 10.1093/jnci/86.13.997 PMID: 7980765
  3. Lynch, H.T.; Smyrk, T.; Lynch, J. An update of HNPCC (Lynch syndrome). Cancer Genet. Cytogenet., 1997, 93(1), 84-99. doi: 10.1016/S0165-4608(96)00290-7 PMID: 9062584
  4. Radice, P.; Cama, A.; Mariani-Costantini, R. Molecular genetics of polyposis and hereditary colorectal cancer. Forum, 1996, 6, 275-291.
  5. Ponz de Leon, M. Genetic basis of tumour development. Ital. J. Gastroenterol., 1996, 28(4), 232-245. PMID: 8842841
  6. Sakai, E.; Nakajima, A.; Kaneda, A. Accumulation of aberrant DNA methylation during colorectal cancer development. World J. Gastroenterol., 2014, 20(4), 978-987. doi: 10.3748/wjg.v20.i4.978 PMID: 24574770
  7. Øines, M.; Helsingen, L.M.; Bretthauer, M.; Emilsson, L. Epidemiology and risk factors of colorectal polyps. Best Pract. Res. Clin. Gastroenterol., 2017, 31(4), 419-424. doi: 10.1016/j.bpg.2017.06.004 PMID: 28842051
  8. Colussi, D.; Brandi, G.; Bazzoli, F.; Ricciardiello, L. Molecular pathways involved in colorectal cancer: Implications for disease behavior and prevention. Int. J. Mol. Sci., 2013, 14(8), 16365-16385. doi: 10.3390/ijms140816365 PMID: 23965959
  9. Nazemalhosseini Mojarad, E.; Kuppen, P.J.; Aghdaei, H.A.; Zali, M.R. The CpG island methylator phenotype (CIMP) in colorectal cancer. Gastroenterol. Hepatol. Bed Bench, 2013, 6, 120-128.
  10. Worthley, D.L.; Leggett, B.A.; Aghdaei, H.A.; Zali, M.R. Colorectal cancer: Molecular features and clinical opportunities. Clin. Biochem. Rev., 2010, 31, 31-38.
  11. dos Reis, S.A.; da Conceição, L.L.; Siqueira, N.P.; Rosa, D.D.; da Silva, L.L.; Peluzio, M.C.G. Review of the mechanisms of probiotic actions in the prevention of colorectal cancer. Nutr. Res., 2017, 37, 1-19. doi: 10.1016/j.nutres.2016.11.009 PMID: 28215310
  12. Hu, T.; Li, L.; Shen, J.; Zhang, L.; Cho, C. Chronic inflammation and colorectal cancer: the role of vascular endothelial growth factor. Curr. Pharm. Des., 2015, 21(21), 2960-2967. doi: 10.2174/1381612821666150514104244 PMID: 26004415
  13. Kim, E.R.; Chang, D.K. Colorectal cancer in inflammatory bowel disease: The risk, pathogenesis, prevention and diagnosis. World J. Gastroenterol., 2014, 20(29), 9872-9881. doi: 10.3748/wjg.v20.i29.9872 PMID: 25110418
  14. Bogaert, J.; Prenen, H. Molecular genetics of colorectal cancer. Ann. Gastroenterol., 2014, 27(1), 9-14. PMID: 24714764
  15. Louis, P.; Hold, G.L.; Flint, H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol., 2014, 12(10), 661-672. doi: 10.1038/nrmicro3344 PMID: 25198138
  16. Markowitz, S.D.; Bertagnolli, M.M. Molecular basis of colorectal cancer. N. Engl. J. Med., 2009, 361(25), 2449-2460. doi: 10.1056/NEJMra0804588
  17. Samowitz, W.S.; Curtin, K.; Ma, K.N.; Schaffer, D.; Coleman, L.W.; Leppert, M.; Slattery, M.L. Microsatellite instability in sporadic colon cancer is associated with an improved prognosis at the population level. Cancer Epidemiol. Biomarkers Prev., 2001, 10(9), 917-923. PMID: 11535541
  18. Kim, G.P.; Colangelo, L.H.; Wieand, H.S.; Paik, S.; Kirsch, I.R.; Wolmark, N.; Allegra, C.J. Prognostic and predictive roles of high-degree microsatellite instability in colon cancer: A national cancer institute-national surgical adjuvant breast and bowel project collaborative study. J. Clin. Oncol., 2007, 25(7), 767-772. doi: 10.1200/JCO.2006.05.8172 PMID: 17228023
  19. Watanabe, T.; Wu, T.T.; Catalano, P.J.; Ueki, T.; Satriano, R.; Haller, D.G.; Benson, A.B., III; Hamilton, S.R. Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N. Engl. J. Med., 2001, 344(16), 1196-1206. doi: 10.1056/NEJM200104193441603 PMID: 11309634
  20. Iliopoulos, D.; Kavousanaki, M.; Ioannou, M.; Boumpas, D.; Verginis, P. The negative costimulatory molecule PD-1 modulates the balance between immunity and tolerance via miR-21. Eur. J. Immunol., 2011, 41(6), 1754-1763. doi: 10.1002/eji.201040646 PMID: 21469086
  21. Han, Y.; Liu, D.; Li, L. PD-1/PD-L1 pathway: Current researches in cancer. Am. J. Cancer Res., 2020, 10(3), 727-742. PMID: 32266087
  22. Van Coillie, S.; Wiernicki, B.; Xu, J. Molecular and cellular functions of CTLA-4. Adv. Exp. Med. Biol., 2020, 1248, 7-32. doi: 10.1007/978-981-15-3266-5_2 PMID: 32185705
  23. Anderson, A.C.; Joller, N.; Kuchroo, V.K. Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation. Immunity, 2016, 44(5), 989-1004. doi: 10.1016/j.immuni.2016.05.001 PMID: 27192565
  24. Borrego, F.; Masilamani, M.; Marusina, A.I.; Tang, X.; Coligan, J.E. The CD94/NKG2 family of receptors: From molecules and cells to clinical relevance. Immunol. Res., 2006, 35(3), 263-278. doi: 10.1385/IR:35:3:263 PMID: 17172651
  25. Lanier, L.L. Up on the tightrope: Natural killer cell activation and inhibition. Nat. Immunol., 2008, 9(5), 495-502. doi: 10.1038/ni1581 PMID: 18425106
  26. Zhang, Q.; Zhang, H.; Ding, J.; Liu, H.; Li, H.; Li, H.; Lu, M.; Miao, Y.; Li, L.; Zheng, J. Combination therapy with EpCAM-CAR-NK-92 cells and regorafenib against human colorectal cancer models. J. Immunol. Res., 2018, 2018, 1-11. doi: 10.1155/2018/4263520 PMID: 30410941
  27. Goodin, S. Development of monoclonal antibodies for the treatment of colorectal cancer. Am. J. Health Syst. Pharm., 2008, 65(S4), S3-S7. doi: 10.2146/ajhp080100 PMID: 18499888
  28. Labrijn, A.F.; Janmaat, M.L.; Reichert, J.M.; Parren, P.W.H.I. Bispecific antibodies: A mechanistic review of the pipeline. Nat. Rev. Drug Discov., 2019, 18(8), 585-608. doi: 10.1038/s41573-019-0028-1 PMID: 31175342
  29. Takegawa, N.; Yonesaka, K. HER2 as an emerging oncotarget for colorectal cancer treatment after failure of anti-epidermal growth factor receptor therapy. Clin. Colorectal Cancer, 2017, 16(4), 247-251. doi: 10.1016/j.clcc.2017.03.001 PMID: 28363756
  30. Stenger, M. Trastuzumab Deruxtecan-nxki in HER2-Positive Metastatic Colorectal Cancer: DESTINY-CRC01. 2021. Available from: https://ascopost.com/news/may-2021/trastuzumab-deruxtecan-nxki-in-her2-positive-metastatic-colorectal-cancerdestiny-crc01/
  31. Koganemaru, S.; Kuboki, Y.; Koga, Y.; Kojima, T.; Yamauchi, M.; Maeda, N.; Kagari, T.; Hirotani, K.; Yasunaga, M.; Matsumura, Y.; Doi, T. U3-1402, a novel HER3-targeting antibody–drug conjugate, for the treatment of colorectal cancer. Mol. Cancer Ther., 2019, 18(11), 2043-2050. doi: 10.1158/1535-7163.MCT-19-0452 PMID: 31395690
  32. Lédel, F.; Stenstedt, K.; Hallström, M.; Ragnhammar, P.; Edler, D. HER3 expression in primary colorectal cancer including corresponding metastases in lymph node and liver. Acta Oncol., 2015, 54(4), 480-486. doi: 10.3109/0284186X.2014.983654 PMID: 25601452
  33. Ning, S.T.; Lee, S.Y.; Wei, M.F.; Peng, C.L.; Lin, S.Y.F.; Tsai, M.H.; Lee, P.C.; Shih, Y.H.; Lin, C.Y.; Luo, T.Y.; Shieh, M.J. Targeting colorectal cancer stem-like cells with anti-CD133 antibody-conjugated SN-38 nanoparticles. ACS Appl. Mater. Interfaces, 2016, 8(28), 17793-17804. doi: 10.1021/acsami.6b04403 PMID: 27348241
  34. (a) Wu, Z.; Guo, H-F.; Xu, H.; Cheung, N-K.V. Development of a tetravalent anti-gpa33/anti-cd3 bispecific antibody for colorectal cancers. Mol. Cancer Ther, 2018, 17, 2164-2175.; (b) Rageul, Z.; Mottier, S.; Jarry, A.; Shah, Y.; Théoleyre, S.; Masson, D.; Laboisse, C.L.; Denis, M.G. KLF4-dependent, PPARgamma-induced expression of GPA33 in colon cancer cell lines. Int. J. Cancer, 2009, 125, 2802-2809.
  35. Shiozawa, M.; Chang, C.H.; Huang, Y.C.; Chen, Y.C.; Chi, M.S.; Hao, H.C.; Chang, Y.C.; Takeda, S.; Chi, K.H.; Wang, Y.S. Pharmacologically upregulated carcinoembryonic antigen-expression enhances the cytolytic activity of genetically-modified chimeric antigen receptor NK-92MI against colorectal cancer cells. BMC Immunol., 2018, 19(1), 27. doi: 10.1186/s12865-018-0262-z PMID: 30075754
  36. Mathur, D.; Root, A.R.; Bugaj-Gaweda, B.; Bisulco, S.; Tan, X.; Fang, W.; Kearney, J.C.; Lucas, J.; Guffroy, M.; Golas, J.; Rohde, C.M.; Stevens, C.; Kamperschroer, C.; Kelleher, K.; Lawrence-Henderson, R.F.; Upeslacis, E.; Yao, J.; Narula, J.; LaVallie, E.R.; Fernandez, D.R.; Buetow, B.S.; Rosfjord, E.; Bloom, L.; King, L.E.; Tchistiakova, L.; Nguyen, A.; Sapra, P. A novel GUCY2C-CD3 T-cell engaging bispecific construct (PF-07062119) for the treatment of gastrointestinal cancers. Clin. Cancer Res., 2020, 26(9), 2188-2202. doi: 10.1158/1078-0432.CCR-19-3275 PMID: 31996389
  37. Zhu, G.; Pei, L.; Xia, H.; Tang, Q.; Bi, F. Role of oncogenic KRAS in the prognosis, diagnosis and treatment of colorectal cancer. Mol. Cancer, 2021, 20(1), 143. doi: 10.1186/s12943-021-01441-4 PMID: 34742312
  38. Hidalgo, M.; Martinez-Garcia, M.; Le Tourneau, C.; Massard, C.; Garralda, E.; Boni, V.; Taus, A.; Albanell, J.; Sablin, M.P.; Alt, M.; Bahleda, R.; Varga, A.; Boetsch, C.; Franjkovic, I.; Heil, F.; Lahr, A.; Lechner, K.; Morel, A.; Nayak, T.; Rossomanno, S.; Smart, K.; Stubenrauch, K.; Krieter, O. First-in-human phase I study of single-agent Vanucizumab, A first-in-class bispecific anti-angiopoietin-2/Anti-VEGF-A antibody, in adult patients with advanced solid tumors. Clin. Cancer Res., 2018, 24(7), 1536-1545. doi: 10.1158/1078-0432.CCR-17-1588 PMID: 29217526
  39. Michel, M.; Kaps, L.; Maderer, A.; Galle, P.R.; Moehler, M. The role of p53 dysfunction in colorectal cancer and its implication for therapy. Cancers (Basel), 2021, 13(10), 2296. doi: 10.3390/cancers13102296 PMID: 34064974
  40. Patnaik, A.; Gordon, M.; Tsai, F.; Papadopoulous, K.; Rasco, D.; Beeram, S.M.; Fu, S.; Janku, F.; Hynes, S.M.; Gundala, S.R.; Willard, M.D.; Zhang, W.; Lin, A.B.; Hong, D. A phase I study of LY3164530, a bispecific antibody targeting MET and EGFR, in patients with advanced or metastatic cancer. Cancer Chemother. Pharmacol., 2018, 82(3), 407-418. doi: 10.1007/s00280-018-3623-7 PMID: 29926131
  41. Safaie Qamsari, E.; Safaei Ghaderi, S.; Zarei, B.; Dorostkar, R.; Bagheri, S.; Jadidi-Niaragh, F.; Somi, M.H.; Yousefi, M. The c-Met receptor: Implication for targeted therapies in colorectal cancer. Tumour Biol., 2017, 39(5) doi: 10.1177/1010428317699118 PMID: 28459362
  42. Wu, G.S.; Burns, T.F.; McDonald, E.R., III; Jiang, W.; Meng, R.; Krantz, I.D.; Kao, G.; Gan, D.D.; Zhou, J.Y.; Muschel, R.; Hamilton, S.R.; Spinner, N.B.; Markowitz, S.; Wu, G.; El-Deiry, W.S. KILLER/DR5 is a DNA damage–inducible p53–regulated death receptor gene. Nat. Genet., 1997, 17(2), 141-143. doi: 10.1038/ng1097-141 PMID: 9326928
  43. Takahashi, H.; Jin, C.; Rajabi, H.; Pitroda, S.; Alam, M.; Ahmad, R.; Raina, D.; Hasegawa, M.; Suzuki, Y.; Tagde, A.; Bronson, R.T.; Weichselbaum, R.; Kufe, D. MUC1-C activates the TAK1 inflammatory pathway in colon cancer. Oncogene, 2015, 34(40), 5187-5197. doi: 10.1038/onc.2014.442 PMID: 25659581
  44. Xiao, T.; Xiao, Y.; Wang, W.; Tang, Y.Y.; Xiao, Z.; Su, M. Targeting EphA2 in cancer. J. Hematol. Oncol., 2020, 13(1), 114. doi: 10.1186/s13045-020-00944-9 PMID: 32811512
  45. (a) Mita, A.C.; Mita, M.M.; Nawrocki, S.T.; Giles, F.J. Survivin: Key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin. Cancer Res., 2008, 14, 5000-5005.; (b) Cai, Y.; Ma, W.; Cao, L.; Li, H.; Jiang, Y.; Lu, N.; Yin, Y. Effect of survivin on tumor growth of colorectal cancer in vivo. Int. J. Clin. Exp. Pathol., 2015, 8, 13267-13672.
  46. Sherman, E.J.; Mitchell, D.C.; Garner, A.L. The RNA-binding protein SART3 promotes miR-34a biogenesis and G1 cell cycle arrest in lung cancer cells. J. Biol. Chem., 2019, 294(46), 17188-17196. doi: 10.1074/jbc.AC119.010419 PMID: 31619517
  47. Bartnik, A.; Nirmal, A.J.; Yang, S.Y. Peptide vaccine therapy in colorectal cancer. Vaccines, 2012, 1(1), 1-16. doi: 10.3390/vaccines1010001 PMID: 26343847
  48. Briukhovetska, D.; Dörr, J.; Endres, S.; Libby, P.; Dinarello, C.A.; Kobold, S. Interleukins in cancer: from biology to therapy. Nat. Rev. Cancer, 2021, 21(8), 481-499. doi: 10.1038/s41568-021-00363-z PMID: 34083781
  49. Reichert, T.E.; Watkins, S.; Stanson, J.; Johnson, J.T.; Whiteside, T.L. Endogenous IL-2 in cancer cells: a marker of cellular proliferation. J. Histochem. Cytochem., 1998, 46(5), 603-611. doi: 10.1177/002215549804600506 PMID: 9562569
  50. Polin, R.A.; Abman, S.H.; Rowitch, D.; Benitz, W.E. Fetal and Neonatal Physiology, 5th ed; Elsevier: Philadelphia, PA, USA, 2017.
  51. Rébé, C.; Ghiringhelli, F. Interleukin-1β and cancer. Cancers (Basel), 2020, 12(7), 1791. doi: 10.3390/cancers12071791 PMID: 32635472
  52. Baker, K.J.; Houston, A.; Brint, E. IL-1 family members in cancer; two sides to every story. Front. Immunol., 2019, 10, 1197. doi: 10.3389/fimmu.2019.01197 PMID: 31231372
  53. Castro, F.; Cardoso, A.P.; Gonçalves, R.M.; Serre, K.; Oliveira, M.J. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front. Immunol., 2018, 9, 847. doi: 10.3389/fimmu.2018.00847 PMID: 29780381
  54. Kienzl, M.; Hasenoehrl, C.; Valadez-Cosmes, P.; Maitz, K.; Sarsembayeva, A.; Sturm, E.; Heinemann, A.; Kargl, J.; Schicho, R. IL-33 reduces tumor growth in models of colorectal cancer with the help of eosinophils. OncoImmunology, 2020, 9(1), 1776059. doi: 10.1080/2162402X.2020.1776059 PMID: 32923137
  55. Griesenauer, B.; Paczesny, S. The ST2/IL-33 axis in immune cells during inflammatory diseases. Front. Immunol., 2017, 8, 475. doi: 10.3389/fimmu.2017.00475 PMID: 28484466
  56. CCR5-blockade in metastatic colorectal cancer. Patent NCT01736813, Available from: https://ClinicalTrials.gov/show/NCT01736813
  57. Mukaida, N. CCR5 antagonist, an ally to fight against metastatic colorectal cancer. Transl. Cancer Res., 2016, 5(S2), S309-S312. doi: 10.21037/tcr.2016.06.36
  58. Zhu, Y.; An, X.; Zhang, X.; Qiao, Y.; Zheng, T.; Li, X. STING: a master regulator in the cancer-immunity cycle. Mol. Cancer, 2019, 18(1), 152. doi: 10.1186/s12943-019-1087-y PMID: 31679519
  59. Jiang, M.; Chen, P.; Wang, L.; Li, W.; Chen, B.; Liu, Y.; Wang, H.; Zhao, S.; Ye, L.; He, Y.; Zhou, C. cGAS-STING, an important pathway in cancer immunotherapy. J. Hematol. Oncol., 2020, 13(1), 81. doi: 10.1186/s13045-020-00916-z PMID: 32571374
  60. Ponz de Leon, M.; Percesepe, A. Pathogenesis of colorectal cancer. Dig. Liver Dis., 2000, 32(9), 807-821. doi: 10.1016/S1590-8658(00)80361-8
  61. Fearon, ER; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell, 1990, 61, 759-767. doi: 10.1016/0092-8674(90)90186-I
  62. Deschner, EE; Godbold, J; Lynch, HT Rectal epithelial cell proliferation in a group in young adults. Cancer, 1988, 61, 2286-2290.39.
  63. Grady, W.M.; Markowitz, S. Colorectal cancer: Genetic alterations. In: Gastrointestinal oncology: principles and practice; Kelsen, D.; Daly, J.; Kern, S.; Levin, B.; Tepper, J., Eds.; Lippincott Williams & Wilkins: Philadelphia, 2002; pp. 685-702.
  64. Fearon, E.R.; Bommer, G.T. Molecular biology of colorectal cancer. DeVita, Hellman, and Rosenberg’s cancer: principles & practice of oncology; DeVita, V.T., Jr; Lawrence, T.S.; Rosenberg, S.A., Eds.; Lippincott Williams & Wilkins: Philadelphia, 2008, Vol. 1, pp. 1218-1231.
  65. Leach, F.S.; Nicolaides, N.C.; Papadopoulos, N.; Liu, B.; Jen, J.; Parsons, R.; Peltomäki, P.; Sistonen, P.; Aaltonen, L.A.; Nyström-Lahti, M.; Guan, X-Y.; Zhang, J.; Meltzer, P.S.; Yu, J-W.; Kao, F-T.; Chen, D.J.; Cerosaletti, K.M.; Fournier, R.E.K.; Todd, S.; Lewis, T.; Leach, R.J.; Naylor, S.L.; Weissenbach, J.; Mecklin, J-P.; Järvinen, H.; Petersen, G.M.; Hamilton, S.R.; Green, J.; Jass, J.; Watson, P.; Lynch, H.T.; Trent, J.M.; de la Chapelle, A.; Kinzler, K.W.; Vogelstein, B. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell, 1993, 75(6), 1215-1225. doi: 10.1016/0092-8674(93)90330-S PMID: 8261515
  66. Papadopoulos, N.; Nicolaides, N.C.; Wei, Y.F.; Ruben, S.M.; Carter, K.C.; Rosen, C.A.; Haseltine, W.A.; Fleischmann, R.D.; Fraser, C.M.; Adams, M.D.; Venter, J.C.; Hamilton, S.R.; Petersen, G.M.; Watson, P.; Lynch, H.T.; Peltomäki, P.; Mecklin, J-P.; de la Chapelle, A.; Kinzler, K.W.; Vogelstein, B. Mutation of a mutL homolog in hereditary colon cancer. Science, 1994, 263(5153), 1625-1629. doi: 10.1126/science.8128251 PMID: 8128251
  67. Fishel, R.; Lescoe, M.K.; Rao, M.R.S.; Copeland, N.G.; Jenkins, N.A.; Garber, J.; Kane, M.; Kolodner, R. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell, 1993, 75(5), 1027-1038. doi: 10.1016/0092-8674(93)90546-3 PMID: 8252616
  68. Bronner, C.E.; Baker, S.M.; Morrison, P.T.; Warren, G.; Smith, L.G.; Lescoe, M.K.; Kane, M.; Earabino, C.; Lipford, J.; Lindblom, A. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature, 1994, 368(6468), 258-261. doi: 10.1038/368258a0 PMID: 8145827
  69. Lynch, H.T.; Lynch, J.F.; Lynch, P.M.; Attard, T. Hereditary colorectal cancer syndromes: molecular genetics, genetic counseling, diagnosis and management. Fam. Cancer, 2008, 7(1), 27-39. doi: 10.1007/s10689-007-9165-5 PMID: 17999161
  70. Boland, C.R.; Koi, M.; Chang, D.K.; Carethers, J.M. The biochemical basis of microsatellite instability and abnormal immunohistochemistry and clinical behavior in Lynch Syndrome: from bench to bedside. Fam. Cancer, 2008, 7(1), 41-52. doi: 10.1007/s10689-007-9145-9 PMID: 17636426
  71. Al-Tassan, N.; Chmiel, N.H.; Maynard, J.; Fleming, N.; Livingston, A.L.; Williams, G.T.; Hodges, A.K.; Davies, D.R.; David, S.S.; Sampson, J.R.; Cheadle, J.P. Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors. Nat. Genet., 2002, 30(2), 227-232. doi: 10.1038/ng828 PMID: 11818965
  72. Kastrinos, F.; Syngal, S. Recently identified colon cancer predispositions: MYH and MSH6 mutations. Semin. Oncol., 2007, 34(5), 418-424. doi: 10.1053/j.seminoncol.2007.07.005 PMID: 17920897
  73. Jones, S.; Emmerson, P.; Maynard, J.; Best, J.M.; Jordan, S.; Williams, G.T.; Sampson, J.R.; Cheadle, J.P. Biallelic germline mutations in MYH predispose to multiple colorectal adenoma and somatic G:C->T:A mutations. Hum. Mol. Genet., 2002, 11(23), 2961-2967. doi: 10.1093/hmg/11.23.2961 PMID: 12393807
  74. Issa, J.P. CpG island methylator phenotype in cancer. Nat. Rev. Cancer, 2004, 4(12), 988-993. doi: 10.1038/nrc1507 PMID: 15573120
  75. Kondo, Y.; Issa, J.P.J. Epigenetic changes in colorectal cancer. Cancer Metastasis Rev., 2004, 23(1/2), 29-39. doi: 10.1023/A:1025806911782 PMID: 15000147
  76. Toyota, M.; Ahuja, N.; Ohe-Toyota, M.; Herman, J.G.; Baylin, S.B.; Issa, J.P.J. CpG island methylator phenotype in colorectal cancer. Proc. Natl. Acad. Sci. USA, 1999, 96(15), 8681-8686. doi: 10.1073/pnas.96.15.8681 PMID: 10411935
  77. Goss, K.H.; Groden, J. Biology of the adenomatous polyposis coli tumor suppressor. J. Clin. Oncol., 2000, 18(9), 1967-1979. doi: 10.1200/JCO.2000.18.9.1967 PMID: 10784639
  78. Baker, S.J.; Fearon, E.R.; Nigro, J.M.; Hamilton, S.R.; Preisinger, A.C.; Jessup, J.M.; vanTuinen, P.; Ledbetter, D.H.; Barker, D.F.; Nakamura, Y.; White, R.; Vogelstein, B. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science, 1989, 244(4901), 217-221. doi: 10.1126/science.2649981 PMID: 2649981
  79. Baker, S.J.; Markowitz, S.; Fearon, E.R.; Willson, J.K.V.; Vogelstein, B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science, 1990, 249(4971), 912-915. doi: 10.1126/science.2144057 PMID: 2144057
  80. Vazquez, A.; Bond, E.E.; Levine, A.J.; Bond, G.L. The genetics of the p53 pathway, apoptosis and cancer therapy. Nat. Rev. Drug Discov., 2008, 7(12), 979-987. doi: 10.1038/nrd2656 PMID: 19043449
  81. Baker, S.J.; Preisinger, A.C.; Jessup, J.M.; Paraskeva, C.; Markowitz, S.; Willson, J.K.; Hamilton, S.; Vogelstein, B. p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res., 1990, 50(23), 7717-7722. PMID: 2253215
  82. Grady, W.M.; Markowitz, S.D. TGF-β signaling pathway and tumor suppression. In: The TGF-β family; Derynck, R.; Miyazano, K., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 2008; pp. 889-938.
  83. Markowitz, S.; Wang, J.; Myeroff, L.; Parsons, R.; Sun, L.; Lutterbaugh, J.; Fan, R.S.; Zborowska, E.; Kinzler, K.W.; Vogelstein, B.; Brattain, M.; Willson, J.K.V. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science, 1995, 268(5215), 1336-1338. doi: 10.1126/science.7761852 PMID: 7761852
  84. Grady, W.M.; Myeroff, L.L.; Swinler, S.E.; Rajput, A.; Thiagalingam, S.; Lutterbaugh, J.D.; Neumann, A.; Brattain, M.G.; Chang, J.; Kim, S.J.; Kinzler, K.W.; Vogelstein, B.; Willson, J.K.; Markowitz, S. Mutational inactivation of transforming growth factor β receptor type II in microsatellite stable colon cancers. Cancer Res., 1999, 59(2), 320-324. PMID: 9927040
  85. Sjöblom, T.; Jones, S.; Wood, LD The consensus coding sequences of human breast and colorectal cancers. Science, 2006, 314, 268-274. doi: 10.1126/science.1133427 PMID: 16959974
  86. Wood, L.D.; Parsons, D.W.; Jones, S.; Lin, J.; Sjöblom, T.; Leary, R.J.; Shen, D.; Boca, S.M.; Barber, T.; Ptak, J.; Silliman, N.; Szabo, S.; Dezso, Z.; Ustyanksky, V.; Nikolskaya, T.; Nikolsky, Y.; Karchin, R.; Wilson, P.A.; Kaminker, J.S.; Zhang, Z.; Croshaw, R.; Willis, J.; Dawson, D.; Shipitsin, M.; Willson, J.K.V.; Sukumar, S.; Polyak, K.; Park, B.H.; Pethiyagoda, C.L.; Pant, P.V.K.; Ballinger, D.G.; Sparks, A.B.; Hartigan, J.; Smith, D.R.; Suh, E.; Papadopoulos, N.; Buckhaults, P.; Markowitz, S.D.; Parmigiani, G.; Kinzler, K.W.; Velculescu, V.E.; Vogelstein, B. The genomic landscapes of human breast and colorectal cancers. Science, 2007, 318(5853), 1108-1113. doi: 10.1126/science.1145720 PMID: 17932254
  87. Leary, R.J.; Lin, J.C.; Cummins, J.; Boca, S.; Wood, L.D.; Parsons, D.W.; Jones, S.; Sjöblom, T.; Park, B.H.; Parsons, R.; Willis, J.; Dawson, D.; Willson, J.K.V.; Nikolskaya, T.; Nikolsky, Y.; Kopelovich, L.; Papadopoulos, N.; Pennacchio, L.A.; Wang, T.L.; Markowitz, S.D.; Parmigiani, G.; Kinzler, K.W.; Vogelstein, B.; Velculescu, V.E. Integrated analysis of homozygous deletions, focal amplifications, and sequence alterations in breast and colorectal cancers. Proc. Natl. Acad. Sci. USA, 2008, 105(42), 16224-16229. doi: 10.1073/pnas.0808041105 PMID: 18852474
  88. Thiagalingam, S.; Lengauer, C.; Leach, F.S.; Schutte, M.; Hahn, S.A.; Overhauser, J.; Willson, J.K.V.; Markowitz, S.; Hamilton, S.R.; Kern, S.E.; Kinzler, K.W.; Vogelstein, B. Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat. Genet., 1996, 13(3), 343-346. doi: 10.1038/ng0796-343 PMID: 8673134
  89. Eppert, K.; Scherer, S.W.; Ozcelik, H.; Pirone, R.; Hoodless, P.; Kim, H.; Tsui, L.C.; Bapat, B.; Gallinger, S.; Andrulis, I.L.; Thomsen, G.H.; Wrana, J.L.; Attisano, L. MADR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell, 1996, 86(4), 543-552. doi: 10.1016/S0092-8674(00)80128-2 PMID: 8752209
  90. Riggins, G.J.; Thiagalingam, S.; Rozenblum, E.; Weinstein, C.L.; Kern, S.E.; Hamilton, S.R.; Willson, J.K.V.; Markowitz, S.D.; Kinzler, K.W.; Vogelstein, B. Mad-related genes in the human. Nat. Genet., 1996, 13(3), 347-349. doi: 10.1038/ng0796-347 PMID: 8673135
  91. Nosho, K.; Irahara, N.; Shima, K.; Kure, S.; Kirkner, G.J.; Schernhammer, E.S.; Hazra, A.; Hunter, D.J.; Quackenbush, J.; Spiegelman, D.; Giovannucci, E.L.; Fuchs, C.S.; Ogino, S. Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS One, 2008, 3(11), e3698. doi: 10.1371/journal.pone.0003698 PMID: 19002263
  92. Bos, J.L.; Fearon, E.R.; Hamilton, S.R.; Vries, M.V.; van Boom, J.H.; van der Eb, A.J.; Vogelstein, B. Prevalence of ras gene mutations in human colorectal cancers. Nature, 1987, 327(6120), 293-297. doi: 10.1038/327293a0 PMID: 3587348
  93. Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; Davis, N.; Dicks, E.; Ewing, R.; Floyd, Y.; Gray, K.; Hall, S.; Hawes, R.; Hughes, J.; Kosmidou, V.; Menzies, A.; Mould, C.; Parker, A.; Stevens, C.; Watt, S.; Hooper, S.; Wilson, R.; Jayatilake, H.; Gusterson, B.A.; Cooper, C.; Shipley, J.; Hargrave, D.; Pritchard-Jones, K.; Maitland, N.; Chenevix-Trench, G.; Riggins, G.J.; Bigner, D.D.; Palmieri, G.; Cossu, A.; Flanagan, A.; Nicholson, A.; Ho, J.W.C.; Leung, S.Y.; Yuen, S.T.; Weber, B.L.; Seigler, H.F.; Darrow, T.L.; Paterson, H.; Marais, R.; Marshall, C.J.; Wooster, R.; Stratton, M.R.; Futreal, P.A. Mutations of the BRAF gene in human cancer. Nature, 2002, 417(6892), 949-954. doi: 10.1038/nature00766 PMID: 12068308
  94. Rajagopalan, H.; Bardelli, A.; Lengauer, C.; Kinzler, K.W.; Vogelstein, B.; Velculescu, V.E. RAF/RAS oncogenes and mismatch-repair status. Nature, 2002, 418(6901), 934. doi: 10.1038/418934a PMID: 12198537
  95. Siena, S.; Sartore-Bianchi, A.; Di Nicolantonio, F.; Balfour, J.; Bardelli, A. Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J. Natl. Cancer Inst., 2009, 101(19), 1308-1324. doi: 10.1093/jnci/djp280 PMID: 19738166
  96. Shen, L.; Toyota, M.; Kondo, Y.; Lin, E.; Zhang, L.; Guo, Y.; Hernandez, N.S.; Chen, X.; Ahmed, S.; Konishi, K.; Hamilton, S.R.; Issa, J.P.J. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc. Natl. Acad. Sci. USA, 2007, 104(47), 18654-18659. doi: 10.1073/pnas.0704652104 PMID: 18003927
  97. Weisenberger, D.J.; Siegmund, K.D.; Campan, M.; Young, J.; Long, T.I.; Faasse, M.A.; Kang, G.H.; Widschwendter, M.; Weener, D.; Buchanan, D.; Koh, H.; Simms, L.; Barker, M.; Leggett, B.; Levine, J.; Kim, M.; French, A.J.; Thibodeau, S.N.; Jass, J.; Haile, R.; Laird, P.W. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet., 2006, 38(7), 787-793. doi: 10.1038/ng1834 PMID: 16804544
  98. O’Brien, M.J. Hyperplastic and serrated polyps of the colorectum. Gastroenterol. Clin. North Am., 2007, 36(4), 947-968. doi: 10.1016/j.gtc.2007.08.007 PMID: 17996799
  99. Jass, J.R. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology, 2007, 50(1), 113-130. doi: 10.1111/j.1365-2559.2006.02549.x PMID: 17204026
  100. Samuels, Y.; Wang, Z.; Bardelli, A.; Silliman, N.; Ptak, J.; Szabo, S.; Yan, H.; Gazdar, A.; Powell, S.M.; Riggins, G.J.; Willson, J.K.V.; Markowitz, S.; Kinzler, K.W.; Vogelstein, B.; Velculescu, V.E. High frequency of mutations of the PIK3CA gene in human cancers. Science, 2004, 304(5670), 554. doi: 10.1126/science.1096502 PMID: 15016963
  101. Parsons, D.W.; Wang, T.L.; Samuels, Y.; Bardelli, A.; Cummins, J.M.; DeLong, L.; Silliman, N.; Ptak, J.; Szabo, S.; Willson, J.K.V.; Markowitz, S.; Kinzler, K.W.; Vogelstein, B.; Lengauer, C.; Velculescu, V.E. Mutations in a signalling pathway. Nature, 2005, 436(7052), 792. doi: 10.1038/436792a PMID: 16094359
  102. Markowitz, S.D. Aspirin and colon cancer--targeting prevention? N. Engl. J. Med., 2007, 356(21), 2195-2198. doi: 10.1056/NEJMe078044 PMID: 17522404
  103. Cha, Y.I.; DuBois, R.N. NSAIDs and cancer prevention: targets downstream of COX-2. Annu. Rev. Med., 2007, 58(1), 239-252. doi: 10.1146/annurev.med.57.121304.131253 PMID: 17100552
  104. Yan, M.; Rerko, R.M.; Platzer, P.; Dawson, D.; Willis, J.; Tong, M.; Lawrence, E.; Lutterbaugh, J.; Lu, S.; Willson, J.K.V.; Luo, G.; Hensold, J.; Tai, H.H.; Wilson, K.; Markowitz, S.D. 15-Hydroxyprostaglandin dehydrogenase, a COX-2 oncogene antagonist, is a TGF-β-induced suppressor of human gastrointestinal cancers. Proc. Natl. Acad. Sci. USA, 2004, 101(50), 17468-17473. doi: 10.1073/pnas.0406142101 PMID: 15574495
  105. Myung, S.J.; Rerko, R.M.; Yan, M.; Platzer, P.; Guda, K.; Dotson, A.; Lawrence, E.; Dannenberg, A.J.; Lovgren, A.K.; Luo, G.; Pretlow, T.P.; Newman, R.A.; Willis, J.; Dawson, D.; Markowitz, S.D. 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proc. Natl. Acad. Sci. USA, 2006, 103(32), 12098-12102. doi: 10.1073/pnas.0603235103 PMID: 16880406
  106. Backlund, M.G.; Mann, J.R.; Holla, V.R.; Buchanan, F.G.; Tai, H.H.; Musiek, E.S.; Milne, G.L.; Katkuri, S.; DuBois, R.N. 15-Hydroxyprostaglandin dehydrogenase is down-regulated in colorectal cancer. J. Biol. Chem., 2005, 280(5), 3217-3223. doi: 10.1074/jbc.M411221200 PMID: 15542609
  107. Saltz, L.B.; Meropol, N.J.; Loehrer, P.J., Sr; Needle, M.N.; Kopit, J.; Mayer, R.J. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J. Clin. Oncol., 2004, 22(7), 1201-1208. doi: 10.1200/JCO.2004.10.182 PMID: 14993230
  108. Cunningham, D.; Humblet, Y.; Siena, S.; Khayat, D.; Bleiberg, H.; Santoro, A.; Bets, D.; Mueser, M.; Harstrick, A.; Verslype, C.; Chau, I.; Van Cutsem, E. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med., 2004, 351(4), 337-345. doi: 10.1056/NEJMoa033025 PMID: 15269313
  109. Meyerhardt, J.A.; Mayer, R.J. Systemic therapy for colorectal cancer. N. Engl. J. Med., 2005, 352(5), 476-487. doi: 10.1056/NEJMra040958 PMID: 15689586
  110. Van Cutsem, E.; Peeters, M.; Siena, S.; Humblet, Y.; Hendlisz, A.; Neyns, B.; Canon, J.L.; Van Laethem, J.L.; Maurel, J.; Richardson, G.; Wolf, M.; Amado, R.G. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J. Clin. Oncol., 2007, 25(13), 1658-1664. doi: 10.1200/JCO.2006.08.1620 PMID: 17470858
  111. Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; Ferrara, N.; Fyfe, G.; Rogers, B.; Ross, R.; Kabbinavar, F. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med., 2004, 350(23), 2335-2342. doi: 10.1056/NEJMoa032691 PMID: 15175435
  112. Boman, B.M.; Huang, E. Human colon cancer stem cells: a new paradigm in gastrointestinal oncology. J. Clin. Oncol., 2008, 26(17), 2828-2838. doi: 10.1200/JCO.2008.17.6941 PMID: 18539961
  113. O’Brien, C.A.; Pollett, A.; Gallinger, S.; Dick, J.E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 2007, 445(7123), 106-110. doi: 10.1038/nature05372 PMID: 17122772
  114. Ricci-Vitiani, L.; Lombardi, D.G.; Pilozzi, E.; Biffoni, M.; Todaro, M.; Peschle, C.; De Maria, R. Identification and expansion of human colon-cancer-initiating cells. Nature, 2007, 445(7123), 111-115. doi: 10.1038/nature05384 PMID: 17122771
  115. Dalerba, P.; Dylla, S.J.; Park, I.K.; Liu, R.; Wang, X.; Cho, R.W.; Hoey, T.; Gurney, A.; Huang, E.H.; Simeone, D.M.; Shelton, A.A.; Parmiani, G.; Castelli, C.; Clarke, M.F. Phenotypic characterization of human colorectal cancer stem cells. Proc. Natl. Acad. Sci. USA, 2007, 104(24), 10158-10163. doi: 10.1073/pnas.0703478104 PMID: 17548814
  116. Woods, D.; Turchi, J.J. Chemotherapy induced DNA damage response. Cancer Biol. Ther., 2013, 14(5), 379-389. doi: 10.4161/cbt.23761 PMID: 23380594
  117. Lindskog, E.B.; Gunnarsdóttir, K.Á.; Derwinger, K.; Wettergren, Y.; Glimelius, B.; Kodeda, K. A population-based cohort study on adherence to practice guidelines for adjuvant chemotherapy in colorectal cancer. BMC Cancer, 2014, 14(1), 948. doi: 10.1186/1471-2407-14-948 PMID: 25495897
  118. de Gramont, A.; Figer, A.; Seymour, M.; Homerin, M.; Hmissi, A.; Cassidy, J.; Boni, C.; Cortes-Funes, H.; Cervantes, A.; Freyer, G.; Papamichael, D.; Le Bail, N.; Louvet, C.; Hendler, D.; de Braud, F.; Wilson, C.; Morvan, F.; Bonetti, A. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J. Clin. Oncol., 2000, 18(16), 2938-2947. doi: 10.1200/JCO.2000.18.16.2938 PMID: 10944126
  119. Douillard, J.Y.; Cunningham, D.; Roth, A.D.; Navarro, M.; James, R.D.; Karasek, P.; Jandik, P.; Iveson, T.; Carmichael, J.; Alakl, M.; Gruia, G.; Awad, L.; Rougier, P. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet, 2000, 355(9209), 1041-1047. doi: 10.1016/S0140-6736(00)02034-1 PMID: 10744089
  120. Pardini, B.; Kumar, R.; Naccarati, A.; Novotny, J.; Prasad, R.B.; Forsti, A.; Hemminki, K.; Vodicka, P.; Lorenzo Bermejo, J. 5-Fluorouracil-based chemotherapy for colorectal cancer and MTHFR/MTRR genotypes. Br. J. Clin. Pharmacol., 2011, 72(1), 162-163. doi: 10.1111/j.1365-2125.2010.03892.x PMID: 21204909
  121. Assed Bastos, D.; Coelho Ribeiro, S.; de Freitas, D.; Hoff, P.M. Review: Combination therapy in high-risk stage II or stage III colon cancer: current practice and future prospects. Ther. Adv. Med. Oncol., 2010, 2(4), 261-272. doi: 10.1177/1758834010367905 PMID: 21789139
  122. Nautiyal, J.; Kanwar, S.S.; Yu, Y.; Majumdar, A.P.N. Combination of dasatinib and curcumin eliminates chemo-resistant colon cancer cells. J. Mol. Signal., 2011, 6, 7. doi: 10.1186/1750-2187-6-7 PMID: 21774804
  123. Details available in treatment of colorectal cancer segment of cancer.gov database. 2011.
  124. Bokemeyer, C.; Cutsem, E.V.; Rougier, P.; Ciardiello, F.; Heeger, S.; Schlichting, M.; Celik, I.; Köhne, C.H. Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: Pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur. J. Cancer, 2012, 48(10), 1466-1475. doi: 10.1016/j.ejca.2012.02.057 PMID: 22446022
  125. Douillard, J.Y.; Oliner, K.S.; Siena, S.; Tabernero, J.; Burkes, R.; Barugel, M.; Humblet, Y.; Bodoky, G.; Cunningham, D.; Jassem, J.; Rivera, F.; Kocákova, I.; Ruff, P.; Błasińska-Morawiec, M.; Šmakal, M.; Canon, J.L.; Rother, M.; Williams, R.; Rong, A.; Wiezorek, J.; Sidhu, R.; Patterson, S.D. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N. Engl. J. Med., 2013, 369(11), 1023-1034. doi: 10.1056/NEJMoa1305275 PMID: 24024839
  126. Francisco, L.M.; Sage, P.T.; Sharpe, A.H. The PD-1 pathway in tolerance and autoimmunity. Immunol. Rev., 2010, 236(1), 219-242. doi: 10.1111/j.1600-065X.2010.00923.x PMID: 20636820
  127. Tsai, M.H.; Pan, C.H.; Peng, C.L.; Shieh, M.J. Panitumumab-conjugated pt-drug nanomedicine for enhanced efficacy of combination targeted chemotherapy against colorectal cancer. Adv. Healthc. Mater., 2017, 6(13), 1700111. doi: 10.1002/adhm.201700111 PMID: 28418176
  128. Tabernero, J.; Melero, I.; Ros, W.; Argiles, G.; Marabelle, A.; Rodriguez-Ruiz, M.E.; Albanell, J.; Calvo, E.; Moreno, V.; Cleary, J.M.; Eder, J.P.; Karanikas, V.; Bouseida, S.; Sandoval, F.; Sabanes, D.; Sreckovic, S.; Hurwitz, H.; Paz-Ares, L.G.; Saro Suarez, J.M.; Segal, N.H. Phase Ia and Ib studies of the novel carcinoembryonic antigen (CEA) T-cell bispecific (CEA CD3 TCB) antibody as a single agent and in combination with atezolizumab: Preliminary efficacy and safety in patients with metastatic colorectal cancer (mCRC). J. Clin. Oncol., 2017, 35(15_suppl), 3002-3002. doi: 10.1200/JCO.2017.35.15_suppl.3002
  129. Moradi, A.; Pourseif, M.M.; Jafari, B.; Parvizpour, S.; Omidi, Y. Nanobody-based therapeutics against colorectal cancer: Precision therapies based on the personal mutanome profile and tumor neoantigens. Pharmacol. Res., 2020, 156, 104790. doi: 10.1016/j.phrs.2020.104790 PMID: 32278043
  130. Sharma, P.; Allison, J.P. The future of immune checkpoint therapy. Science, 2015, 348(6230), 56-61. doi: 10.1126/science.aaa8172 PMID: 25838373
  131. Overman, M.J.; Ernstoff, M.S.; Morse, M.A. Where we stand with immunotherapy in colorectal cancer: Deficient mismatch repair, proficient mismatch repair, and toxicity management. Am. Soc. Clin. Oncol. Educ. Book, 2018, 38(38), 239-247. doi: 10.1200/EDBK_200821 PMID: 30231358
  132. FDA Approves First-Line Immunotherapy for Patients with MSI-H/dMMR Metastatic Colorectal Cancer. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-line-immunotherapy-patients-msi-hdmmrmetastatic-colorectal-cancer
  133. Administration USFaD. FDA Grants Nivolumab Accelerated Approval for MSI-H or dMMR Colorectal Cancer. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-nivolumab-accelerated-approvalmsi-h-or-dmmr-colorectal-cancer
  134. Liu, L.; Mayes, P.A.; Eastman, S.; Shi, H.; Yadavilli, S.; Zhang, T.; Yang, J.; Seestaller-Wehr, L.; Zhang, S.Y.; Hopson, C.; Tsvetkov, L.; Jing, J.; Zhang, S.; Smothers, J.; Hoos, A. The BRAF and MEK inhibitors dabrafenib and trametinib: Effects on immune function and in combination with immunomodulatory antibodies targeting PD-1, PD-L1, and CTLA-4. Clin. Cancer Res., 2015, 21(7), 1639-1651. doi: 10.1158/1078-0432.CCR-14-2339 PMID: 25589619
  135. Loi, S.; Dushyanthen, S.; Beavis, P.A.; Salgado, R.; Denkert, C.; Savas, P.; Combs, S.; Rimm, D.L.; Giltnane, J.M.; Estrada, M.V.; Sánchez, V.; Sanders, M.E.; Cook, R.S.; Pilkinton, M.A.; Mallal, S.A.; Wang, K.; Miller, V.A.; Stephens, P.J.; Yelensky, R.; Doimi, F.D.; Gómez, H.; Ryzhov, S.V.; Darcy, P.K.; Arteaga, C.L.; Balko, J.M. RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: Therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin. Cancer Res., 2016, 22(6), 1499-1509. doi: 10.1158/1078-0432.CCR-15-1125 PMID: 26515496
  136. Ebert, P.J.R.; Cheung, J.; Yang, Y.; McNamara, E.; Hong, R.; Moskalenko, M.; Gould, S.E.; Maecker, H.; Irving, B.A.; Kim, J.M.; Belvin, M.; Mellman, I. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity, 2016, 44(3), 609-621. doi: 10.1016/j.immuni.2016.01.024 PMID: 26944201
  137. An investigational immuno-therapy study of nivolumab, and nivolumab in combination with other anti-cancer drugs, in colon cancer that has come back or has spread. Patent NCT02060188., Available from: https://clinicaltrials.gov/ct2/show/NCT02060188
  138. Study of nivolumab and relatlimab in patients with microsatellite stable (mss) advanced colorectal cancer. Patent NCT03642067., Available from: https://clinicaltrials.gov/ct2/show/NCT03642067
  139. Study of TSR-033 with an anti-programmed cell death-1 receptor (PD-1) in participants with advanced solid tumors. Patent NCT03250832., Available from: https://clinicaltrials. gov/ct2/show/NCT03250832
  140. Smith, C.M.; Li, A.; Krishnamurthy, N.; Lemmon, M.A. Phosphatidylserine binding directly regulates TIM-3 function. Biochem. J., 2021, 478(17), 3331-3349. doi: 10.1042/BCJ20210425 PMID: 34435619
  141. Wolf, Y.; Anderson, A.C.; Kuchroo, V.K. TIM3 comes of age as an inhibitory receptor. Nat. Rev. Immunol., 2020, 20(3), 173-185. doi: 10.1038/s41577-019-0224-6 PMID: 31676858
  142. Yang, R.; Sun, L.; Li, C.F.; Wang, Y.H.; Yao, J.; Li, H.; Yan, M.; Chang, W.C.; Hsu, J.M.; Cha, J.H.; Hsu, J.L.; Chou, C.W.; Sun, X.; Deng, Y.; Chou, C.K.; Yu, D.; Hung, M.C. Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat. Commun., 2021, 12(1), 832. doi: 10.1038/s41467-021-21099-2 PMID: 33547304
  143. Huang, H.; Wang, X.; Zhang, Y.; Zheng, X.; Wei, H.; Sun, R. Up-regulation of NKG2F receptor, a functionally unknown killer receptor, of human natural killer cells by interleukin-2 and interleukin-15. Oncol. Rep., 2010, 24(4), 1043-1048. PMID: 20811687
  144. Rodriguez-Salas, N.; Dominguez, G.; Barderas, R.; Mendiola, M.; García-Albéniz, X.; Maurel, J.; Batlle, J.F. Clinical relevance of colorectal cancer molecular subtypes. Crit. Rev. Oncol. Hematol., 2017, 109, 9-19. doi: 10.1016/j.critrevonc.2016.11.007 PMID: 28010901
  145. Peltomäki, P. Role of DNA mismatch repair defects in the pathogenesis of human cancer. J. Clin. Oncol., 2003, 21(6), 1174-1179. doi: 10.1200/JCO.2003.04.060 PMID: 12637487
  146. Pawlik, T.M.; Raut, C.P.; Rodriguez-Bigas, M.A. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers, 2004, 20(4-5), 199-206. doi: 10.1155/2004/368680 PMID: 15528785
  147. Salipante, S.J.; Scroggins, S.M.; Hampel, H.L.; Turner, E.H.; Pritchard, C.C. Microsatellite instability detection by next generation sequencing. Clin. Chem., 2014, 60(9), 1192-1199. doi: 10.1373/clinchem.2014.223677 PMID: 24987110
  148. Ganesh, K.; Zsofia, K.S.; Andrea, C.; Robin, B.; Mendelsohn, J.S.; Neil, H.S.; Luis, A. Diaz Jr. Immunotherapy in colorectal cancer: Rationale, challenges and potential. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(6), 361-375. doi: 10.1038/s41575-019-0126-x PMID: 30886395
  149. Ooki, A.; Shinozaki, E.; Yamaguchi, K. Immunotherapy in colorectal cancer: current and future strategies. J. Anus Rectum Colon, 2021, 5(1), 11-24. doi: 10.23922/jarc.2020-064 PMID: 33537496
  150. Ries, C.H.; Cannarile, M.A.; Hoves, S.; Benz, J.; Wartha, K.; Runza, V.; Rey-Giraud, F.; Pradel, L.P.; Feuerhake, F.; Klaman, I.; Jones, T.; Jucknischke, U.; Scheiblich, S.; Kaluza, K.; Gorr, I.H.; Walz, A.; Abiraj, K.; Cassier, P.A.; Sica, A.; Gomez-Roca, C.; de Visser, K.E.; Italiano, A.; Le Tourneau, C.; Delord, J.P.; Levitsky, H.; Blay, J.Y.; Rüttinger, D. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell, 2014, 25(6), 846-859. doi: 10.1016/j.ccr.2014.05.016 PMID: 24898549
  151. Ciardiello, D.; Vitiello, P.P.; Cardone, C.; Martini, G.; Troiani, T.; Martinelli, E.; Ciardiello, F. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat. Rev., 2019, 76, 22-32. doi: 10.1016/j.ctrv.2019.04.003 PMID: 31079031
  152. Beatty, G.L.; O’Dwyer, P.J.; Clark, J.; Shi, J.G.; Bowman, K.J.; Scherle, P. First-inhuman phase 1 study of the oral inhibitor of indoleamine 2,3-dioxygenase-1 epacadostat (INCB024360) in patients with advanced solid malignancies. Clincanres.2272.2016. Clin. Cancer Res., 2017. doi: 10.1158/1078-0432.CCR-16-2272
  153. Croft, M.; So, T.; Duan, W.; Soroosh, P. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol. Rev., 2009, 229(1), 173-191. doi: 10.1111/j.1600-065X.2009.00766.x PMID: 19426222
  154. Kalyan, A.; Kircher, S.; Shah, H.; Mulcahy, M.; Benson, A. Updates on immunotherapy for colorectal cancer. J. Gastrointest. Oncol., 2018, 9(1), 160-169. doi: 10.21037/jgo.2018.01.17 PMID: 29564182
  155. Petty, J.K.; He, K.; Corless, C.L.; Vetto, J.T.; Weinberg, A.D. Survival in human colorectal cancer correlates with expression of the T-cell costimulatory molecule OX-40 (CD134). Am. J. Surg., 2002, 183(5), 512-518. doi: 10.1016/S0002-9610(02)00831-0 PMID: 12034383
  156. Vijayan, D.; Young, A.; Teng, M.W.L.; Smyth, M.J. Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer, 2017, 17, 70.
  157. Mariathasan, S.; Turley, S.J.; Nickles, D.; Castiglioni, A.; Yuen, K.; Wang, Y.; Kadel, E.E., III; Koeppen, H.; Astarita, J.L.; Cubas, R.; Jhunjhunwala, S.; Banchereau, R.; Yang, Y.; Guan, Y.; Chalouni, C.; Ziai, J.; Şenbabaoğlu, Y.; Santoro, S.; Sheinson, D.; Hung, J.; Giltnane, J.M.; Pierce, A.A.; Mesh, K.; Lianoglou, S.; Riegler, J.; Carano, R.A.D.; Eriksson, P.; Höglund, M.; Somarriba, L.; Halligan, D.L.; van der Heijden, M.S.; Loriot, Y.; Rosenberg, J.E.; Fong, L.; Mellman, I.; Chen, D.S.; Green, M.; Derleth, C.; Fine, G.D.; Hegde, P.S.; Bourgon, R.; Powles, T. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature, 2018, 554(7693), 544-548. doi: 10.1038/nature25501 PMID: 29443960
  158. Keenan, T.E.; Burke, K.P.; Van Allen, E.M. Genomic correlates of response to immune checkpoint blockade. Nat. Med., 2019, 25(3), 389-402. doi: 10.1038/s41591-019-0382-x PMID: 30842677
  159. Kopetz, S SA; Wertheim, M; Kim, E M7824 (MSB0011359 C), a bifunctional fusion protein targeting PD-L1 and TGF-β, in patients with heavily pretreated CRC: Preliminary results from a phase I trial. Clin Cancer Res., 2018, 36(S4), 1287-1295. doi: 10.1158/1078-0432.CCR-17-2653 PMID: 29298798
  160. Vanneman, M.; Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer, 2012, 12(4), 237-251. doi: 10.1038/nrc3237 PMID: 22437869
  161. Troiani, T; Martinelli, E; Ciardiello, D Phase II study of avelumab in combination with cetuximab in pre-treated RAS wild type metastatic colorectal cancer patients: CAVE (cetuximabavelumab) Colon. Clin. Oncol., 2019, 37(4), TPS731. doi: 10.1200/JCO.2019.37.4_suppl.TPS731
  162. Bendell, JC PJ; Lieu, CH Safety and efficacy of MPDL3280A (anti-PDL1) in combination with bevacizumab (bev) and/or FOLFOX in patients (pts) with metastatic colorectal cancer (mCRC). Clin. Oncol., 2015, 33(3) doi: 10.1200/jco.2015.33.3_suppl.704
  163. Lee, JJ; Yothers, G; Jacobs, SA Colorectal Cancer Metastatic dMMR Immuno-Therapy (COMMIT) study (NRGGI004/SWOG-S1610): A randomized phase III study of mFOLFOX6/bevacizumab combination chemotherapy with or without atezolizumab or atezolizumab monotherapy in the first-line treatment of patients (pts) with deficient DNA mismatch repair (dMMR) metastatic colorectal cancer (mCRC). Clin. Oncol., 2019, 37(4), TPS3647-TPS3647. doi: 10.1200/JCO.2022.40.16_suppl.TPS3647
  164. Antoniotti, C.; Borelli, B.; Rossini, D.; Pietrantonio, F.; Morano, F.; Salvatore, L.; Lonardi, S.; Marmorino, F.; Tamberi, S.; Corallo, S.; Tortora, G.; Bergamo, F.; Brunella, D.S.; Boccaccino, A.; Grassi, E.; Racca, P.; Tamburini, E.; Aprile, G.; Moretto, R.; Boni, L.; Falcone, A.; Cremolini, C. AtezoTRIBE: a randomised phase II study of FOLFOXIRI plus bevacizumab alone or in combination with atezolizumab as initial therapy for patients with unresectable metastatic colorectal cancer. BMC Cancer, 2020, 20(1), 683. doi: 10.1186/s12885-020-07169-6 PMID: 32698790
  165. Fukuoka, S.; Hara, H.; Takahashi, N.; Kojima, T.; Kawazoe, A.; Asayama, M.; Yoshii, T.; Kotani, D.; Tamura, H.; Mikamoto, Y.; Hirano, N.; Wakabayashi, M.; Nomura, S.; Sato, A.; Kuwata, T.; Togashi, Y.; Nishikawa, H.; Shitara, K. Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phase Ib trial (REGONIVO, EPOC1603). J. Clin. Oncol., 2020, 38(18), 2053-2061. doi: 10.1200/JCO.19.03296 PMID: 32343640
  166. Wang, Q.; Yang, S.; Wang, K.; Sun, S.Y. MET inhibitors for targeted therapy of EGFR TKI-resistant lung cancer. J. Hematol. Oncol., 2019, 12(1), 63. doi: 10.1186/s13045-019-0759-9 PMID: 31227004
  167. Reid, J.C.; Bennett, N.C.; Stephens, C.R.; Carroll, M.L.; Magdolen, V.; Clements, J.A.; Hooper, J.D. In vitro evidence that KLK14 regulates the components of the HGF/Met axis, pro-HGF and HGF-activator inhibitor 1A and 1B. Biol. Chem., 2016, 397(12), 1299-1305. doi: 10.1515/hsz-2016-0163 PMID: 27533117
  168. Van Cutsem, E.; Eng, C.; Nowara, E.; Świeboda-Sadlej, A.; Tebbutt, N.C.; Mitchell, E.; Davidenko, I.; Stephenson, J.; Elez, E.; Prenen, H.; Deng, H.; Tang, R.; McCaffery, I.; Oliner, K.S.; Chen, L.; Gansert, J.; Loh, E.; Smethurst, D.; Tabernero, J. Randomized phase Ib/II trial of rilotumumab or ganitumab with panitumumab versus panitumumab alone in patients with wild-type KRAS metastatic colorectal cancer. Clin. Cancer Res., 2014, 20(16), 4240-4250. doi: 10.1158/1078-0432.CCR-13-2752 PMID: 24919569
  169. Shah, M.A.; Bang, Y.J.; Lordick, F.; Alsina, M.; Chen, M.; Hack, S.P.; Bruey, J.M.; Smith, D.; McCaffery, I.; Shames, D.S.; Phan, S.; Cunningham, D. Effect of fluorouracil, leucovorin, and oxaliplatin with or without onartuzumab in HER2-negative, MET-positive gastroesophageal adenocarcinoma: the METGastric Randomized Clinical Trial. JAMA Oncol., 2017, 3(5), 620-627. doi: 10.1001/jamaoncol.2016.5580 PMID: 27918764
  170. Xie, Y.H.; Chen, Y.X.; Fang, J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther., 2020, 5(1), 22. doi: 10.1038/s41392-020-0116-z PMID: 32296018
  171. Mirlekar, B.; Pylayeva-Gupta, Y. IL-12 family cytokines in cancer and immunotherapy. Cancers, 2021, 13(2), 167. doi: 10.3390/cancers13020167 PMID: 33418929
  172. Ward-Kavanagh, L.K.; Lin, W.W.; Šedý, J.R.; Ware, C.F. The TNF receptor superfamily in co-stimulating and co-inhibitory responses. Immunity, 2016, 44(5), 1005-1019. doi: 10.1016/j.immuni.2016.04.019 PMID: 27192566
  173. Akdis, M.; Aab, A.; Altunbulakli, C.; Azkur, K.; Costa, R.A.; Crameri, R.; Duan, S.; Eiwegger, T.; Eljaszewicz, A.; Ferstl, R.; Frei, R.; Garbani, M.; Globinska, A.; Hess, L.; Huitema, C.; Kubo, T.; Komlosi, Z.; Konieczna, P.; Kovacs, N.; Kucuksezer, U.C.; Meyer, N.; Morita, H.; Olzhausen, J.; O’Mahony, L.; Pezer, M.; Prati, M.; Rebane, A.; Rhyner, C.; Rinaldi, A.; Sokolowska, M.; Stanic, B.; Sugita, K.; Treis, A.; van de Veen, W.; Wanke, K.; Wawrzyniak, M.; Wawrzyniak, P.; Wirz, O.F.; Zakzuk, J.S.; Akdis, C.A. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: Receptors, functions, and roles in diseases. J. Allergy Clin. Immunol., 2016, 138(4), 984-1010. doi: 10.1016/j.jaci.2016.06.033 PMID: 27577879
  174. Parker, B.S.; Rautela, J.; Hertzog, P.J. Antitumour actions of interferons: Implications for cancer therapy. Nat. Rev. Cancer, 2016, 16(3), 131-144. doi: 10.1038/nrc.2016.14 PMID: 26911188
  175. Kim, D.S.; Endo, A.; Fang, F.G.; Huang, K.C.; Bao, X.; Choi, H.; Majumder, U.; Shen, Y.Y.; Mathieu, S.; Zhu, X.; Sanders, K.; Noland, T.; Hao, M.H.; Chen, Y.; Wang, J.Y.; Yasui, S.; TenDyke, K.; Wu, J.; Ingersoll, C.; Loiacono, K.A.; Hutz, J.E.; Sarwar, N. E7766, a macrocycle‐bridged stimulator of interferon genes (STING) agonist with potent pan‐genotypic activity. ChemMedChem, 2021, 16(11), 1741-1744. doi: 10.1002/cmdc.202100068 PMID: 33522135
  176. Stewart, A.K. Medicine. How thalidomide works against cancer. Science, 2014, 343(6168), 256-257. doi: 10.1126/science.1249543 PMID: 24436409
  177. Ruella, M.; Kalos, M. Adoptive immunotherapy for cancer. Immunol. Rev., 2014, 257(1), 14-38. doi: 10.1111/imr.12136 PMID: 24329787
  178. Turin, I.; Delfanti, S.; Ferulli, F.; Brugnatelli, S.; Tanzi, M.; Maestri, M.; Cobianchi, L.; Lisini, D.; Luinetti, O.; Paulli, M.; Perotti, C.; Todisco, E.; Pedrazzoli, P.; Montagna, D. In vitro killing of colorectal carcinoma cells by autologous activated NK cells are boosted by anti-epidermal growth factor receptor-induced ADCC regardless of RAS mutation status. J. Immunother., 2018, 41(4), 190-200. doi: 10.1097/CJI.0000000000000205 PMID: 29293164
  179. Rosenberg, S.A.; Spiess, P.; Lafreniere, R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science, 1986, 233(4770), 1318-1321. doi: 10.1126/science.3489291 PMID: 3489291
  180. Carlsen, L.; Huntington, K.E.; El-Deiry, W.S. Immunotherapy for colorectal cancer: Mechanisms and predictive biomarkers. Cancers, 2022, 14(4), 1028. doi: 10.3390/cancers14041028 PMID: 35205776
  181. Nor, A.J.; Nur, F.S. Colorectal cancer immunotherapy: Options and strategies. Front Immunol, 2020, 11, 1624. doi: 10.3389/fimmu.2020.01624
  182. Barrett, D.M.; Grupp, S.A.; June, C.H. Chimeric antigen receptor– and TCR Modified T cells enter main street and wall street. J. Immunol., 2015, 195(3), 755-761. doi: 10.4049/jimmunol.1500751 PMID: 26188068
  183. Geevarghese, S.K.; Geller, D.A.; de Haan, H.A.; Hörer, M.; Knoll, A.E.; Mescheder, A.; Nemunaitis, J.; Reid, T.R.; Sze, D.Y.; Tanabe, K.K.; Tawfik, H. Phase I/II study of oncolytic herpes simplex virus NV1020 in patients with extensively pretreated refractory colorectal cancer metastatic to the liver. Hum. Gene Ther., 2010, 21(9), 1119-1128. doi: 10.1089/hum.2010.020 PMID: 20486770
  184. Fifis, T.; Lam, I.; Lin, D.; Malcontenti-Wilson, C.; Christophi, C.; Loveland, B. Vaccination with in vitro grown whole tumor cells induces strong immune responses and retards tumor growth in a murine model of colorectal liver metastases. Vaccine, 2008, 26(2), 241-249. doi: 10.1016/j.vaccine.2007.10.068 PMID: 18069095
  185. Wrobel, P.; Ahmed, S. Current status of immunotherapy in metastatic colorectal cancer. Int. J. Colorectal Dis., 2019, 34(1), 13-25. doi: 10.1007/s00384-018-3202-8 PMID: 30465238
  186. Blank, C.; Brown, I.; Peterson, A.C.; Spiotto, M.; Iwai, Y.; Honjo, T.; Gajewski, T.F. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res., 2004, 64(3), 1140-1145. doi: 10.1158/0008-5472.CAN-03-3259 PMID: 14871849
  187. Tsuruma, T.; Hata, F.; Torigoe, T.; Furuhata, T.; Idenoue, S.; Kurotaki, T.; Yamamoto, M.; Yagihashi, A.; Ohmura, T.; Yamaguchi, K.; Katsuramaki, T.; Yasoshima, T.; Sasaki, K.; Mizushima, Y.; Minamida, H.; Kimura, H.; Akiyama, M.; Hirohashi, Y.; Asanuma, H.; Tamura, Y.; Shimozawa, K.; Sato, N.; Hirata, K. Phase I clinical study of anti-apoptosis protein, survivin-derived peptide vaccine therapy for patients with advanced or recurrent colorectal cancer. J. Transl. Med., 2004, 2(1), 19. doi: 10.1186/1479-5876-2-19 PMID: 15193151
  188. Moulton, H.M.; Yoshihara, P.H.; Mason, D.H.; Iversen, P.L.; Triozzi, P.L. Active specific immunotherapy with a beta-human chorionic gonadotropin peptide vaccine in patients with metastatic colorectal cancer: Antibody response is associated with improved survival. Clin. Cancer Res., 2002, 8(7), 2044-2051. PMID: 12114402
  189. Okuno, K.; Sugiura, F.; Hida, J.I.; Tokoro, T.; Ishimaru, E.; Sukegawa, Y.; Ueda, K. Phase I clinical trial of a novel peptide vaccine in combination with UFT/LV for metastatic colorectal cancer. Exp. Ther. Med., 2011, 2(1), 73-79. doi: 10.3892/etm.2010.182 PMID: 22977472
  190. Miyagi, Y.; Imai, N.; Sasatomi, T.; Yamada, A.; Mine, T.; Katagiri, K.; Nakagawa, M.; Muto, A.; Okouchi, S.; Isomoto, H.; Shirouzu, K.; Yamana, H.; Itoh, K. Induction of cellular immune responses to tumor cells and peptides in colorectal cancer patients by vaccination with SART3 peptides. Clin. Cancer Res., 2001, 7(12), 3950-3962. PMID: 11751487
  191. Toubaji, A.; Achtar, M.; Provenzano, M.; Herrin, V.E.; Behrens, R.; Hamilton, M.; Bernstein, S.; Venzon, D.; Gause, B.; Marincola, F.; Khleif, S.N. Pilot study of mutant ras peptide-based vaccine as an adjuvant treatment in pancreatic and colorectal cancers. Cancer Immunol. Immunother., 2008, 57(9), 1413-1420. doi: 10.1007/s00262-008-0477-6 PMID: 18297281
  192. Koido, S.; Ohkusa, T.; Homma, S.; Namiki, Y.; Takakura, K.; Saito, K.; Ito, Z.; Kobayashi, H.; Kajihara, M.; Uchiyama, K.; Arihiro, S.; Arakawa, H.; Okamoto, M.; Gong, J.; Tajiri, H. Immunotherapy for colorectal cancer. World J. Gastroenterol., 2013, 19(46), 8531-8542. doi: 10.3748/wjg.v19.i46.8531 PMID: 24379570
  193. Hörig, H.; Lee, D.S.; Conkright, W.; Divito, J.; Hasson, H.; LaMare, M.; Rivera, A.; Park, D.; Tine, J.; Guito, K.; Tsang, K.W.Y.; Schlom, J.; Kaufman, H.L. Phase I clinical trial of a recombinant canarypoxvirus (ALVAC) vaccine expressing human carcinoembryonic antigen and the B7.1 co-stimulatory molecule. Cancer Immunol. Immunother., 2000, 49(9), 504-514. doi: 10.1007/s002620000146 PMID: 11092617
  194. Kaufman, H.L.; Lenz, H.J.; Marshall, J.; Singh, D.; Garett, C.; Cripps, C.; Moore, M.; von Mehren, M.; Dalfen, R.; Heim, W.J.; Conry, R.M.; Urba, W.J.; Benson, A.B., III; Yu, M.; Caterini, J.; Kim-Schulze, S.; DeBenedette, M.; Salha, D.; Vogel, T.; Elias, I.; Berinstein, N.L. Combination chemotherapy and ALVAC-CEA/B7.1 vaccine in patients with metastatic colorectal cancer. Clin. Cancer Res., 2008, 14(15), 4843-4849. doi: 10.1158/1078-0432.CCR-08-0276 PMID: 18676757
  195. Redmond, W.L.; Ruby, C.E.; Weinberg, A.D. The role of OX40-mediated co-stimulation in T-cell activation and survival. Crit. Rev. Immunol., 2009, 29(3), 187-201. doi: 10.1615/CritRevImmunol.v29.i3.10 PMID: 19538134
  196. Morse, M.A.; Chaudhry, A.; Gabitzsch, E.S.; Hobeika, A.C.; Osada, T.; Clay, T.M.; Amalfitano, A.; Burnett, B.K.; Devi, G.R.; Hsu, D.S.; Xu, Y.; Balcaitis, S.; Dua, R.; Nguyen, S.; Balint, J.P., Jr; Jones, F.R.; Lyerly, H.K. Novel adenoviral vector induces T-cell responses despite anti-adenoviral neutralizing antibodies in colorectal cancer patients. Cancer Immunol. Immunother., 2013, 62(8), 1293-1301. doi: 10.1007/s00262-013-1400-3 PMID: 23624851
  197. Fong, L.; Hou, Y.; Rivas, A.; Benike, C.; Yuen, A.; Fisher, G.A.; Davis, M.M.; Engleman, E.G. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc. Natl. Acad. Sci., 2001, 98(15), 8809-8814. doi: 10.1073/pnas.141226398 PMID: 11427731
  198. Boland, P.; Ma, W. Immunotherapy for colorectal cancer. Cancers, 2017, 9(12), 50. doi: 10.3390/cancers9050050 PMID: 28492495
  199. Sinicrope, F.A.; Ou, F-S.; Shi, Q.; Nixon, A.B.; Mody, K.; Levasseur, A.; Dueck, A.C.; Dhanarajan, A.R.; Lieu, C.H.; Cohen, D.J.; Innocenti, F.; Behrens, R.J.; Peters, W.; Sargent, D.J.; Sommer, N.; O’Reilly, E.M.; Meyerhardt, J. Randomized trial of FOLFOX alone or combined with atezolizumab as adjuvant therapy for patients with stage III colon cancer and deficient DNA mismatch repair or microsatellite instability (ATOMIC, Alliance A021502). J. Clin. Oncol., 2017, 35(15_suppl), TPS3630. doi: 10.1200/JCO.2017.35.15_suppl.TPS3630
  200. García-Martínez, E.; Smith, M.; Buqué, A.; Aranda, F.; Peña, F.A.; Ivars, A.; Cánovas, M.S.; Conesa, M.A.V.; Fucikova, J.; Spisek, R.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial watch: Immunostimulation with recombinant cytokines for cancer therapy. OncoImmunology, 2018, 7(6), e1433982. doi: 10.1080/2162402X.2018.1433982 PMID: 29872569
  201. Rejhová, A.; Opattová, A.; Čumová, A.; Slíva, D.; Vodička, P. Natural compounds and combination therapy in colorectal cancer treatment. Eur J Med Chem., 2017, 144, 582-594.
  202. Mármol, I.; Sánchez-de-Diego, C.; Pradilla Dieste, A.; Cerrada, E.; Rodriguez Yoldi, M. Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. Int. J. Mol. Sci., 2017, 18(1), 197. doi: 10.3390/ijms18010197 PMID: 28106826

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024