Curcumin and its Derivatives Targeting Multiple Signaling Pathways to Elicit Anticancer Activity: A Comprehensive Perspective


Cite item

Full Text

Abstract

The uncontrolled growth and spread of aberrant cells characterize the group of disorders known as cancer. According to GLOBOCAN 2022 analysis of cancer patients in either developed countries or developing countries the main concern cancers are breast cancer, lung cancer, and liver cancer which may rise eventually. Natural substances with dietary origins have gained interest for their low toxicity, anti-inflammatory, and antioxidant effects. The evaluation of dietary natural products as chemopreventive and therapeutic agents, the identification, characterization, and synthesis of their active components, as well as the enhancement of their delivery and bioavailability, have all received significant attention. Thus, the treatment strategy for concerning cancers must be significantly evaluated and may include the use of phytochemicals in daily lifestyle. In the present perspective, we discussed one of the potent phytochemicals, that has been used over the past few decades known as curcumin as a panacea drug of the "Cure-all" therapy concept. In our review firstly we included exhausted data from in vivo and in vitro studies on breast cancer, lung cancer, and liver cancer which act through various cancer-targeting pathways at the molecular level. Now, the second is the active constituent of turmeric known as curcumin and its derivatives are enlisted with their targeted protein in the molecular docking studies, which help the researchers design and synthesize new curcumin derivatives with respective implicated molecular and cellular activity. However, curcumin and its substituted derivatives still need to be investigated with unknown targeting mechanism studies in depth.

About the authors

Firdous Fatima

Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences,, Dr. Harisingh Gour University (A Central University)

Email: info@benthamscience.net

Nikhil Chourasiya

Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University)

Email: info@benthamscience.net

Mitali Mishra

Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences,, Dr. Harisingh Gour University (A Central University

Email: info@benthamscience.net

Shivam Kori

Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University)

Email: info@benthamscience.net

Sandhya Pathak

Department of Chemistry, Dr. Harisingh Gour University (A Central University)

Email: info@benthamscience.net

Ratnesh Das

Department of Chemistry, Dr. Harisingh Gour University (A Central University)

Email: info@benthamscience.net

Varsha Kashaw

, Sagar Institute of Pharmaceutical Sciences

Email: info@benthamscience.net

Arun Iyer

Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University

Email: info@benthamscience.net

Sushil Kashaw

Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University)

Author for correspondence.
Email: info@benthamscience.net

References

  1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
  2. Pilleron, S.; Soto-Perez-de-Celis, E.; Vignat, J.; Ferlay, J.; Soerjomataram, I.; Bray, F.; Sarfati, D. Estimated global cancer incidence in the oldest adults in 2018 and projections to 2050. Int. J. Cancer, 2021, 148(3), 601-608. doi: 10.1002/ijc.33232 PMID: 32706917
  3. Cancer Facts & Figures 2021-American Cancer Society. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2021.html
  4. Kulothungan, V.; Sathishkumar, K.; Leburu, S.; Ramamoorthy, T.; Stephen, S.; Basavarajappa, D.; Tomy, N.; Mohan, R.; Menon, G.R.; Mathur, P. Burden of cancers in India-estimates of cancer crude incidence, YLLs, YLDs and DALYs for 2021 and 2025 based on National Cancer Registry Program. BMC Cancer, 2022, 22(1), 527. doi: 10.1186/s12885-022-09578-1 PMID: 35546232
  5. Abd El-Hack, M.E.; El-Saadony, M.T.; Swelum, A.A.; Arif, M.; Abo Ghanima, M.M.; Shukry, M.; Noreldin, A.; Taha, A.E.; El-Tarabily, K.A. Curcumin, the active substance of turmeric: Its effects on health and ways to improve its bioavailability. J. Sci. Food Agric., 2021, 101(14), 5747-5762. doi: 10.1002/jsfa.11372 PMID: 34143894
  6. Aggarwal, B.B.; Sundaram, C.; Malani, N.; Ichikawa, H. Curcumin: The Indian solid gold. Adv. Exp. Med. Biol., 2007, 595, 1-75. doi: 10.1007/978-0-387-46401-5_1 PMID: 17569205
  7. Sharifi-Rad, J.; Rayess, Y.E.; Rizk, A.A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S. Neffe-Skocińska, K.; Zielińska, D.; Salehi, B.; Setzer, W.N.; Dosoky, N.S.; Taheri, Y.; El Beyrouthy, M.; Martorell, M.; Ostrander, E.A.; Suleria, H.A.R.; Cho, W.C.; Maroyi, A.; Martins, N. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front. Pharmacol., 2020, 11, 01021. doi: 10.3389/fphar.2020.01021 PMID: 33041781
  8. Narayanan, N.K.; Nargi, D.; Randolph, C.; Narayanan, B.A. Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int. J. Cancer, 2009, 125(1), 1-8. doi: 10.1002/ijc.24336 PMID: 19326431
  9. Ushida, J.; Sugie, S.; Kawabata, K.; Pham, Q.V.; Tanaka, T.; Fujii, K.; Takeuchi, H.; Ito, Y.; Mori, H. Chemopreventive effect of curcumin on N-nitrosomethylbenzylamine-induced esophageal carcinogenesis in rats. Jpn. J. Cancer Res., 2000, 91(9), 893-898. doi: 10.1111/j.1349-7006.2000.tb01031.x PMID: 11011116
  10. Chuang, S.E.; Cheng, A.L.; Lin, J.K.; Kuo, M.L. Inhibition by curcumin of diethylnitrosamine-induced hepatic hyperplasia, inflammation, cellular gene products and cell-cycle-related proteins in rats. Food Chem. Toxicolo., 2000, 38(11), 991-995.
  11. Okazaki, Y.; Iqbal, M.; Okada, S. Suppressive effects of dietary curcumin on the increased activity of renal ornithine decarboxylase in mice treated with a renal carcinogen, ferric nitrilotriacetate. Biochim. Biophys. Acta Mol. Basis Dis., 2005, 1740(3), 357-366. doi: 10.1016/j.bbadis.2004.09.006 PMID: 15949703
  12. Ikezaki, S.; Nishikawa, A.; Furukawa, F.; Kudo, K.; Nakamura, H.; Tamura, K.; Mori, H. Chemopreventive effects of curcumin on glandular stomach carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine and sodium chloride in rats. Anticancer Res., 2001, 21(5), 3407-3411. PMID: 11848501
  13. Azuine, M.A.; Bhide, S.V. Protective single/combined treatment with betel leaf and turmeric against methyl (acetoxymethyl) nitrosamine-induced hamster oral carcinogenesis. Int. J. Cancer, 1992, 51(3), 412-415. doi: 10.1002/ijc.2910510313 PMID: 1592532
  14. Huang, M.; Lou, Y.R.; Xie, J.G.; Ma, W.; Lu, Y.P.; Yen, P.; Zhu, B.T.; Newmark, H.; Ho, C.T. Effect of dietary curcumin and dibenzoylmethane on formation of 7,12- dimethylbenzaanthracene-induced mammary tumors and lymphomas/leukemias in Sencar mice. Carcinogenesis, 1998, 19(9), 1697-1700. doi: 10.1093/carcin/19.9.1697 PMID: 9771944
  15. Prakobwong, S.; Khoontawad, J.; Yongvanit, P.; Pairojkul, C.; Hiraku, Y.; Sithithaworn, P.; Pinlaor, P.; Aggarwal, B.B.; Pinlaor, S. Curcumin decreases cholangiocarcinogenesis in hamsters by suppressing inflammation-mediated molecular events related to multistep carcinogenesis. Int. J. Cancer, 2011, 129(1), 88-100. doi: 10.1002/ijc.25656 PMID: 20824699
  16. Kuttan, R.; Bhanumathy, P.; Nirmala, K.; George, M.C. Potential anticancer activity of turmeric (Curcuma longa). Cancer Lett., 1985, 29(2), 197-202. doi: 10.1016/0304-3835(85)90159-4 PMID: 4075289
  17. Odot, J.; Albert, P.; Carlier, A.; Tarpin, M.; Devy, J.; Madoulet, C. In vitro and in vivo anti-tumoral effect of curcumin against melanoma cells. Int. J. Cancer, 2004, 111(3), 381-387. doi: 10.1002/ijc.20160 PMID: 15221965
  18. Dorai, T.; Cao, Y.C.; Dorai, B.; Buttyan, R.; Katz, A.E. Therapeutic potential of curcumin in human prostate cancer. III. Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of LNCaP prostate cancer cells in vivo. Prostate, 2001, 47(4), 293-303. doi: 10.1002/pros.1074 PMID: 11398177
  19. Kunnumakkara, A.B.; Guha, S.; Krishnan, S.; Diagaradjane, P.; Gelovani, J.; Aggarwal, B.B. Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res., 2007, 67(8), 3853-3861. doi: 10.1158/0008-5472.CAN-06-4257 PMID: 17440100
  20. Li, L.; Ahmed, B.; Mehta, K.; Kurzrock, R. Liposomal curcumin with and without oxaliplatin: effects on cell growth, apoptosis, and angiogenesis in colorectal cancer. Mol. Cancer Ther., 2007, 6(4), 1276-1282. doi: 10.1158/1535-7163.MCT-06-0556 PMID: 17431105
  21. Yoysungnoen, P.; Wirachwong, P.; Bhattarakosol, P.; Niimi, H.; Patumraj, S. Antiangiogenic activity of curcumin in hepatocellular carcinoma cells implanted nude mice. Clin. Hemorheol. Microcirc., 2005, 33(2), 127-135. PMID: 16151260
  22. Aggarwal, B.B.; Shishodia, S.; Takada, Y.; Banerjee, S.; Newman, R.A.; Bueso-Ramos, C.E.; Price, J.E. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin. Cancer Res., 2005, 11(20), 7490-7498. doi: 10.1158/1078-0432.CCR-05-1192 PMID: 16243823
  23. Lin, Y.G.; Kunnumakkara, A.B.; Nair, A.; Merritt, W.M.; Han, L.Y.; Armaiz-Pena, G.N.; Kamat, A.A.; Spannuth, W.A.; Gershenson, D.M.; Lutgendorf, S.K.; Aggarwal, B.B.; Sood, A.K. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin. Cancer Res., 2007, 13(11), 3423-3430. doi: 10.1158/1078-0432.CCR-06-3072 PMID: 17545551
  24. Tian, B.; Wang, Z.; Zhao, Y.; Wang, D.; Li, Y.; Ma, L.; Li, X.; Li, J.; Xiao, N.; Tian, J.; Rodriguez, R. Effects of curcumin on bladder cancer cells and development of urothelial tumors in a rat bladder carcinogenesis model. Cancer Lett., 2008, 264(2), 299-308. doi: 10.1016/j.canlet.2008.01.041 PMID: 18342436
  25. Luo, J.; Manning, B.D.; Cantley, L.C. Targeting the PI3K-Akt pathway in human cancer. Cancer Cell, 2003, 4(4), 257-262. doi: 10.1016/S1535-6108(03)00248-4 PMID: 14585353
  26. Vivanco, I.; Sawyers, C.L. The phosphatidylinositol 3-Kinase-AKT pathway in human cancer. Nat. Rev. Cancer, 2002, 2(7), 489-501. doi: 10.1038/nrc839 PMID: 12094235
  27. Dienstmann, R.; Rodon, J.; Serra, V.; Tabernero, J. Picking the point of inhibition: A comparative review of PI3K/AKT/mTOR pathway inhibitors. Mol. Cancer Ther., 2014, 13(5), 1021-1031. doi: 10.1158/1535-7163.MCT-13-0639 PMID: 24748656
  28. Courtney, K.D.; Corcoran, R.B.; Engelman, J.A. The PI3K pathway as drug target in human cancer. J. Clin. Oncol., 2010, 28(6), 1075-1083. doi: 10.1200/JCO.2009.25.3641 PMID: 20085938
  29. Agoulnik, I.U.; Hodgson, M.C.; Bowden, W.A.; Ittmann, M.M. INPP4B: The new kid on the PI3K block. Oncotarget, 2011, 2(4), 321-328. doi: 10.18632/oncotarget.260 PMID: 21487159
  30. Sun, T.; Aceto, N.; Meerbrey, K.L.; Kessler, J.D.; Zhou, C.; Migliaccio, I.; Nguyen, D.X.; Pavlova, N.N.; Botero, M.; Huang, J.; Bernardi, R.J.; Schmitt, E.; Hu, G.; Li, M.Z.; Dephoure, N.; Gygi, S.P.; Rao, M.; Creighton, C.J.; Hilsenbeck, S.G.; Shaw, C.A.; Muzny, D.; Gibbs, R.A.; Wheeler, D.A.; Osborne, C.K.; Schiff, R.; Bentires-Alj, M.; Elledge, S.J.; Westbrook, T.F. Activation of multiple proto-oncogenic tyrosine kinases in breast cancer via loss of the PTPN12 phosphatase. Cell, 2011, 144(5), 703-718. doi: 10.1016/j.cell.2011.02.003 PMID: 21376233
  31. Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Mol. Cancer, 2019, 18(1), 26. doi: 10.1186/s12943-019-0954-x
  32. Baselga, J. Targeting the phosphoinositide-3 (PI3) kinase pathway in breast cancer. Oncologist, 2011, 16(S1)(Suppl. 1), 12-19. doi: 10.1634/theoncologist.2011-S1-12 PMID: 21278436
  33. Stemke-Hale, K.; Gonzalez-Angulo, A.M.; Lluch, A.; Neve, R.M.; Kuo, W.L.; Davies, M.; Carey, M.; Hu, Z.; Guan, Y.; Sahin, A.; Symmans, W.F.; Pusztai, L.; Nolden, L.K.; Horlings, H.; Berns, K.; Hung, M.C.; van de Vijver, M.J.; Valero, V.; Gray, J.W.; Bernards, R.; Mills, G.B.; Hennessy, B.T. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res., 2008, 68(15), 6084-6091. doi: 10.1158/0008-5472.CAN-07-6854 PMID: 18676830
  34. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature, 2012, 490(7418), 61-70. doi: 10.1038/nature11412 PMID: 23000897
  35. Yadav, B.; Taurin, S.; Larsen, L.; Rosengren, R.J. RL71, a second-generation curcumin analog, induces apoptosis and downregulates Akt in ER-negative breast cancer cells. Int. J. Oncol., 2012, 41(3), 1119-1127. doi: 10.3892/ijo.2012.1521 PMID: 22710975
  36. Wang, X.; Hang, Y.; Liu, J.; Hou, Y.; Wang, N.; Wang, M. Anticancer effect of curcumin inhibits cell growth through miR-21/PTEN/Akt pathway in breast cancer cell. Oncol. Lett., 2017, 13(6), 4825-4831. doi: 10.3892/ol.2017.6053 PMID: 28599484
  37. Yan, M.; Parker, B.A.; Schwab, R.; Kurzrock, R. HER2 aberrations in cancer: Implications for therapy. Cancer Treat. Rev., 2014, 40(6), 770-780. doi: 10.1016/j.ctrv.2014.02.008 PMID: 24656976
  38. Lien, J.C.; Hung, C.M.; Lin, Y.J.; Lin, H.C.; Ko, T.C.; Tseng, L.C.; Kuo, S.C.; Ho, C.T.; Lee, J.C.; Way, T.D. Pculin02H, a curcumin derivative, inhibits proliferation and clinical drug resistance of HER2-overexpressing cancer cells. Chem. Biol. Interact., 2015, 235, 17-26. doi: 10.1016/j.cbi.2015.04.005 PMID: 25866362
  39. Yadav, B.; Taurin, S.; Larsen, L.; Rosengren, R.J. RL66 a second-generation curcumin analog has potent in vivo and in vitro anticancer activity in ER-negative breast cancer models. Int. J. Oncol., 2012, 41(5), 1723-1732. doi: 10.3892/ijo.2012.1625 PMID: 22971638
  40. Lønvik, K.; Sørbye, S.W.; Nilsen, M.N.; Paulssen, R.H. Prognostic value of the MicroRNA regulators Dicer and Drosha in non-small-cell lung cancer: Co-expression of Drosha and miR-126 predicts poor survival. BMC Clin. Pathol., 2014, 14(1), 45. doi: 10.1186/1472-6890-14-45 PMID: 25525410
  41. Wu, K.L.; Tsai, Y.M.; Lien, C.T.; Kuo, P.L.; Hung, J.Y. The roles of MicroRNA in lung cancer. Int. J. Mol. Sci., 2019, 20(7), 1611. doi: 10.3390/ijms20071611 PMID: 30935143
  42. Xu, X.; Qin, J.; Liu, W. Curcumin inhibits the invasion of thyroid cancer cells via down-regulation of PI3K/Akt signaling pathway. Gene, 2014, 546(2), 226-232. doi: 10.1016/j.gene.2014.06.006 PMID: 24910117
  43. Jin, H.; Qiao, F.; Wang, Y.; Xu, Y.; Shang, Y. Curcumin inhibits cell proliferation and induces apoptosis of human non-small cell lung cancer cells through the upregulation of miR-192-5p and suppression of PI3K/Akt signaling pathway. Oncol. Rep., 2015, 34(5), 2782-2789. doi: 10.3892/or.2015.4258 PMID: 26351877
  44. Yu, Q.; Zhao, B.; He, Q.; Zhang, Y.; Peng, X.B. microRNA-206 is required for osteoarthritis development through its effect on apoptosis and autophagy of articular chondrocytes via modulating the phosphoinositide 3-kinase/protein kinase B-mTOR pathway by targeting insulin-like growth factor-1. J. Cell. Biochem., 2019, 120(4), 5287-5303. doi: 10.1002/jcb.27803 PMID: 30335903
  45. Wang, N.; Feng, T.; Liu, X.; Liu, Q. Curcumin inhibits migration and invasion of non-small cell lung cancer cells through up-regulation of miR-206 and suppression of PI3K/AKT/mTOR signaling pathway. Acta Pharm., 2020, 70(3), 399-409. doi: 10.2478/acph-2020-0029 PMID: 32074070
  46. Chen, W.C.; Lai, Y.A.; Lin, Y.C.; Ma, J.W.; Huang, L.F.; Yang, N.S.; Ho, C.T.; Kuo, S.C.; Way, T.D. Curcumin suppresses doxorubicin-induced epithelial-mesenchymal transition via the inhibition of TGF-β and PI3K/AKT signaling pathways in triple-negative breast cancer cells. J. Agric. Food Chem., 2013, 61(48), 11817-11824. doi: 10.1021/jf404092f PMID: 24236784
  47. Jiao, D.; Wang, J.; Lu, W.; Tang, X.; Chen, J.; Mou, H.; Chen, Q. Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways in lung cancer. Mol. Ther. Oncolytics, 2016, 3, 16018. doi: 10.1038/mto.2016.18 PMID: 27525306
  48. Bagci, E.Z.; Vodovotz, Y.; Billiar, T.R.; Ermentrout, G.B.; Bahar, I. Bistability in apoptosis: Roles of bax, bcl-2, and mitochondrial permeability transition pores. Biophys. J., 2006, 90(5), 1546-1559. doi: 10.1529/biophysj.105.068122 PMID: 16339882
  49. Estaquier, J.; Vallette, F.; Vayssiere, J.L.; Mignotte, B. The mitochondrial pathways of apoptosis. Adv. Exp. Med. Biol., 2012, 942, 157-183. doi: 10.1007/978-94-007-2869-1_7 PMID: 22399422
  50. Würstle, M.L.; Laussmann, M.A.; Rehm, M. The central role of initiator caspase-9 in apoptosis signal transduction and the regulation of its activation and activity on the apoptosome. Exp. Cell Res., 2012, 318(11), 1213-1220. doi: 10.1016/j.yexcr.2012.02.013 PMID: 22406265
  51. Ruan, Z.P.; Xu, R.; Lv, Y.; Tian, T.; Wang, W.J.; Guo, H.; Nan, K.J. PTEN enhances the sensitivity of human hepatocellular carcinoma cells to sorafenib. Oncol. Res., 2012, 20(2), 113-121. doi: 10.3727/096504012X13477145152995 PMID: 23193917
  52. Feng, X.; Jiang, J.; Shi, S.; Xie, H.; Zhou, L.; Zheng, S. Knockdown of miR-25 increases the sensitivity of liver cancer stem cells to TRAIL-induced apoptosis via PTEN/PI3K/Akt/Bad signaling pathway. Int. J. Oncol., 2016, 49(6), 2600-2610. doi: 10.3892/ijo.2016.3751 PMID: 27840896
  53. Lamers, F.; van der Ploeg, I.; Schild, L.; Ebus, M.E.; Koster, J.; Hansen, B.R.; Koch, T.; Versteeg, R.; Caron, H.N.; Molenaar, J.J. Knockdown of survivin (BIRC5) causes apoptosis in neuroblastoma via mitotic catastrophe. Endocr. Relat. Cancer, 2011, 18(6), 657-668. doi: 10.1530/ERC-11-0207 PMID: 21859926
  54. Chan, S. Targeting the mammalian target of rapamycin (mTOR): A new approach to treating cancer. Br. J. Cancer, 2004, 91(8), 1420-1424. doi: 10.1038/sj.bjc.6602162 PMID: 15365568
  55. Bhullar, K.S.; Jha, A.; Rupasinghe, H.P.V. Novel carbocyclic curcumin analog CUR3d modulates genes involved in multiple apoptosis pathways in human hepatocellular carcinoma cells. Chem. Biol. Interact., 2015, 242, 107-122. doi: 10.1016/j.cbi.2015.09.020 PMID: 26409325
  56. Dharmawardana, P.G.; Peruzzi, B.; Giubellino, A.; Burke, T.R., Jr; Bottaro, D.P. Molecular targeting of growth factor receptor-bound 2 (Grb2) as an anti-cancer strategy. Anticancer Drugs, 2006, 17(1), 13-20. doi: 10.1097/01.cad.0000185180.72604.ac PMID: 16317285
  57. Renauld, J.C. Class II cytokine receptors and their ligands: Key antiviral and inflammatory modulators. Nat. Rev. Immunol., 2003, 3(8), 667-676. doi: 10.1038/nri1153 PMID: 12974481
  58. O’Shea, J.J.; Gadina, M.; Schreiber, R.D. Cytokine signaling in 2002. Cell, 2002, 109(2)(Suppl.), S121-S131. doi: 10.1016/S0092-8674(02)00701-8 PMID: 11983158
  59. Ghoreschi, K.; Laurence, A.; O’Shea, J.J. Janus kinases in immune cell signaling. Immunol. Rev., 2009, 228(1), 273-287. doi: 10.1111/j.1600-065X.2008.00754.x PMID: 19290934
  60. Liongue, C.; O’Sullivan, L.A.; Trengove, M.C.; Ward, A.C. Evolution of JAK-STAT pathway components: Mechanisms and role in immune system development. PLoS One, 2012, 7(3), e32777. doi: 10.1371/journal.pone.0032777 PMID: 22412924
  61. Sasaki, A.; Yasukawa, H.; Shouda, T.; Kitamura, T.; Dikic, I.; Yoshimura, A. CIS3/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK2. J. Biol. Chem., 2000, 275(38), 29338-29347. doi: 10.1074/jbc.M003456200 PMID: 10882725
  62. O’Shea, J.J.; Plenge, R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity, 2012, 36(4), 542-550. doi: 10.1016/j.immuni.2012.03.014 PMID: 22520847
  63. Schwartz, D.M.; Bonelli, M.; Gadina, M.; O’Shea, J.J. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat. Rev. Rheumatol., 2016, 12(1), 25-36. doi: 10.1038/nrrheum.2015.167 PMID: 26633291
  64. Shuai, K.; Stark, G.R.; Kerr, M.; Darnell, J.E. Jr A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. Science, 1993, 261(5129), 1744-1746. doi: 10.1126/science.7690989 PMID: 7690989
  65. Xu, X.; Sun, Y.L.; Hoey, T. Cooperative DNA binding and sequence-selective recognition conferred by the STAT amino-terminal domain. Science, 1996, 273(5276), 794-797. doi: 10.1126/science.273.5276.794 PMID: 8670419
  66. Shuai, K.; Liao, J.; Song, M.M. Enhancement of antiproliferative activity of gamma interferon by the specific inhibition of tyrosine dephosphorylation of Stat1. Mol. Cell. Biol., 1996, 16(9), 4932-4941. doi: 10.1128/MCB.16.9.4932 PMID: 8756652
  67. Pearson, M.A.; Reczek, D.; Bretscher, A.; Karplus, P.A. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell, 2000, 101(3), 259-270. doi: 10.1016/S0092-8674(00)80836-3 PMID: 10847681
  68. O’Shea, J.J.; Murray, P.J. Cytokine signaling modules in inflammatory responses. Immunity, 2008, 28(4), 477-487. doi: 10.1016/j.immuni.2008.03.002 PMID: 18400190
  69. Zhang, W.; Guo, J.; Li, S.; Ma, T.; Xu, D.; Han, C.; Liu, F.; Yu, W.; Kong, L. Discovery of monocarbonyl curcumin-BTP hybrids as STAT3 inhibitors for drug-sensitive and drug-resistant breast cancer therapy. Sci. Rep., 2017, 7(1), 46352. doi: 10.1038/srep46352 PMID: 28397855
  70. Ohori, H.; Yamakoshi, H.; Tomizawa, M.; Shibuya, M.; Kakudo, Y.; Takahashi, A.; Takahashi, S.; Kato, S.; Suzuki, T.; Ishioka, C.; Iwabuchi, Y.; Shibata, H. Synthesis and biological analysis of new curcumin analogues bearing an enhanced potential for the medicinal treatment of cancer. Mol. Cancer Ther., 2006, 5(10), 2563-2571. doi: 10.1158/1535-7163.MCT-06-0174 PMID: 17041101
  71. Hutzen, B.; Friedman, L.; Sobo, M.; Lin, L.; Cen, L.; De Angelis, S.; Yamakoshi, H.; Shibata, H.; Iwabuchi, Y.; Lin, J. Curcumin analogue GO-Y030 inhibits STAT3 activity and cell growth in breast and pancreatic carcinomas. Int. J. Oncol., 2009, 35(4), 867-872. PMID: 19724924
  72. Alas, S.; Bonavida, B. Inhibition of constitutive STAT3 activity sensitizes resistant non-Hodgkin’s lymphoma and multiple myeloma to chemotherapeutic drug-mediated apoptosis. Clin. Cancer Res., 2003, 9(1), 316-326. PMID: 12538484
  73. Bromberg, J.F. Activation of STAT proteins and growth control. BioEssays, 2001, 23(2), 161-169. doi: 10.1002/1521-1878(200102)23:23.0.CO;2-0 PMID: 11169589
  74. Xi, S.; Gooding, W.E.; Grandis, J.R. In vivo antitumor efficacy of STAT3 blockade using a transcription factor decoy approach: implications for cancer therapy. Oncogene, 2005, 24(6), 970-979. doi: 10.1038/sj.onc.1208316 PMID: 15592503
  75. Xie, T.; Huang, F.J.; Aldape, K.D.; Kang, S.H.; Liu, M.; Gershenwald, J.E.; Xie, K.; Sawaya, R.; Huang, S. Activation of stat3 in human melanoma promotes brain metastasis. Cancer Res., 2006, 66(6), 3188-3196. doi: 10.1158/0008-5472.CAN-05-2674 PMID: 16540670
  76. Lin, L.; Hutzen, B.; Zuo, M.; Ball, S.; Deangelis, S.; Foust, E.; Pandit, B.; Ihnat, M.A.; Shenoy, S.S.; Kulp, S.; Li, P.K.; Li, C.; Fuchs, J.; Lin, J. Novel STAT3 phosphorylation inhibitors exhibit potent growth-suppressive activity in pancreatic and breast cancer cells. Cancer Res., 2010, 70(6), 2445-2454. doi: 10.1158/0008-5472.CAN-09-2468 PMID: 20215512
  77. Lin, L.; Hutzen, B.; Ball, S.; Foust, E.; Sobo, M.; Deangelis, S.; Pandit, B.; Friedman, L.; Li, C.; Li, P.K.; Fuchs, J.; Lin, J. New curcumin analogues exhibit enhanced growth-suppressive activity and inhibit AKT and signal transducer and activator of transcription 3 phosphorylation in breast and prostate cancer cells. Cancer Sci., 2009, 100(9), 1719-1727. doi: 10.1111/j.1349-7006.2009.01220.x PMID: 19558577
  78. Liang, G.; Shao, L.; Wang, Y.; Zhao, C.; Chu, Y.; Xiao, J.; Zhao, Y.; Li, X.; Yang, S. Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. Bioorg. Med. Chem., 2009, 17(6), 2623-2631. doi: 10.1016/j.bmc.2008.10.044 PMID: 19243951
  79. Wu, L.; Guo, L.; Liang, Y.; Liu, X.; Jiang, L.; Wang, L. Curcumin suppresses stem-like traits of lung cancer cells via inhibiting the JAK2/STAT3 signaling pathway. Oncol. Rep., 2015, 34(6), 3311-3317. doi: 10.3892/or.2015.4279 PMID: 26397387
  80. Zhao, J.A.; Sang, M.X.; Geng, C.Z.; Wang, S.J.; Shan, B.E. A novel curcumin analogue is a potent chemotherapy candidate for human hepatocellular carcinoma. Oncol. Lett., 2016, 12(5), 4252-4262. doi: 10.3892/ol.2016.5126 PMID: 27895800
  81. Kishimoto, T. Interleukin-6: Discovery of a pleiotropic cytokine. Arthritis Res. Ther., 2006, 8(Suppl. 2), S2.
  82. Zhang, X.; Wang, L.; Qu, Y. Targeting the β-catenin signaling for cancer therapy. Pharmacol. Res., 2020, 160, 104794. doi: 10.1016/j.phrs.2020.104794 PMID: 32278038
  83. Wei, C.Y.; Zhu, M.X.; Yang, Y.W.; Zhang, P.F.; Yang, X.; Peng, R.; Gao, C.; Lu, J.C.; Wang, L.; Deng, X.Y.; Lu, N.H.; Qi, F.Z.; Gu, J.Y. Downregulation of RNF128 activates Wnt/β-catenin signaling to induce cellular EMT and stemness via CD44 and CTTN ubiquitination in melanoma. J. Hematol. Oncol., 2019, 12(1), 21. doi: 10.1186/s13045-019-0711-z PMID: 30832692
  84. Zhou, J.; Toh, S.H.M.; Chan, Z.L.; Quah, J.Y.; Chooi, J.Y.; Tan, T.Z.; Chong, P.S.Y.; Zeng, Q.; Chng, W.J. A loss-of-function genetic screening reveals synergistic targeting of AKT/mTOR and WTN/β-catenin pathways for treatment of AML with high PRL-3 phosphatase. J. Hematol. Oncol., 2018, 11(1), 36. doi: 10.1186/s13045-018-0581-9 PMID: 29514683
  85. Lim, Z.F.; Ma, P.C. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J. Hematol. Oncol., 2019, 12(1), 134. doi: 10.1186/s13045-019-0818-2 PMID: 31815659
  86. Wiese, K.E.; Nusse, R.; van Amerongen, R. Wnt signalling: Conquering complexity. Development, 2018, 145(12), dev165902. doi: 10.1242/dev.165902 PMID: 29945986
  87. Nusse, R.; Clevers, H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell, 2017, 169(6), 985-999. doi: 10.1016/j.cell.2017.05.016 PMID: 28575679
  88. Bilić, J.; Huang, Y.L.; Davidson, G.; Zimmermann, T.; Cruciat, C.M.; Bienz, M.; Niehrs, C. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science, 2007, 316(5831), 1619-1622. doi: 10.1126/science.1137065 PMID: 17569865
  89. Pai, S.G.; Carneiro, B.A.; Mota, J.M.; Costa, R.; Leite, C.A.; Barroso-Sousa, R.; Kaplan, J.B.; Chae, Y.K.; Giles, F.J. Wnt/beta-catenin pathway: Modulating anticancer immune response. J. Hematol. Oncol., 2017, 10(1), 101. doi: 10.1186/s13045-017-0471-6 PMID: 28476164
  90. Shang, S.; Hua, F.; Hu, Z.W. The regulation of β-catenin activity and function in cancer: Therapeutic opportunities. Oncotarget, 2017, 8(20), 33972-33989. doi: 10.18632/oncotarget.15687 PMID: 28430641
  91. Chien, A.J.; Moore, E.C.; Lonsdorf, A.S.; Kulikauskas, R.M.; Rothberg, B.G.; Berger, A.J.; Major, M.B.; Hwang, S.T.; Rimm, D.L.; Moon, R.T. Activated Wnt/ß-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc. Natl. Acad. Sci. USA, 2009, 106(4), 1193-1198. doi: 10.1073/pnas.0811902106 PMID: 19144919
  92. Li, X.; Wang, X.; Xie, C.; Zhu, J.; Meng, Y.; Chen, Y.; Li, Y.; Jiang, Y.; Yang, X.; Wang, S.; Chen, J.; Zhang, Q.; Geng, S.; Wu, J.; Zhong, C.; Zhao, Y. Sonic hedgehog and Wnt/β-catenin pathways mediate curcumin inhibition of breast cancer stem cells. Anticancer Drugs, 2018, 29(3), 208-215. doi: 10.1097/CAD.0000000000000584 PMID: 29356693
  93. Martin, T.A.; Goyal, A.; Watkins, G.; Jiang, W.G. Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann. Surg. Oncol., 2005, 12(6), 488-496. doi: 10.1245/ASO.2005.04.010 PMID: 15864483
  94. De Craene, B.; Gilbert, B.; Stove, C.; Bruyneel, E.; van Roy, F.; Berx, G. The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res., 2005, 65(14), 6237-6244. doi: 10.1158/0008-5472.CAN-04-3545 PMID: 16024625
  95. Zhang, Y.; Du, J.; Tian, X.; Zhong, Y.; Fang, W. Expression of E-cadherin, beta-catenin, cathepsin D, gelatinases and their inhibitors in invasive ductal breast carcinomas. Chin. Med. J., 2007, 120(18), 1597-1605. doi: 10.1097/00029330-200709020-00010 PMID: 17908479
  96. Savagner, P.; Yamada, K.M.; Thiery, J.P. The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J. Cell Biol., 1997, 137(6), 1403-1419. doi: 10.1083/jcb.137.6.1403 PMID: 9182671
  97. Mukherjee, S.; Mazumdar, M.; Chakraborty, S.; Manna, A.; Saha, S.; Khan, P.; Bhattacharjee, P.; Guha, D.; Adhikary, A.; Mukhjerjee, S.; Das, T. Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/β-catenin negative feedback loop. Stem Cell Res. Ther., 2014, 5(5), 116. doi: 10.1186/scrt506 PMID: 25315241
  98. Vallée, A.; Lecarpentier, Y.; Vallée, J.N. Curcumin: A therapeutic strategy in cancers by inhibiting the canonical WNT/β-catenin pathway. J. Exp. Clin. Cancer Res. CR, 2019, 38(1), 323.
  99. Xu, J.H.; Yang, H.P.; Zhou, X.D.; Wang, H.J.; Gong, L.; Tang, C.L. Role of Wnt inhibitory factor-1 in inhibition of bisdemethoxycurcumin mediated epithelial-to-mesenchymal transition in highly metastatic lung cancer 95D cells. Chin. Med. J., 2015, 128(10), 1376-1383. doi: 10.4103/0366-6999.156795 PMID: 25963361
  100. Kim, Y.M.; Kahn, M. The role of the Wnt signaling pathway in cancer stem cells: Prospects for drug development. Res. Rep. Biochem., 2014, 4, 1-12. PMID: 26566491
  101. Zhu, J.Y.; Yang, X.; Chen, Y.; Jiang, Y.; Wang, S.J.; Li, Y.; Wang, X.Q.; Meng, Y.; Zhu, M.M.; Ma, X.; Huang, C.; Wu, R.; Xie, C.F.; Li, X.T.; Geng, S.S.; Wu, J.S.; Zhong, C.Y.; Han, H.Y. Curcumin suppresses lung cancer stem cells via inhibiting Wnt/β-catenin and sonic hedgehog pathways. Phytother. Res., 2017, 31(4), 680-688. doi: 10.1002/ptr.5791 PMID: 28198062
  102. Li, D.; Qian, J.; Hong, Z. Expression and clinical significance of MTA1 in non-small cell lung cancer. Zhongguo fei ai za zhi = Chin. J. Lung Cancer, 2008, 11(6), 775-779. PMID: 20797327
  103. Grigoryan, T.; Wend, P.; Klaus, A.; Birchmeier, W. Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of β-catenin in mice. Genes Dev., 2008, 22(17), 2308-2341. doi: 10.1101/gad.1686208 PMID: 18765787
  104. Lu, Y.; Wei, C.; Xi, Z. Curcumin suppresses proliferation and invasion in non-small cell lung cancer by modulation of MTA1-mediated Wnt/β-catenin pathway. In Vitro Cell. Dev. Biol. Anim., 2014, 50(9), 840-850. doi: 10.1007/s11626-014-9779-5 PMID: 24938356
  105. Xu, M.X.; Zhao, L.; Deng, C.; Yang, L.; Wang, Y.; Guo, T.; Li, L.; Lin, J.; Zhang, L. Curcumin suppresses proliferation and induces apoptosis of human hepatocellular carcinoma cells via the wnt signaling pathway. Int. J. Oncol., 2013, 43(6), 1951-1959. doi: 10.3892/ijo.2013.2107 PMID: 24064724
  106. Kim, H.J.; Park, S.Y.; Park, O.J.; Kim, Y.M. Curcumin suppresses migration and proliferation of Hep3B hepatocarcinoma cells through inhibition of the Wnt signaling pathway. Mol. Med. Rep., 2013, 8(1), 282-286. doi: 10.3892/mmr.2013.1497 PMID: 23723038
  107. Capurro, M.I.; Xiang, Y.Y.; Lobe, C.; Filmus, J. Glypican-3 promotes the growth of hepatocellular carcinoma by stimulating canonical Wnt signaling. Cancer Res., 2005, 65(14), 6245-6254. doi: 10.1158/0008-5472.CAN-04-4244 PMID: 16024626
  108. Wu, Y.; Liu, H.; Weng, H.; Zhang, X.; Li, P.; Fan, C.L.; Li, B.; Dong, P.L.; Li, L.; Dooley, S.; Ding, H.G. Glypican-3 promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells through ERK signaling pathway. Int. J. Oncol., 2015, 46(3), 1275-1285. doi: 10.3892/ijo.2015.2827 PMID: 25572615
  109. Miao, H.L.; Pan, Z.J.; Lei, C.J.; Wen, J.Y.; Li, M.Y.; Liu, Z.K.; Qiu, Z.D.; Lin, M.Z.; Chen, N.P.; Chen, M. Knockdown of GPC3 inhibits the proliferation of Huh7 hepatocellular carcinoma cells through down-regulation of YAP. J. Cell. Biochem., 2013, 114(3), 625-631. doi: 10.1002/jcb.24404 PMID: 23060277
  110. Qi, X.H.; Wu, D.; Cui, H.X.; Ma, N.; Su, J.; Wang, Y.T.; Jiang, Y.H. Silencing of the glypican-3 gene affects the biological behavior of human hepatocellular carcinoma cells. Mol. Med. Rep., 2014, 10(6), 3177-3184. doi: 10.3892/mmr.2014.2600 PMID: 25270552
  111. Wu, Y.; Liu, H.; Ding, H.G. GPC-3 in hepatocellular carcinoma: Current perspectives. J. Hepatocell. Carcinoma, 2016, 3, 63-67. doi: 10.2147/JHC.S116513 PMID: 27878117
  112. Gao, W.; Ho, M. The role of glypican-3 in regulating Wnt in hepatocellular carcinomas. Cancer Rep., 2011, 1(1), 14-19. PMID: 22563565
  113. Marchesi, I.; Bagella, L. Targeting enhancer of zeste homolog 2 as a promising strategy for cancer treatment. World J. Clin. Oncol., 2016, 7(2), 135-148. doi: 10.5306/wjco.v7.i2.135 PMID: 27081636
  114. Gan, L.; Yang, Y.; Li, Q.; Feng, Y.; Liu, T.; Guo, W. Epigenetic regulation of cancer progression by EZH2: From biological insights to therapeutic potential. Biomark. Res., 2018, 6(1), 10. doi: 10.1186/s40364-018-0122-2 PMID: 29556394
  115. Song, H.; Yu, Z.; Sun, X.; Feng, J.; Yu, Q.; Khan, H.; Zhu, X.; Huang, L.; Li, M.; Mok, M.T.S.; Cheng, A.S.L.; Gao, Y.; Feng, H. Androgen receptor drives hepatocellular carcinogenesis by activating enhancer of zeste homolog 2-mediated Wnt/β-catenin signaling. EBioMedicine, 2018, 35, 155-166. doi: 10.1016/j.ebiom.2018.08.043 PMID: 30150059
  116. Khan, H.; Ni, Z.; Feng, H.; Xing, Y.; Wu, X.; Huang, D.; Chen, L.; Niu, Y.; Shi, G. Combination of curcumin with N-n-butyl haloperidol iodide inhibits hepatocellular carcinoma malignant proliferation by downregulating enhancer of zeste homolog 2 (EZH2) - lncRNA H19 to silence Wnt/β-catenin signaling. Phytomedicine, 2021, 91, 153706. doi: 10.1016/j.phymed.2021.153706 PMID: 34517264
  117. Guo, Y.J.; Pan, W.W.; Liu, S.B.; Shen, Z.F.; Xu, Y.; Hu, L.L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med., 2020, 19(3), 1997-2007. PMID: 32104259
  118. Chen, Y.R.; Tan, T.H. Inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway by curcumin. Oncogene, 1998, 17, 173-178.
  119. Raaphorst, F.M.; Meijer, C.J.L.M.; Fieret, E.; Blokzijl, T.; Mommers, E.; Buerger, H.; Packeisen, J.; Sewalt, R.A.B.; Ottet, A.P.; van Diest, P.J. Poorly differentiated breast carcinoma is associated with increased expression of the human polycomb group EZH2 gene. Neoplasia, 2003, 5(6), 481-488. doi: 10.1016/S1476-5586(03)80032-5 PMID: 14965441
  120. Collett, G.P.; Campbell, F.C. Curcumin induces c-jun N-terminal kinase-dependent apoptosis in HCT116 human colon cancer cells. Carcinogenesis, 2004, 25(11), 2183-2189. doi: 10.1093/carcin/bgh233 PMID: 15256484
  121. Hua, W.F.; Fu, Y.S.; Liao, Y.J.; Xia, W.J.; Chen, Y.C.; Zeng, Y.X.; Kung, H.F.; Xie, D. Curcumin induces down-regulation of EZH2 expression through the MAPK pathway in MDA-MB-435 human breast cancer cells. Eur. J. Pharmacol., 2010, 637(1-3), 16-21. doi: 10.1016/j.ejphar.2010.03.051 PMID: 20385124
  122. Lai, H.W.; Chien, S.Y.; Kuo, S.J.; Tseng, L.M.; Lin, H.Y.; Chi, C.W.; Chen, D.R. The potential utility of curcumin in the treatment of HER-2-overexpressed breast cancer: An in vitro and in vivo comparison study with herceptin. Evid.-based Complement. Altern. Med., 2012, 2012, 486568.
  123. Zou, L.; Chai, J.; Gao, Y.; Guan, J.; Liu, Q.; Du, J.J. Down-regulated PLAC8 promotes hepatocellular carcinoma cell proliferation by enhancing PI3K/Akt/GSK3β/Wnt/β-catenin signaling. Biomed. Pharmacother., 2016, 84, 139-146.
  124. Mo, N.; Li, Z.Q.; Li, J.; Cao, Y.D. Curcumin inhibits TGF-β1-induced MMP-9 and invasion through ERK and Smad signaling in breast cancer MDA- MB-231 cells. APJCP, 2012, 13(11), 5709-5714. PMID: 23317243
  125. Wang, L.; Wang, C.; Tao, Z.; Zhao, L.; Zhu, Z.; Wu, W.; He, Y.; Chen, H.; Zheng, B.; Huang, X.; Yu, Y.; Yang, L.; Liang, G.; Cui, R.; Chen, T. Curcumin derivative WZ35 inhibits tumour cell growth via ROS-YAP-JNK signaling pathway in breast cancer. J. Exp. Clin. Cancer Res., 2019, 38(1), 460. PMID: 31703744
  126. Fan, J.; Wu, M.; Wang, J.; Ren, D.; Zhao, J.; Yang, G. 1,7-Bis(4-hydroxyphenyl)-1,4-heptadien-3-one induces lung cancer cell apoptosis via the PI3K/Akt and ERK1/2 pathways. J. Cell. Physiol., 2019, 234(5), 6336-6349. doi: 10.1002/jcp.27364 PMID: 30246250
  127. Chen, Q.; Men, Y.; Wang, H.; Chen, R.; Han, X.; Liu, J. Curcumin inhibits proliferation and migration of A549 lung cancer cells through activation of ERK1/2 pathway-induced autophagy. Nat. Prod. Comm., 2019, 14(6), 1934578X1984817.
  128. Yao, Q.; Lin, M.; Wang, Y.; Lai, Y.; Hu, J.; Fu, T.; Wang, L.; Lin, S.; Chen, L.; Guo, Y. Curcumin induces the apoptosis of A549 cells via oxidative stress and MAPK signaling pathways. Int. J. Mol. Med., 2015, 36(4), 1118-1126. doi: 10.3892/ijmm.2015.2327 PMID: 26310655
  129. Liu, H.; Zhou, B.H.; Qiu, X.; Wang, H.S.; Zhang, F.; Fang, R.; Wang, X.F.; Cai, S.H.; Du, J.; Bu, X.Z. T63, a new 4-arylidene curcumin analogue, induces cell cycle arrest and apoptosis through activation of the reactive oxygen species-FOXO3a pathway in lung cancer cells. Free Radic. Biol. Med., 2012, 53(12), 2204-2217. doi: 10.1016/j.freeradbiomed.2012.10.537 PMID: 23085518
  130. Sunters, A.; Fernández de Mattos, S.; Stahl, M.; Brosens, J.J.; Zoumpoulidou, G.; Saunders, C.A.; Coffer, P.J.; Medema, R.H.; Coombes, R.C.; Lam, E.W.F. FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J. Biol. Chem., 2003, 278(50), 49795-49805. doi: 10.1074/jbc.M309523200 PMID: 14527951
  131. Cornforth, A.N.; Davis, J.S.; Khanifar, E.; Nastiuk, K.L.; Krolewski, J.J. FOXO3a mediates the androgen-dependent regulation of FLIP and contributes to TRAIL-induced apoptosis of LNCaP cells. Oncogene, 2008, 27(32), 4422-4433. doi: 10.1038/onc.2008.80 PMID: 18391984
  132. Dijkers, P.F.; Medema, R.H.; Pals, C.; Banerji, L.; Thomas, N.S.B.; Lam, E.W.F.; Burgering, B.M.T.; Raaijmakers, J.A.M.; Lammers, J.W.J.; Koenderman, L.; Coffer, P.J. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol. Cell. Biol., 2000, 20(24), 9138-9148. doi: 10.1128/MCB.20.24.9138-9148.2000 PMID: 11094066
  133. Seoane, J.; Le, H.V.; Shen, L.; Anderson, S.A.; Massagué, J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell, 2004, 117(2), 211-223. doi: 10.1016/S0092-8674(04)00298-3 PMID: 15084259
  134. Schmidt, M.; Fernandez de Mattos, S.; van der Horst, A.; Klompmaker, R.; Kops, G.J.P.L.; Lam, E.W.F.; Burgering, B.M.T.; Medema, R.H. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol. Cell. Biol., 2002, 22(22), 7842-7852. doi: 10.1128/MCB.22.22.7842-7852.2002 PMID: 12391153
  135. Zheng, R.; You, Z.; Jia, J.; Lin, S.; Han, S.; Liu, A.; Long, H.; Wang, S. Curcumin enhances the antitumor effect of ABT-737 via activation of the ROS-ASK1-JNK pathway in hepatocellular carcinoma cells. Mol. Med. Rep., 2016, 13(2), 1570-1576. doi: 10.3892/mmr.2015.4715 PMID: 26707143
  136. Liang, Z.; Wu, R.; Xie, W.; Xie, C.; Wu, J.; Geng, S.; Li, X.; Zhu, M.; Zhu, W.; Zhu, J.; Huang, C.; Ma, X.; Xu, W.; Zhong, C.; Han, H. Effects of curcumin on tobacco smoke-induced hepatic MAPK pathway activation and epithelial-mesenchymal transition in vivo. Phytother. Res., 2017, 31(8), 1230-1239. doi: 10.1002/ptr.5844 PMID: 28585748
  137. Qu, J.; Lu, W.; Chen, M.; Gao, W.; Zhang, C.; Guo, B.; Yang, J. Combined effect of recombinant human adenovirus p53 and curcumin in the treatment of liver cancer. Exp. Ther. Med., 2020, 20(5), 1. doi: 10.3892/etm.2020.9145 PMID: 32934683
  138. Tsai, C.F.; Hsieh, T.H.; Lee, J.N.; Hsu, C.Y.; Wang, Y.C.; Kuo, K.K.; Wu, H.L.; Chiu, C.C.; Tsai, E.M.; Kuo, P.L. Curcumin suppresses phthalate-induced metastasis and the proportion of cancer stem cell (CSC)-like cells via the inhibition of AhR/ERK/SK1 signaling in hepatocellular carcinoma. J. Agric. Food Chem., 2015, 63(48), 10388-10398. doi: 10.1021/acs.jafc.5b04415 PMID: 26585812
  139. Xia, L.; Tan, S.; Zhou, Y.; Lin, J.; Wang, H.; Oyang, L.; Tian, Y.; Liu, L.; Su, M.; Wang, H.; Cao, D.; Liao, Q. Role of the NFκB-signaling pathway in cancer. OncoTargets Ther., 2018, 11, 2063-2073. doi: 10.2147/OTT.S161109 PMID: 29695914
  140. Murwanti, R.; Kholifah, E.; Sudarmanto, B.S.A.; Hermawan, A. Effect of curcumin on NF-κB P105/50 expression on triple-negative breast cancer (TNBC) and its possible mechanism of action. The 6th International Conference on Biological Science ICBS 2019, 2020.
  141. Sato, A.; Kudo, C.; Yamakoshi, H.; Uehara, Y.; Ohori, H.; Ishioka, C.; Iwabuchi, Y.; Shibata, H. Curcumin analog GO-Y030 is a novel inhibitor of IKKβ that suppresses NF-κB signaling and induces apoptosis. Cancer Sci., 2011, 102(5), 1045-1051. doi: 10.1111/j.1349-7006.2011.01886.x PMID: 21272158
  142. Chiu, T.L.; Su, C.C. Curcumin inhibits proliferation and migration by increasing the Bax to Bcl-2 ratio and decreasing NF-kappaBp65 expression in breast cancer MDA-MB-231 cells. Int. J. Mol. Med., 2009, 23(4), 469-475. PMID: 19288022
  143. Zong, H.; Wang, F.; Fan, Q.; Wang, L. Curcumin inhibits metastatic progression of breast cancer cell through suppression of urokinase-type plasminogen activator by NF-kappa B signaling pathways. Mol. Biol. Rep., 2012, 39(4), 4803-4808. doi: 10.1007/s11033-011-1273-5 PMID: 21947854
  144. Mengshol, J.A.; Vincenti, M.P.; Coon, C.I.; Barchowsky, A.; Brinckerhoff, C.E. Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-jun N-terminal kinase, and nuclear factor κB Differential regulation of collagenase 1 and collagenase 3. Arthritis Rheum., 2000, 43(4), 801-811. doi: 10.1002/1529-0131(200004)43:43.0.CO;2-4 PMID: 10765924
  145. Liu, Q.; Loo, W.T.Y.; Sze, S.C.W.; Tong, Y. Curcumin inhibits cell proliferation of MDA-MB-231 and BT-483 breast cancer cells mediated by down-regulation of NFκB, cyclinD and MMP-1 transcription. Phytomedicine, 2009, 16(10), 916-922. doi: 10.1016/j.phymed.2009.04.008 PMID: 19524420
  146. Nakshatri, H.; Bhat-Nakshatri, P.; Martin, D.A.; Goulet, R.J., Jr; Sledge, G.W. Jr Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol. Cell. Biol., 1997, 17(7), 3629-3639. doi: 10.1128/MCB.17.7.3629 PMID: 9199297
  147. Katsori, A.M.; Palagani, A.; Bougarne, N.; Hadjipavlou-Litina, D.; Haegeman, G.; Vanden Berghe, W. Inhibition of the NF-κB signaling pathway by a novel heterocyclic curcumin analogue. Molecules, 2015, 20(1), 863-878. doi: 10.3390/molecules20010863 PMID: 25580684
  148. Olivera, A.; Moore, T.W.; Hu, F.; Brown, A.P.; Sun, A.; Liotta, D.C.; Snyder, J.P.; Yoon, Y.; Shim, H.; Marcus, A.I.; Miller, A.H.; Pace, T.W.W. Inhibition of the NF-κB signaling pathway by the curcumin analog, 3,5-Bis(2-pyridinylmethylidene)-4-piperidone (EF31): Anti-inflammatory and anti-cancer properties. Int. Immunopharmacol., 2012, 12(2), 368-377. doi: 10.1016/j.intimp.2011.12.009 PMID: 22197802
  149. Adams, B.K.; Cai, J.; Armstrong, J.; Herold, M.; Lu, Y.J.; Sun, A.; Snyder, J.P.; Liotta, D.C.; Jones, D.P.; Shoji, M. EF24, a novel synthetic curcumin analog, induces apoptosis in cancer cells via a redox-dependent mechanism. Anticancer Drugs, 2005, 16(3), 263-275. doi: 10.1097/00001813-200503000-00005 PMID: 15711178
  150. Kasinski, A.L.; Du, Y.; Thomas, S.L.; Zhao, J.; Sun, S.Y.; Khuri, F.R.; Wang, C.Y.; Shoji, M.; Sun, A.; Snyder, J.P.; Liotta, D.; Fu, H. Inhibition of IkappaB kinase-nuclear factor-kappaB signaling pathway by 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24), a novel monoketone analog of curcumin. Mol. Pharmacol., 2008, 74(3), 654-661. doi: 10.1124/mol.108.046201 PMID: 18577686
  151. Coker-Gurkan, A.; Celik, M.; Ugur, M.; Arisan, E.D.; Obakan-Yerlikaya, P.; Durdu, Z.B.; Palavan-Unsal, N. Curcumin inhibits autocrine growth hormone-mediated invasion and metastasis by targeting NF-κB signaling and polyamine metabolism in breast cancer cells. Amino Acids, 2018, 50(8), 1045-1069. doi: 10.1007/s00726-018-2581-z PMID: 29770869
  152. Yen, F.L.; Wu, T.H.; Tzeng, C.W.; Lin, L.T.; Lin, C.C. Curcumin nanoparticles improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antihepatoma activities. J. Agric. Food Chem., 2010, 58(12), 7376-7382. doi: 10.1021/jf100135h PMID: 20486686
  153. Yen, F.L.; Tsai, M.H.; Yang, C.M.; Liang, C.J.; Lin, C.C.; Chiang, Y.C.; Lee, H.C.; Ko, H.H.; Lee, C.W. Curcumin nanoparticles ameliorate ICAM-1 expression in TNF-α-treated lung epithelial cells through p47 (phox) and MAPKs/AP-1 pathways. PLoS One, 2013, 8(5), e63845. doi: 10.1371/journal.pone.0063845 PMID: 23671702
  154. Liang, D.; Wen, Z.; Han, W.; Li, W.; Pan, L.; Zhang, R. Curcumin protects against inflammation and lung injury in rats with acute pulmonary embolism with the involvement of microRNA-21/PTEN/NF-κB axis. Mol. Cell. Biochem., 2021, 476(7), 2823-2835. doi: 10.1007/s11010-021-04127-z PMID: 33730297
  155. Li, N.; Liu, T. H.; Yu, J. Z.; Li, C. X.; Liu, Y.; Wu, Y. Y.; Yang, Z. S.; Yuan, J. L. Curcumin and curcumol inhibit NF-κB and TGF-β1/smads signaling pathways in CSEtreated RAW246.7 cells. Evid.-based Complement. Altern. Med., 2019, 3035125.
  156. Qiu, X.; Du, Y.; Lou, B.; Zuo, Y.; Shao, W.; Huo, Y.; Huang, J.; Yu, Y.; Zhou, B.; Du, J.; Fu, H.; Bu, X. Synthesis and identification of new 4-arylidene curcumin analogues as potential anticancer agents targeting nuclear factor-κB signaling pathway. J. Med. Chem., 2010, 53(23), 8260-8273. doi: 10.1021/jm1004545 PMID: 21070043
  157. Marquardt, J.U.; Gomez-Quiroz, L.; Arreguin Camacho, L.O.; Pinna, F.; Lee, Y.H.; Kitade, M.; Domínguez, M.P.; Castven, D.; Breuhahn, K.; Conner, E.A.; Galle, P.R.; Andersen, J.B.; Factor, V.M.; Thorgeirsson, S.S. Curcumin effectively inhibits oncogenic NF-κB signaling and restrains stemness features in liver cancer. J. Hepatol., 2015, 63(3), 661-669. doi: 10.1016/j.jhep.2015.04.018 PMID: 25937435
  158. Notarbartolo, M.; Poma, P.; Perri, D.; Dusonchet, L.; Cervello, M.; D’Alessandro, N. Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NF-kB activation levels and in IAP gene expression. Cancer Lett., 2005, 224(1), 53-65. doi: 10.1016/j.canlet.2004.10.051 PMID: 15911101
  159. Bortel, N.; Armeanu-Ebinger, S.; Schmid, E.; Kirchner, B.; Frank, J.; Kocher, A.; Schiborr, C.; Warmann, S.; Fuchs, J.; Ellerkamp, V. Effects of curcumin in pediatric epithelial liver tumors: Inhibition of tumor growth and alpha-fetoprotein in vitro and in vivo involving the NFkappaB- and the beta-catenin pathways. Oncotarget, 2015, 6(38), 40680-40691. doi: 10.18632/oncotarget.5673 PMID: 26515460
  160. Adewale, O.; Akomolafe, S.F.; Asogwa, N.T. Curcumin alleviates potassium bromate-induced hepatic damage by repressing CRP induction through TNF-α and IL-1βand by suppressing oxidative stress. Notulae Scientia Biologicae, 2019, 11(4), 337-344.
  161. Ibrahim Fouad, G.; Ahmed, K.A. Curcumin ameliorates doxorubicin-induced cardiotoxicity and hepatotoxicity via suppressing oxidative stress and modulating iNOS, NF-κB, and TNF-α in Rats. Cardiovasc. Toxicol., 2022, 22(2), 152-166. doi: 10.1007/s12012-021-09710-w PMID: 34837640
  162. El-Houseini, M.E.; El-Agoza, I.A.; Sakr, M.M.; El-Malky, G.M. Novel protective role of curcumin and taurine combination against experimental hepatocarcinogenesis. Exp. Ther. Med., 2017, 13(1), 29-36. doi: 10.3892/etm.2016.3952 PMID: 28123463
  163. Reuter, S.; Eifes, S.; Dicato, M.; Aggarwal, B.B.; Diederich, M. Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem. Pharmacol., 2008, 76(11), 1340-1351. doi: 10.1016/j.bcp.2008.07.031 PMID: 18755156
  164. Hu, S.; Xu, Y.; Meng, L.; Huang, L.; Sun, H. Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells. Exp. Ther. Med., 2018, 16(2), 1266-1272. doi: 10.3892/etm.2018.6345 PMID: 30116377
  165. Rowe, D.L.; Ozbay, T.; O’Regan, R.M.; Nahta, R. Modulation of the BRCA1 protein and induction of apoptosis in triple negative breast cancer cell lines by the polyphenolic compound curcumin. Breast Cancer (Auckl.), 2009, 3, BCBCR.S3067. doi: 10.4137/BCBCR.S3067 PMID: 19809577
  166. Elmegeed, G.A.; Yahya, S.M.M.; Abd-Elhalim, M.M.; Mohamed, M.S.; Mohareb, R.M.; Elsayed, G.H. Evaluation of heterocyclic steroids and curcumin derivatives as anti-breast cancer agents: Studying the effect on apoptosis in MCF-7 breast cancer cells. Steroids, 2016, 115, 80-89. doi: 10.1016/j.steroids.2016.08.014 PMID: 27553725
  167. Huang, Y.W.; Chen, J.H.; Qin, Z.X.; Chen, J.K.; Hu, R.D.; Wu, Z.; Lin, X. Chloride channel involved in the regulation of curcumin-induced apoptosis of human breast cancer cells-. Asian Pac. J. Trop. Med., 2018, 11, 240-244.
  168. Ali, N.M.; Yeap, S.K.; Abu, N.; Lim, K.L.; Ky, H.; Pauzi, A.Z.M.; Ho, W.Y.; Tan, S.W.; Alan-Ong, H.K.; Zareen, S.; Alitheen, N.B.; Akhtar, M.N. Synthetic curcumin derivative DK1 possessed G2/M arrest and induced apoptosis through accumulation of intracellular ROS in MCF-7 breast cancer cells. Cancer Cell Int., 2017, 17(1), 30. doi: 10.1186/s12935-017-0400-3 PMID: 28239299
  169. Wang, Y.; Xiao, J.; Zhou, H.; Yang, S.; Wu, X.; Jiang, C.; Zhao, Y.; Liang, D.; Li, X.; Liang, G. A novel monocarbonyl analogue of curcumin, (1E,4E)-1,5-bis(2,3-dimethoxyphenyl)penta-1,4-dien-3-one, induced cancer cell H460 apoptosis via activation of endoplasmic reticulum stress signaling pathway. J. Med. Chem., 2011, 54(11), 3768-3778. doi: 10.1021/jm200017g PMID: 21504179
  170. Wang, A.; Wang, J.; Zhang, S.; Zhang, H.; Xu, Z.; Li, X. Curcumin inhibits the development of non small cell lung cancer by inhibiting autophagy and apoptosis. Exp. Ther. Med., 2017, 14(5), 5075-5080. doi: 10.3892/etm.2017.5172 PMID: 29201217
  171. Liu, Z.; Sun, Y.; Ren, L.; Huang, Y.; Cai, Y.; Weng, Q.; Shen, X.; Li, X.; Liang, G.; Wang, Y. Evaluation of a curcumin analog as an anti-cancer agent inducing ER stress-mediated apoptosis in non-small cell lung cancer cells. BMC Cancer, 2013, 13, 494.
  172. Ye, M.; Zhang, J.; Zhang, J.; Miao, Q.; Yao, L.; Zhang, J. Curcumin promotes apoptosis by activating the p53-miR-192-5p/215-XIAP pathway in non-small cell lung cancer. Cancer Lett., 2015, 357(1), 196-205. doi: 10.1016/j.canlet.2014.11.028 PMID: 25444916
  173. Zhang, J.; Du, Y.; Wu, C.; Ren, X.; Ti, X.; Shi, J.; Zhao, F.; Yin, H. Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186* signaling pathway. Oncol. Rep., 2010, 24(5), 1217-1223. doi: 10.3892/or_00000975 PMID: 20878113
  174. Zhao, Z.; Yang, Y.; Liu, W.; Li, Z. T59, a new compound reconstructed from curcumin, induces cell apoptosis through reactive oxygen species activation in human lung cancer cells. Molecules, 2018, 23(6), 1251. doi: 10.3390/molecules23061251 PMID: 29882920
  175. Ye, M.X.; Zhao, Y.L.; Li, Y.; Miao, Q.; Li, Z.K.; Ren, X.L.; Song, L.Q.; Yin, H.; Zhang, J. Curcumin reverses cis-platin resistance and promotes human lung adenocarcinoma A549/DDP cell apoptosis through HIF-1α and caspase-3 mechanisms. Phytomedicine, 2012, 19(8-9), 779-787. doi: 10.1016/j.phymed.2012.03.005 PMID: 22483553
  176. Nair, P.; Malhotra, A.; Dhawan, D.K. Curcumin and quercetin trigger apoptosis during benzo(a)pyrene-induced lung carcinogenesis. Mol. Cell. Biochem., 2015, 400(1-2), 51-56. doi: 10.1007/s11010-014-2261-6 PMID: 25359171
  177. Kang, J.H.; Kang, H.S.; Kim, I.K.; Lee, H.Y.; Ha, J.H.; Yeo, C.D.; Kang, H.H.; Moon, H.S.; Lee, S.H. Curcumin sensitizes human lung cancer cells to apoptosis and metastasis synergistically combined with carboplatin. Exp. Biol. Med., 2015, 240(11), 1416-1425. doi: 10.1177/1535370215571881 PMID: 25716014
  178. Zhou, T.; Ye, L.; Bai, Y.; Sun, A.; Cox, B.; Liu, D.; Li, Y.; Liotta, D.; Snyder, J.P.; Fu, H.; Huang, B. Autophagy and apoptosis in hepatocellular carcinoma induced by EF25-(GSH)2: a novel curcumin analog. PLoS One, 2014, 9(9), e107876. doi: 10.1371/journal.pone.0107876 PMID: 25268357
  179. Zhao, X.; Chen, Q.; Liu, W.; Li, Y.; Tang, H.; Liu, X.; Yang, X. Codelivery of doxorubicin and curcumin with lipid nanoparticles results in improved efficacy of chemotherapy in liver cancer. Int. J. Nanomedicine, 2014, 10, 257-270. PMID: 25565818
  180. Muangnoi, C.; Na Bhuket, P.R.; Jithavech, P.; Supasena, W.; Paraoan, L.; Patumraj, S.; Rojsitthisak, P. Curcumin diethyl disuccinate, a prodrug of curcumin, enhances anti-proliferative effect of curcumin against HepG2 cells via apoptosis induction - Scientific Reports. Nature, 2019.
  181. Wang, J.; Xie, H.; Gao, F.; Zhao, T.; Yang, H.; Kang, B. Curcumin induces apoptosis in p53-null Hep3B cells through a TAp73/DNp73-dependent pathway. Tumour Biol., 2016, 37(3), 4203-4212. doi: 10.1007/s13277-015-4029-3 PMID: 26490992
  182. Sumirtanurdin, R.; Sungkar, S.; Hisprastin, Y.; Sidharta, K.D.; Nurhikmah, D.D. Molecular docking simulation studies of curcumin and its derivatives as cyclin-dependent kinase 2 inhibitors. Turk. J. Pharm. Sci., 2020, 17(4), 417-423.
  183. Kesharwani, R.K.; Singh, D.B.; Singh, D.V.; Misra, K. Computational study of curcumin analogues by targeting DNA topoisomerase II: A structure-based drug designing approach. Netw. Model. Anal. Health Inform. Bioinform., 2018, 7(1), 15. doi: 10.1007/s13721-018-0179-8
  184. Yadav, I.S.; Nandekar, P.P.; Shrivastava, S.; Sangamwar, A.; Chaudhury, A.; Agarwal, S.M. Ensemble docking and molecular dynamics identify knoevenagel curcumin derivatives with potent anti-EGFR activity. Gene, 2014, 539(1), 82-90. doi: 10.1016/j.gene.2014.01.056 PMID: 24491504
  185. Laali, K.K.; Greves, W.J.; Zwarycz, A.T.; Correa Smits, S.J.; Troendle, F.J.; Borosky, G.L.; Akhtar, S.; Manna, A.; Paulus, A.; Chanan-Khan, A.; Nukaya, M.; Kennedy, G.D. Synthesis, computational docking study, and biological evaluation of a library of heterocyclic curcuminoids with remarkable antitumor activity. ChemMedChem, 2018, 13(18), 1895-1908. doi: 10.1002/cmdc.201800320 PMID: 30079563
  186. Ghrifi, F.; Allam, L.; Wiame, L.; Ibrahimi, A. Curcumin-synthetic analogs library screening by docking and quantitative structure-activity relationship studies for AXL tyrosine kinase inhibition in cancers. J. Comput. Biol., 2019, 26(10), 1156-1167.
  187. Bhuvaneswari, K.; Sivaguru, P.; Lalitha, A. Synthesis, biological evaluation and molecular docking of novel curcumin derivatives as Bcl-2 inhibitors targeting human breast cancer MCF-7 cells. ChemistrySelect, 2017, 2(35), 11552-11560. doi: 10.1002/slct.201702406
  188. Pushpalatha, R.; Selvamuthukumar, S.; Kilimozhi, D. Comparative insilico docking analysis of curcumin and resveratrol on breast cancer proteins and their synergistic effect on MCF-7 cell line. J. Young Pharm., 2017, 9(4), 480-485.
  189. Widyananda, M.H.; Ansori, A.N.M.; Kharisma, V.D. Investigating the potential of curcumin, demethoxycurcumin and bisdemethoxycurcumin as wildtype and mutant her2 inhibitors against various cancer types using bioinformatics analysis. Biochem. Cell. Arch., 2021, 21, 3335-3343.
  190. Panda, S.S.; Tran, Q.L.; Rajpurohit, P.; Pillai, G.G.; Thomas, S.J.; Bridges, A.E.; Capito, J.E.; Thangaraju, M.; Lokeshwar, B.L. Design, synthesis, and molecular docking studies of curcumin hybrid conjugates as potential therapeutics for breast cancer. Pharmaceuticals, 2022, 15(4), 451. doi: 10.3390/ph15040451 PMID: 35455448
  191. Mirzai, M.; Nazemi, H. In silico interactions between curcumin derivatives and monoamine oxidase-A enzyme. Biointerface Res. Appl. Chem., 2021.
  192. Zuo, Y.; Huang, J.; Zhou, B.; Wang, S.; Shao, W.; Zhu, C.; Lin, L.; Wen, G.; Wang, H.; Du, J.; Bu, X. Synthesis, cytotoxicity of new 4-arylidene curcumin analogues and their multi-functions in inhibition of both NF-κB and Akt signalling. Eur. J. Med. Chem., 2012, 55, 346-357. doi: 10.1016/j.ejmech.2012.07.039 PMID: 22889562
  193. Ahsan, M.J.; Choudhary, K.; Jadav, S.S.; Yasmin, S.; Ansari, M.Y.; Sreenivasulu, R. Synthesis, antiproliferative activity, and molecular docking studies of curcumin analogues bearing pyrazole ring. Med. Chem. Res., 2015, 24(12), 4166-4180. doi: 10.1007/s00044-015-1457-y
  194. Rodrigues, F.C.; Kumar, N.V.A.; Hari, G.; Pai, K.S.R.; Thakur, G. The inhibitory potency of isoxazole-curcumin analogue for the management of breast cancer: A comparative in vitro and molecular modeling investigation. Chem. Zvesti, 2021, 75(11), 5995-6008. doi: 10.1007/s11696-021-01775-9
  195. Hoda, N.; Naz, H.; Jameel, E.; Shandilya, A.; Dey, S.; Hassan, M.I.; Ahmad, F.; Jayaram, B. Curcumin specifically binds to the human calcium-calmodulin-dependent protein kinase IV: fluorescence and molecular dynamics simulation studies. J. Biomol. Struct. Dyn., 2016, 34(3), 572-584. doi: 10.1080/07391102.2015.1046934 PMID: 25929263
  196. Chaudhary, M.; Kumar, N.; Baldi, A.; Chandra, R.; Arockia Babu, M.; Madan, J. Chloro and bromo-pyrazole curcumin Knoevenagel condensates augmented anticancer activity against human cervical cancer cells: Design, synthesis, in silico docking and in vitro cytotoxicity analysis. J. Biomol. Struct. Dyn., 2020, 38(1), 200-218. doi: 10.1080/07391102.2019.1578264 PMID: 30784365
  197. Sufi, S.A.; Adigopula, L.N.; Syed, S.B.; Mukherjee, V.; Coumar, M.S.; Rao, H.S.; Rajagopalan, R. In-silico and in-vitro anti-cancer potential of a curcumin analogue (1E, 6E)-1, 7-di (1H-indol-3-yl) hepta-1, 6-diene-3, 5-dione. Biomed. Pharmacother., 2017, 85, 389-398.
  198. Bustanji, Y.; Taha, M.O.; Almasri, I.M.; Al-Ghussein, M.A.S.; Mohammad, M.K.; Alkhatib, H.S. Inhibition of glycogen synthase kinase by curcumin: Investigation by simulated molecular docking and subsequent in vitro/in vivo evaluation. J. Enzyme Inhib. Med. Chem., 2009, 24(3), 771-778. doi: 10.1080/14756360802364377 PMID: 18720192
  199. Furlan, V.; Konc, J.; Bren, U. Inverse molecular docking as a novel approach to study anticarcinogenic and anti-neuroinflammatory effects of curcumin. Molecules, 2018, 23(12), 3351. doi: 10.3390/molecules23123351 PMID: 30567342
  200. Rampogu, S.; Lee, G.; Park, J.S.; Lee, K.W.; Kim, M.O. Molecular docking and molecular dynamics simulations discover curcumin analogue as a plausible dual inhibitor for SARS-CoV-2. Int. J. Mol. Sci., 2022, 23(3), 1771. doi: 10.3390/ijms23031771 PMID: 35163692
  201. Bukhari, S.N.A.; Jantan, I.; Unsal Tan, O.; Sher, M. Naeem-ul-Hassan, M.; Qin, H.L. Biological activity and molecular docking studies of curcumin-related αβ-unsaturated carbonyl-based synthetic compounds as anticancer agents and mushroom tyrosinase inhibitors. J. Agric. Food Chem., 2014, 62(24), 5538-5547. doi: 10.1021/jf501145b PMID: 24901506
  202. Sarhan, A.E.; Elhefny, E.A.; Nasef, A.M.; Aly, M.S.; Fawzy, N.M. Synthesis, cytotoxicity evaluation, and molecular docking studies of novel pyrrole derivatives of khellin and visnagin via one-pot condensation reaction with curcumin. Russ. J. Bioorganic Chem., 2020, 46(6), 1117-1127. doi: 10.1134/S1068162020060072
  203. Cheemanapalli, S.; Chinthakunta, N.; Shaikh, N.M.; Shivaranjani, V.; Pamuru, R.R.; Chitta, S.K. Comparative binding studies of curcumin and tangeretin on up-stream elements of NF-kB cascade: A combined molecular docking approach. Netw. Model. Anal. Health Inform. Bioinform., 2019, 8(1), 15. doi: 10.1007/s13721-019-0196-2
  204. Ali, A.; Ali, A.; Tahir, A.; Bakht, M.A. Salahuddin; Ahsan, M.J. Molecular engineering of curcumin, an active constituent of Curcuma longa L. (Turmeric) of the family Zingiberaceae with improved antiproliferative activity. Plants, 2021, 10(8), 1559. doi: 10.3390/plants10081559 PMID: 34451604
  205. Chowrasia, D.; Jafri, A.; Azad, I.; Rais, J.; Sharma, N.; Khan, F.; Kumar, A.; Kumar, S.; Arshad, M. In vitro and in silico growth inhibitory, anti-ovarian & anti-lung carcinoma effects of 1,5 diarylpenta-1,4-dien-3-one as synthetically modified curcumin analogue. J. Biomol. Struct. Dyn., 2021, 1-18. Advance online publication PMID: 33955334
  206. Kumar, A.; Bora, U. Molecular docking studies of curcumin natural derivatives with DNA topoisomerase I and II-DNA complexes. Interdiscip. Sci., 2014, 6(4), 285-291. doi: 10.1007/s12539-012-0048-6 PMID: 25118649
  207. Liang, Y.; Zhang, T.; Ren, L.; Jing, S.; Li, Z.; Zuo, P.; Li, T.; Wang, Y.; Zhang, J.; Wei, Z. Cucurbitacin IIb induces apoptosis and cell cycle arrest through regulating EGFR/MAPK pathway. Environ. Toxicol. Pharmacol., 2021, 81, 103542. doi: 10.1016/j.etap.2020.103542 PMID: 33161110
  208. Aman, L.O.; Kartasasmita, R.E.; Tjahjono, D.H. Virtual screening of curcumin analogues as DYRK2 inhibitor: Pharmacophore analysis, molecular docking and dynamics, and ADME prediction. F1000 Res., 2021, 10, 394. doi: 10.12688/f1000research.28040.1
  209. Shah, V.; Bhaliya, J.; Patel, G.M. In silico docking and ADME study of deketene curcumin derivatives (DKC) as an aromatase inhibitor or antagonist to the estrogen-alpha positive receptor (Erα+): potent application of breast cancer. Struct. Chem., 2022, 33(2), 571-600. doi: 10.1007/s11224-021-01871-2 PMID: 35106036
  210. Kandagalla, S.; Sharath, B.S.; Bharath, B.R. hani, U.; Manjunatha, H. Molecular docking analysis of curcumin analogues against kinase domain of ALK5. In Silico Pharmacol., 2017, 5(1), 15. doi: 10.1007/s40203-017-0034-0 PMID: 29308351
  211. Ramya, P.V.S.; Guntuku, L.; Angapelly, S.; Digwal, C.S.; Lakshmi, U.J.; Sigalapalli, D.K.; Babu, B.N.; Naidu, V.G.M.; Kamal, A. Synthesis and biological evaluation of curcumin inspired imidazo1,2-apyridine analogues as tubulin polymerization inhibitors. Eur. J. Med. Chem., 2018, 143, 216-231. doi: 10.1016/j.ejmech.2017.11.010 PMID: 29174816
  212. Liu, M.; Yuan, M.; Luo, M.; Bu, X.; Luo, H.B.; Hu, X. Binding of curcumin with glyoxalase I: Molecular docking, molecular dynamics simulations, and kinetics analysis. Biophys. Chem., 2010, 147(1-2), 28-34. doi: 10.1016/j.bpc.2009.12.007 PMID: 20071071
  213. Mahajanakatti, A.B.; Murthy, G.; Sharma, N.; Skariyachan, S. Exploring inhibitory potential of curcumin against various cancer targets by in silico virtual screening. Interdiscip. Sci., 2014, 6(1), 13-24. doi: 10.1007/s12539-014-0170-8 PMID: 24464700
  214. Sharma, R.; Jadav, S.S.; Yasmin, S.; Bhatia, S.; Khalilullah, H.; Ahsan, M.J. Simple, efficient, and improved synthesis of Biginelli-type compounds of curcumin as anticancer agents. Med. Chem. Res., 2015, 24(2), 636-644. doi: 10.1007/s00044-014-1146-2

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers