Pharmacokinetics of Anti-rheumatic Drugs Methotrexate and Tofacitinib with its Metabolite M9 in Rats by UPLC-MS/MS


Cite item

Full Text

Abstract

Background:Tofacitinib is an oral JAK inhibitor for the treatment of rheumatoid arthritis (RA). The clinical efficacy and safety of an administered tofacitinib, either monotherapy or in combination with conventional synthetic disease-modifying anti-rheumatic drugs, mainly methotrexate (MTX), have been evaluated. The high plasma concentration with delayed medicine clearance may affect the liver and/or kidney functions. In this study, an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC- MS/MS) method for the quantitative analysis of methotrexate, tofacitinib, and metabolite M9 in plasma of Sprague Dawley (SD) rats was developed, and its effectiveness was validated as well.

Methods:Methotrexate, tofacitinib, M9 and fedratinib (internal standard, IS) were separated by gradient elution. The chromatography was performed on an Acquity BEH C18 (2.1 mm × 50 mm, 1.7 µm) column with the mobile phases of acetonitrile and 0.1% formic acid aqueous solution with different proportions at the flow rate of 0.30 mL/min. In the positive ionization mode, the analyzes were detected using a Xevo TQ-S triple quadrupole tandem mass spectrometer, with the following mass transition pairs: m/z 313.12 → 148.97 for tofacitinib, m/z 329.10 → 165.00 for M9 and m/z 455.12 → 308.05 for methotrexate.

Results:The obtained results manifested good calibration linearity over the ranges of tofacitinib at 0.1-100 ng/mL, M9 at 0.05-100 ng/mL, and methotrexate at 0.05-100 ng/mL. The lower limit of quantifications (LLOQs) of methotrexate, tofacitinib and M9 were 0.05 ng/mL, 0.1 ng/mL and 0.05 ng/mL, respectively. Intra-day and inter-day accuracy values were confirmed with a range of -6.3% to 12.7%, while intra-day and inter-- day precision values were ≤14.4%. Additionally, recoveries were greater than 86.5% for each compound without significant matrix effects.

Conclusion:The currently established analytical method exhibited great potential for the evaluation of plasma concentrations of methotrexate, tofacitinib and M9 simultaneously, greatly reducing the detection time, which would serve as a supplementary role in formulating dose decisions to achieve personalized treatment, identify drugs that cause adverse reactions and finally, to assess drug-drug interactions on clinical studies.

About the authors

Er-min Gu

Department of Clinical Pharmacy, The First People's Hospital of Jiashan

Author for correspondence.
Email: info@benthamscience.net

Lingjie Xue

Department of Clinical Pharmacy,, The First People's Hospital of Jiashan

Email: info@benthamscience.net

Chenjian Zhou

Department of Pharmacy,, Wenzhou Central Hospital

Email: info@benthamscience.net

Yang Xia

Department of Rhemutalogy and Immunology, The First People's Hospital of Jiashan

Email: info@benthamscience.net

Ge-xin Dai

Department of Pharmacy,, The First Affiliated Hospital of Wenzhou Medical University

Email: info@benthamscience.net

References

  1. Smolen, J.S.; Aletaha, D.; Mcinnes, I.B.J.T.L. Rheumatoid arthritis., 2018, 388(10055), 2023-2038. doi: 10.1038/nrdp.2018.1
  2. Smolen, J.S.; Landewé, R.B.M.; Bijlsma, J.W.J.; Burmester, G.R.; Dougados, M.; Kerschbaumer, A.; McInnes, I.B.; Sepriano, A.; van Vollenhoven, R.F.; de Wit, M.; Aletaha, D.; Aringer, M.; Askling, J.; Balsa, A.; Boers, M.; den Broeder, A.A.; Buch, M.H.; Buttgereit, F.; Caporali, R.; Cardiel, M.H.; De Cock, D.; Codreanu, C.; Cutolo, M.; Edwards, C.J.; van Eijk-Hustings, Y.; Emery, P.; Finckh, A.; Gossec, L.; Gottenberg, J.E.; Hetland, M.L.; Huizinga, T.W.J.; Koloumas, M.; Li, Z.; Mariette, X.; Müller-Ladner, U.; Mysler, E.F.; da Silva, J.A.P.; Poór, G.; Pope, J.E.; Rubbert-Roth, A.; Ruyssen-Witrand, A.; Saag, K.G.; Strangfeld, A.; Takeuchi, T.; Voshaar, M.; Westhovens, R.; van der Heijde, D. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis., 2020, 79(6), 685-699. doi: 10.1136/annrheumdis-2019-216655 PMID: 31969328
  3. Fleischmann, R.; Kremer, J.; Cush, J.; Schulze-Koops, H.; Connell, C.A.; Bradley, J.D.; Gruben, D.; Wallenstein, G.V.; Zwillich, S.H.; Kanik, K.S.J.N.E.J.o.M. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis., 2012, 367(6), 495. doi: 10.1056/NEJMoa1109071
  4. Kremer, J.; Li, Z.G.; Hall, S.; Fleischmann, R.; Genovese, M.; Martin-Mola, E.; Isaacs, J.D.; Gruben, D.; Wallenstein, G.; Krishnaswami, S.J.A.o.I.M. Tofacitinib in combination with nonbiologic disease-modifying antirheumatic drugs in patients with active rheumatoid arthritis: A randomized trial. Ann. Intern. Med., 2013, 159(4), 253. doi: 10.7326/0003-4819-159-4-201308200-00006
  5. Vollenhoven, R.V.; Fleischmann, R.; Cohen, S.; Lee, E.B.; Meijide, J.G.; Wagner, S.; Forejtova, S.; Zwillich, S.H.; Gruben, D.; Koncz, T.J.N.E.J.M. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N. Eng. J. Med., 2012, 367(6), 508-519. doi: 10.1056/NEJMoa1112072
  6. Burmester, G.R.; Blanco, R.; Charles-Schoeman, C.; Wollenhaupt, J.; Zerbini, C.; Benda, B.; Gruben, D.; Wallenstein, G.; Krishnaswami, S.; Zwillich, S.H.; Koncz, T.; Soma, K.; Bradley, J.; Mebus, C. Tofacitinib (CP-690,550) in combination with methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors: a randomised phase 3 trial. Lancet, 2013, 381(9865), 451-460. doi: 10.1016/S0140-6736(12)61424-X PMID: 23294500
  7. Tofacitinib (CP-690,550) in patients with rheumatoid arthritis receiving methotrexate: twelve-month data from a twenty-four-month phase III randomized radiographic study. J. Arthritis Rheumatism., 2013, 65(3), 559-570.
  8. Lee, E.B.; Fleischmann, R.; Hall, S.; Wilkinson, B.; Bradley, J.D.; Gruben, D.; Koncz, T.; Krishnaswami, S.; Wallenstein, G.V.; Zang, C.J.N.E.J.o.M. Tofacitinib versus methotrexate in rheumatoid arthritis. N. Eng. J. Med., 2014, 371(25), 2377-2386. doi: 10.1056/NEJMoa1310476
  9. Wollenhaupt, J.; Silverfield, J.; Lee, E.B.; Curtis, J.R.; Wood, S.P.; Soma, K.; Nduaka, C.I.; Benda, B.; Gruben, D.; Nakamura, H.; Komuro, Y.; Zwillich, S.H.; Wang, L.; Riese, R.J. Safety and efficacy of tofacitinib, an oral janus kinase inhibitor, for the treatment of rheumatoid arthritis in open-label, longterm extension studies. J. Rheumatol., 2014, 41(5), 837-852. doi: 10.3899/jrheum.130683 PMID: 24692527
  10. Yamanaka, H.; Tanaka, Y.; Takeuchi, T.; Sugiyama, N.; Yuasa, H.; Toyoizumi, S.; Morishima, Y.; Hirose, T.; Zwillich, S. Tofacitinib, an oral Janus kinase inhibitor, as monotherapy or with background methotrexate, in Japanese patients with rheumatoid arthritis: an open-label, long-term extension study. Arthritis Res. Ther., 2016, 18(1), 34. doi: 10.1186/s13075-016-0932-2 PMID: 26818974
  11. Silva, M.F.; Ribeiro, C.; Gonçalves, V.M.F.; Tiritan, M.E.; Lima, Á. Liquid chromatographic methods for the therapeutic drug monitoring of methotrexate as clinical decision support for personalized medicine: A brief review. Biomed. Chromatogr., 2018, 32(5), e4159. doi: 10.1002/bmc.4159 PMID: 29226354
  12. Abdelhameed, A.S.; Attwa, M.W.; Kadi, A.A. An LC–MS/MS method for rapid and sensitive high-throughput simultaneous determination of various protein kinase inhibitors in human plasma. Biomed. Chromatogr., 2017, 31(2), e3793. doi: 10.1002/bmc.3793 PMID: 27450926
  13. Dixit, A.; Mallurwar, S.R.; Sulochana, S.P.; Zainuddin, M.; Mullangi, R. Determination of tofacitinib in mice whole blood on dried blood spots using LC–ESI–MS/MS: Application to pharmacokinetic study in mice. Drug Res. (Stuttg.), 2019, 69(6), 330-336. doi: 10.1055/a-0677-3066 PMID: 30193392
  14. Bharwad, K.D.; Shah, P.A.; Shrivastav, P.S.; Singhal, P. Development and validation of a rapid and sensitive UPLC–MS/MS assay for the quantification of tofacitinib in human plasma. Biomed. Chromatogr., 2019, 33(4), e4458. doi: 10.1002/bmc.4458 PMID: 30520053
  15. Wang, B.; Shen, J.; Zhou, Q.; Meng, D.; He, Y.; Chen, F.; Wang, S.; Ji, W. Effects of naringenin on the pharmacokinetics of tofacitinib in rats. Pharm. Biol., 2020, 58(1), 225-230. doi: 10.1080/13880209.2020.1738504 PMID: 32202190
  16. Koller, D.; Vaitsekhovich, V.; Mba, C.; Steegmann, J.L.; Zubiaur, P.; Abad-Santos, F.; Wojnicz, A. Effective quantification of 11 tyrosine kinase inhibitors and caffeine in human plasma by validated LC-MS/MS method with potent phospholipids clean-up procedure. Application to therapeutic drug monitoring. Talanta, 2020, 208, 120450. doi: 10.1016/j.talanta.2019.120450 PMID: 31816725
  17. Restellini, S.; Afif, W. Update on TDM (Therapeutic Drug Monitoring) with Ustekinumab, Vedolizumab and Tofacitinib in Inflammatory Bowel Disease. J. Clin. Med., 2021, 10(6), 1242. doi: 10.3390/jcm10061242 PMID: 33802816
  18. Dowty, M.E.; Lin, J.; Ryder, T.F.; Wang, W.; Walker, G.S.J.D.m. The pharmacokinetics, metabolism, and clearance mechanisms of tofacitinib, a janus kinase inhibitor. In Humans, 2014, 42(4), 759.
  19. Sharma, K.; Giri, K.; Dhiman, V.; Dixit, A.; Zainuddin, M.; Mullangi, R. A validated LC-MS/MS assay for simultaneous quantification of methotrexate and tofacitinib in rat plasma: Application to a pharmacokinetic study. Biomed. Chromatogr., 2015, 29(5), 722-732. doi: 10.1002/bmc.3348 PMID: 25298296
  20. Wang, Q.; Gu, E.; Bi, Y.; Su, Y.; Tan, W.; Du, X. Simultaneous determination of tofacitinib and its principal metabolite in beagle dog plasma by UPLC-MS/MS and its application in pharmacokinetics. Arab. J. Chem., 2022, 15(1), 103514. doi: 10.1016/j.arabjc.2021.103514
  21. Xu, R.; Lin, Q.; Qiu, X.; Chen, J.; Shao, Y.; Hu, G.; Lin, G. UPLC-MS/MS method for the simultaneous determination of imatinib, voriconazole and their metabolites concentrations in rat plasma. J. Pharm. Biomed. Anal., 2019, 166, 6-12. doi: 10.1016/j.jpba.2018.12.036 PMID: 30594035
  22. Tang, C.; Niu, X.; Shi, L.; Zhu, H.; Lin, G.; Xu, R. In vivo pharmacokinetic drug-drug interaction studies between fedratinib and antifungal agents based on a newly developed and validated UPLC/MS-MS method. Front. Pharmacol., 2021, 11, 626897. doi: 10.3389/fphar.2020.626897 PMID: 33613287
  23. Journal, N.J.I. The guide for the care and use of laboratory animals 2015, 56(1)
  24. Amr, A.; Abd El-Wahed, A.; El-Seedi, H.R.; Khalifa, S.A.M.; Augustyniak, M.; El-Samad, L.M.; Abdel Karim, A.E.; El Wakil, A. UPLC-MS/MS analysis of naturally derived Apis mellifera products and their promising effects against cadmium-induced adverse effects in female rats. Nutrients, 2022, 15(1), 119. doi: 10.3390/nu15010119 PMID: 36615776
  25. Emami, S.; Taha, A.Y. Effects of carotenoid pigmentation in salmon on antibiotic extraction recovery, matrix effects and accuracy of quantification by ultrahigh performance liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2023, 1216, 123585. doi: 10.1016/j.jchromb.2022.123585 PMID: 36669255
  26. Asakawa, Y.; Sano, T.; Hotta, K.; Miyajima, Y.; Mano, Y. A validated UPLC-MS/MS assay of E7090, a novel selective inhibitor of fibroblast growth factor receptors, in human plasma and urine. J. Pharm. Biomed. Anal., 2023, 225, 115216. doi: 10.1016/j.jpba.2022.115216 PMID: 36610174
  27. Lu, S.; Zhao, M.; Zhao, L.; Li, G. Development of a UPLC–MS/MS method for simultaneous therapeutic drug monitoring of anti-hepatocellular carcinoma drugs and analgesics in human plasma. Front. Pharmacol., 2023, 14, 1136735. doi: 10.3389/fphar.2023.1136735 PMID: 37324468
  28. Wang, M.J.; Zhao, Y.H.; Fan, C.; Wang, Y.J.; Wang, X.Q.; Qiu, X.J.; Shen, R.L. Development of an UPLC-MS/MS method for the quantitative analysis of upadacitinib in beagle dog plasma and pharmacokinetics study. Drug Des. Devel. Ther., 2021, 15, 4167-4175. doi: 10.2147/DDDT.S332282 PMID: 34629864
  29. Li, J.; Chen, C.; Wang, J.; Ye, Z.; Pan, L.; Liu, Z.; Tang, C. Simultaneous measurement of upadacitinib and methotrexate by UPLC-MS/MS and its pharmacokinetic application in rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2022, 1188, 123071. doi: 10.1016/j.jchromb.2021.123071 PMID: 34875493
  30. Saha, C.; Harrison, C. Fedratinib, the first selective JAK2 inhibitor approved for treatment of myelofibrosis – an option beyond ruxolitinib. Expert Rev. Hematol., 2022, 15(7), 583-595. doi: 10.1080/17474086.2022.2098105 PMID: 35787092

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers