Protective Roles and Therapeutic Effects of Gallic Acid in the Treatment of Cardiovascular Diseases: Current Trends and Future Directions


Цитировать

Полный текст

Аннотация

Cardiovascular diseases (CVDs) are serious life-threatening illnesses and significant problematic issues for public health having a heavy economic burden on all society worldwide. The high incidence of these diseases as well as high mortality rates make them the leading causes of death and disability. Therefore, finding novel and more effective therapeutic methods is urgently required. Gallic acid, an herbal medicine with numerous biological properties, has been utilized in the treatment of various diseases for thousands of years. It has been demonstrated that gallic acid possesses pharmacological potential in regulating several molecular and cellular processes such as apoptosis and autophagy. Moreover, gallic acid has been investigated in the treatment of CVDs both in vivo and in vitro. Herein, we aimed to review the available evidence on the therapeutic application of gallic acid for CVDs including myocardial ischemia-reperfusion injury and infarction, drug-induced cardiotoxicity, hypertension, cardiac fibrosis, and heart failure, with a focus on underlying mechanisms.

Об авторах

Zahra Momeni

, Kurdistan University of Medical Sciences

Email: info@benthamscience.net

Sepideh Danesh

Research Hub Institute, Tehran University of Medical Sciences

Email: info@benthamscience.net

Mahsa Ahmadpour

Research Hub Institute,, Tehran University of Medical Sciences

Email: info@benthamscience.net

Reza Eshraghi

School of Medicine, Kashan University of Medical Sciences

Email: info@benthamscience.net

Tahereh Farkhondeh

Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences

Email: info@benthamscience.net

Mohammad Pourhanifeh

Research Hub Institute, Tehran University of Medical Sciences

Автор, ответственный за переписку.
Email: info@benthamscience.net

Saeed Samarghandian

, University of Neyshabur Healthy Ageing Research Centre, Neyshabur University of Medical Sciences

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; Delling, F.N.; Djousse, L.; Elkind, M.S.V.; Ferguson, J.F.; Fornage, M.; Jordan, L.C.; Khan, S.S.; Kissela, B.M.; Knutson, K.L.; Kwan, T.W.; Lackland, D.T.; Lewis, T.T.; Lichtman, J.H.; Longenecker, C.T.; Loop, M.S.; Lutsey, P.L.; Martin, S.S.; Matsushita, K.; Moran, A.E.; Mussolino, M.E.; O’Flaherty, M.; Pandey, A.; Perak, A.M.; Rosamond, W.D.; Roth, G.A.; Sampson, U.K.A.; Satou, G.M.; Schroeder, E.B.; Shah, S.H.; Spartano, N.L.; Stokes, A.; Tirschwell, D.L.; Tsao, C.W.; Turakhia, M.P.; VanWagner, L.B.; Wilkins, J.T.; Wong, S.S.; Virani, S.S. Heart disease and stroke statistics—2019 update: A report from the American Heart Association. Circulation, 2019, 139(10), e56-e528. doi: 10.1161/CIR.0000000000000659 PMID: 30700139
  2. Lorber, D. Importance of cardiovascular disease risk management in patients with type 2 diabetes mellitus. Diabetes Metab. Syndr. Obes., 2014, 7, 169-183. doi: 10.2147/DMSO.S61438 PMID: 24920930
  3. Stone, N.J.; Robinson, J.G.; Lichtenstein, A.H.; Bairey Merz, C.N.; Blum, C.B.; Eckel, R.H.; Goldberg, A.C.; Gordon, D.; Levy, D.; Lloyd-Jones, D.M.; McBride, P.; Schwartz, J.S.; Shero, S.T.; Smith, S.C., Jr; Watson, K.; Wilson, P.W.F. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol., 2014, 63(25)(25 Pt B), 2889-2934. doi: 10.1016/j.jacc.2013.11.002 PMID: 24239923
  4. Samarghandian, S., Borji, A. and Hidar Tabasi, S., Effects of Cichorium intybus linn on blood glucose, lipid constituents and selected oxidative stress parameters in streptozotocin-induced diabetic rats. Cardiovasc. Haematol. Disord. Drug Targets (Formerly Current Drug Targets-Cardiovasc. Hematol. Disord.), 2013, 13(3), 231-236.
  5. Zhang, H.Y.; Wang, L.F. Theoretical elucidation on structure–Antioxidant activity relationships for indolinonic hydroxylamines. Bioorg. Med. Chem. Lett., 2002, 12(2), 225-227. doi: 10.1016/S0960-894X(01)00724-7 PMID: 11755360
  6. Stanely Mainzen Prince, P.; Priscilla, H.; Devika, P.T. Gallic acid prevents lysosomal damage in isoproterenol induced cardiotoxicity in Wistar rats. Eur. J. Pharmacol., 2009, 615(1-3), 139-143. doi: 10.1016/j.ejphar.2009.05.003 PMID: 19450577
  7. Abdelwahed, A.; Bouhlel, I.; Skandrani, I.; Valenti, K.; Kadri, M.; Guiraud, P.; Steiman, R.; Mariotte, A.M.; Ghedira, K.; Laporte, F.; Dijoux-Franca, M.G.; Chekir-Ghedira, L. Study of antimutagenic and antioxidant activities of Gallic acid and 1,2,3,4,6-pentagalloylglucose from Pistacia lentiscus. Chem. Biol. Interact., 2007, 165(1), 1-13. doi: 10.1016/j.cbi.2006.10.003 PMID: 17129579
  8. Yen, G.C.; Duh, P.D.; Tsai, H.L. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem., 2002, 79(3), 307-313. doi: 10.1016/S0308-8146(02)00145-0
  9. Pal, C.; Bindu, S.; Dey, S.; Alam, A.; Goyal, M.; Iqbal, M.S.; Maity, P.; Adhikari, S.S.; Bandyopadhyay, U. Gallic acid prevents nonsteroidal anti-inflammatory drug-induced gastropathy in rat by blocking oxidative stress and apoptosis. Free Radic. Biol. Med., 2010, 49(2), 258-267. doi: 10.1016/j.freeradbiomed.2010.04.013 PMID: 20406680
  10. Ban, J.Y.; Nguyen, H.T.T.; Lee, H.J.; Cho, S.O.; Ju, H.S.; Kim, J.Y.; Bae, K.; Song, K.S.; Seong, Y.H. Neuroprotective properties of gallic acid from Sanguisorbae radix on amyloid β protein (25--35)-induced toxicity in cultured rat cortical neurons. Biol. Pharm. Bull., 2008, 31(1), 149-153. doi: 10.1248/bpb.31.149 PMID: 18175960
  11. Bai, J.; Zhang, Y.; Tang, C.; Hou, Y.; Ai, X.; Chen, X.; Zhang, Y.; Wang, X.; Meng, X. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed. Pharmacother., 2021, 133, 110985. doi: 10.1016/j.biopha.2020.110985 PMID: 33212373
  12. Nabavi, S.F.; Habtemariam, S.; Jafari, M.; Sureda, A.; Nabavi, S.M. Protective role of gallic acid on sodium fluoride induced oxidative stress in rat brain. Bull. Environ. Contam. Toxicol., 2012, 89(1), 73-77. doi: 10.1007/s00128-012-0645-4 PMID: 22531840
  13. Chandramohan Reddy, T.; Bharat Reddy, D.; Aparna, A.; Arunasree, K.M.; Gupta, G.; Achari, C.; Reddy, G.V.; Lakshmipathi, V.; Subramanyam, A.; Reddanna, P. Anti-leukemic effects of gallic acid on human leukemia K562 cells: Downregulation of COX-2, inhibition of BCR/ABL kinase and NF-κB inactivation. Toxicol. In Vitro, 2012, 26(3), 396-405. doi: 10.1016/j.tiv.2011.12.018 PMID: 22245431
  14. Chen, Y.J.; Chang, L.S. Gallic acid downregulates matrix metalloproteinase-2 (MMP-2) and MMP-9 in human leukemia cells with expressed Bcr/Abl. Mol. Nutr. Food Res., 2012, 56(9), 1398-1412. doi: 10.1002/mnfr.201200167 PMID: 22865631
  15. Ho, H.H.; Chang, C.S.; Ho, W.C.; Liao, S.Y.; Lin, W.L.; Wang, C.J. Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Toxicol. Appl. Pharmacol., 2013, 266(1), 76-85. doi: 10.1016/j.taap.2012.10.019 PMID: 23153558
  16. Hsiang, C.Y.; Hseu, Y.C.; Chang, Y.C.; Kumar, K.J.S.; Ho, T.Y.; Yang, H.L. Toona sinensis and its major bioactive compound gallic acid inhibit LPS-induced inflammation in nuclear factor-κB transgenic mice as evaluated by in vivo bioluminescence imaging. Food Chem., 2013, 136(2), 426-434. doi: 10.1016/j.foodchem.2012.08.009 PMID: 23122080
  17. Yoon, C.H.; Chung, S.J.; Lee, S.W.; Park, Y.B.; Lee, S.K.; Park, M.C. Gallic acid, a natural polyphenolic acid, induces apoptosis and inhibits proinflammatory gene expressions in rheumatoid arthritis fibroblast-like synoviocytes. Joint Bone Spine, 2013, 80(3), 274-279. doi: 10.1016/j.jbspin.2012.08.010 PMID: 23058179
  18. Priscilla, D.H.; Prince, P.S.M. Cardioprotective effect of gallic acid on cardiac troponin-T, cardiac marker enzymes, lipid peroxidation products and antioxidants in experimentally induced myocardial infarction in Wistar rats. Chem. Biol. Interact., 2009, 179(2-3), 118-124. doi: 10.1016/j.cbi.2008.12.012 PMID: 19146839
  19. Umadevi, S.; Gopi, V.; Simna, S.P.; Parthasarathy, A.; Yousuf, S.M.J.; Elangovan, V. Studies on the cardioprotective role of gallic acid against AGE-induced cell proliferation and oxidative stress in H9C2 (2-1) cells. Cardiovasc. Toxicol., 2012, 12(4), 304-311. doi: 10.1007/s12012-012-9170-2 PMID: 22588841
  20. Punithavathi, V.R.; Stanely Mainzen Prince, P.; Kumar, M.R.; Selvakumari, C.J. Protective effects of gallic acid on hepatic lipid peroxide metabolism, glycoprotein components and lipids in streptozotocin-induced type II diabetic wistar rats. J. Biochem. Mol. Toxicol., 2011, 25(2), 68-76. doi: 10.1002/jbt.20360 PMID: 21472896
  21. Tung, Y.T.; Wu, J.H.; Huang, C.C.; Peng, H.C.; Chen, Y.L.; Yang, S.C.; Chang, S.T. Protective effect of Acacia confusa bark extract and its active compound gallic acid against carbon tetrachloride-induced chronic liver injury in rats. Food Chem. Toxicol., 2009, 47(6), 1385-1392. doi: 10.1016/j.fct.2009.03.021 PMID: 19327382
  22. Kratz, J.M.; Andrighetti-Fröhner, C.R.; Kolling, D.J.; Leal, P.C.; Cirne-Santos, C.C.; Yunes, R.A.; Nunes, R.J.; Trybala, E.; Bergström, T.; Frugulhetti, I.C.P.P.; Barardi, C.R.M.; Simões, C.M.O. Anti-HSV-1 and anti-HIV-1 activity of gallic acid and pentyl gallate. Mem. Inst. Oswaldo Cruz, 2008, 103(5), 437-442. doi: 10.1590/S0074-02762008000500005 PMID: 18797755
  23. Jung, J.; Bae, K.H.; Jeong, C.S. Anti-Helicobacter pylori and antiulcerogenic activities of the root cortex of Paeonia suffruticosa. Biol. Pharm. Bull., 2013, 36(10), 1535-1539. doi: 10.1248/bpb.b13-00225 PMID: 24088252
  24. Kubo, I.; Fujita, K.; Nihei, K.; Masuoka, N. Non-antibiotic antibacterial activity of dodecyl gallate. Bioorg. Med. Chem., 2003, 11(4), 573-580. doi: 10.1016/S0968-0896(02)00436-4 PMID: 12538022
  25. Kubo, I.; Xiao, P.; Fujita, K. Antifungal activity of octyl gallate: Structural criteria and mode of action. Bioorg. Med. Chem. Lett., 2001, 11(3), 347-350. doi: 10.1016/S0960-894X(00)00656-9 PMID: 11212107
  26. Doan, K.V.; Ko, C.M.; Kinyua, A.W.; Yang, D.J.; Choi, Y.H.; Oh, I.Y.; Nguyen, N.M.; Ko, A.; Choi, J.W.; Jeong, Y.; Jung, M.H.; Cho, W.G.; Xu, S.; Park, K.S.; Park, W.J.; Choi, S.Y.; Kim, H.S.; Moh, S.H.; Kim, K.W. Gallic acid regulates body weight and glucose homeostasis through AMPK activation. Endocrinology, 2015, 156(1), 157-168. doi: 10.1210/en.2014-1354 PMID: 25356824
  27. Huang, D.W.; Chang, W.C.; Wu, J.S.B.; Shih, R.W.; Shen, S.C. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet. Nutr. Res., 2016, 36(2), 150-160. doi: 10.1016/j.nutres.2015.10.001 PMID: 26547672
  28. Niho, N.; Shibutani, M.; Tamura, T.; Toyoda, K.; Uneyama, C.; Takahashi, N.; Hirose, M. Subchronic toxicity study of gallic acid by oral administration in F344 rats. Food Chem. Toxicol., 2001, 39(11), 1063-1070. doi: 10.1016/S0278-6915(01)00054-0 PMID: 11527565
  29. Su, T.R.; Lin, J.J.; Tsai, C.C.; Huang, T.K.; Yang, Z.Y.; Wu, M.O.; Zheng, Y.Q.; Su, C.C.; Wu, Y.J. Inhibition of melanogenesis by gallic acid: Possible involvement of the PI3K/Akt, MEK/ERK and Wnt/β-catenin signaling pathways in B16F10 cells. Int. J. Mol. Sci., 2013, 14(10), 20443-20458. doi: 10.3390/ijms141020443 PMID: 24129178
  30. Shaterzadeh-Yazdi H, Noorbakhsh MF, Hayati F, Samarghandian S, Farkhondeh T. Immunomodulatory and anti-inflammatory effects of thymoquinone. Cardiovasc. Haematol. Disord. Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders). 2018, 18(1), 52-60. doi: 10.1155/2018/1081287 PMID: 29765489
  31. Tanaka, M.; Sato, A.; Kishimoto, Y.; Mabashi-Asazuma, H.; Kondo, K.; Iida, K. Gallic acid inhibits lipid accumulation via ampk pathway and suppresses apoptosis and macrophage-mediated inflammation in hepatocytes. Nutrients, 2020, 12(5), 1479. doi: 10.3390/nu12051479 PMID: 32443660
  32. Haute, G.V.; Caberlon, E.; Squizani, E.; de Mesquita, F.C.; Pedrazza, L.; Martha, B.A.; da Silva Melo, D.A.; Cassel, E.; Czepielewski, R.S.; Bitencourt, S.; Goettert, M.I.; de Oliveira, J.R. Gallic acid reduces the effect of LPS on apoptosis and inhibits the formation of neutrophil extracellular traps. Toxicol. In Vitro, 2015, 30(1), 309-317. doi: 10.1016/j.tiv.2015.10.005 PMID: 26475966
  33. Kim, M.J.; Seong, A.R.; Yoo, J.Y.; Jin, C.H.; Lee, Y.H.; Kim, Y.J.; Lee, J.; Jun, W.J.; Yoon, H.G. Gallic acid, a histone acetyltransferase inhibitor, suppresses β-amyloid neurotoxicity by inhibiting microglial-mediated neuroinflammation. Mol. Nutr. Food Res., 2011, 55(12), 1798-1808. doi: 10.1002/mnfr.201100262 PMID: 22038937
  34. Li, Y.; Yang, Q.; Shi, Z.; Zhou, M.; Yan, L.; Li, H.; Xie, Y.; Wang, S. The anti-inflammatory effect of feiyangchangweiyan capsule and its main components on pelvic inflammatory disease in rats via the regulation of the NF- κ B and BAX/BCL-2 pathway. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-11. doi: 10.1155/2019/9585727 PMID: 31312226
  35. Variya, B.C.; Bakrania, A.K.; Madan, P.; Patel, S.S. Acute and 28-days repeated dose sub-acute toxicity study of gallic acid in albino mice. Regul. Toxicol. Pharmacol., 2019, 101, 71-78. doi: 10.1016/j.yrtph.2018.11.010 PMID: 30465803
  36. Shamsi, S.; Abdul Ghafor, A.A.H.; Norjoshukrudin, N.H.; Ng, I.M.J.; Abdullah, S.N.S.; Sarchio, S.N.E.; Md Yasin, F.; Abd Gani, S.; Mohd Desa, M.N. Stability, toxicity, and antibacterial potential of gallic acid-loaded graphene oxide (gago) against methicillin-resistant Staphylococcus aureus (MRSA) strains. Int. J. Nanomedicine, 2022, 17, 5781-5807. doi: 10.2147/IJN.S369373 PMID: 36474524
  37. Kim, J.H.; Kang, N.J.; Lee, B.K.; Lee, K.W.; Lee, H.J. Gallic acid, a metabolite of the antioxidant propyl gallate, inhibits gap junctional intercellular communication via phosphorylation of connexin 43 and extracellular-signal-regulated kinase1/2 in rat liver epithelial cells. Mutat. Res., 2008, 638(1-2), 175-183. doi: 10.1016/j.mrfmmm.2007.10.005 PMID: 18054051
  38. Quiles-Carrillo, L.; Montanes, N.; Lagaron, J.; Balart, R.; Torres-Giner, S. Bioactive multilayer polylactide films with controlled release capacity of gallic acid accomplished by incorporating electrospun nanostructured coatings and interlayers. Appl. Sci., 2019, 9(3), 533. doi: 10.3390/app9030533
  39. Quiles-Carrillo, L.; Montava-Jordà, S.; Boronat, T.; Sammon, C.; Balart, R.; Torres-Giner, S. On the use of gallic acid as a potential natural antioxidant and ultraviolet light stabilizer in cast-extruded bio-based high-density polyethylene films. Polymers, 2019, 12(1), 31. doi: 10.3390/polym12010031 PMID: 31878014
  40. Rajamanickam, K.; Yang, J.; Sakharkar, M.K. Gallic acid potentiates the antimicrobial activity of tulathromycin against two key bovine respiratory disease (BRD) causing-pathogens. Front. Pharmacol., 2019, 9, 1486. doi: 10.3389/fphar.2018.01486 PMID: 30662404
  41. Lee, J.H.; Oh, M.; Seok, J.; Kim, S.; Lee, D.; Bae, G.; Bae, H.I.; Bae, S.; Hong, Y.M.; Kwon, S.O.; Lee, D.H.; Song, C.S.; Mun, J.; Chung, M.; Kim, K. Antiviral effects of black raspberry (Rubus coreanus) seed and its gallic acid against influenza virus infection. Viruses, 2016, 8(6), 157. doi: 10.3390/v8060157 PMID: 27275830
  42. Harikrishnan, H.; Jantan, I.; Alagan, A.; Haque, M.A. Modulation of cell signaling pathways by Phyllanthus amarus and its major constituents: Potential role in the prevention and treatment of inflammation and cancer. Inflammopharmacology, 2020, 28(1), 1-18. doi: 10.1007/s10787-019-00671-9 PMID: 31792765
  43. BenSaad, L.A.; Kim, K.H.; Quah, C.C.; Kim, W.R.; Shahimi, M. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum. BMC Complement. Altern. Med., 2017, 17(1), 47. doi: 10.1186/s12906-017-1555-0 PMID: 28088220
  44. Baptista, B.J.A.; Granato, A.; Canto, F.B.; Montalvão, F.; Tostes, L.; de Matos Guedes, H.L.; Coutinho, A.; Bellio, M.; Vale, A.M.; Nobrega, A. TLR9 signaling suppresses the canonical plasma cell differentiation program in follicular B cells. Front. Immunol., 2018, 9, 2281. doi: 10.3389/fimmu.2018.02281 PMID: 30546358
  45. Parada, E.; Casas, A.I.; Palomino-Antolin, A.; Gómez-Rangel, V.; Rubio-Navarro, A.; Farré-Alins, V.; Narros-Fernandez, P.; Guerrero-Hue, M.; Moreno, J.A.; Rosa, J.M.; Roda, J.M.; Hernández-García, B.J.; Egea, J. Early toll-like receptor 4 blockade reduces ROS and inflammation triggered by microglial pro-inflammatory phenotype in rodent and human brain ischaemia models. Br. J. Pharmacol., 2019, 176(15), 2764-2779. doi: 10.1111/bph.14703 PMID: 31074003
  46. Kartkaya, K.; Oğlakçı, A.; Şentürk, H.; Bayramoğlu, G.; Canbek, M.; Kanbak, G. Investigation of the possible protective role of gallic acid on paraoxanase and arylesterase activities in livers of rats with acute alcohol intoxication. Cell Biochem. Funct., 2013, 31(3), 208-213. doi: 10.1002/cbf.2874 PMID: 22945768
  47. Suganya, S.; Schneider, L.; Nandagopal, B. Molecular docking studies of potential inhibition of the alcohol dehydrogenase enzyme by phyllanthin, hypophyllanthin and gallic acid. Crit. Rev. Eukaryot. Gene. Expr., 2019, 29(4), 287-294. doi: 10.1615/CritRevEukaryotGeneExpr.2019025602
  48. Goel, R. Medicinal plants as antidiabetics: A review. Int. Bull. Drug. Res., 2012, 1(2), 100-107.
  49. Patel, D.K.; Kumar, R.; Laloo, D.; Hemalatha, S. Natural medicines from plant source used for therapy of diabetes mellitus: An overview of its pharmacological aspects. Asian Pac. J. Trop. Dis., 2012, 2(3), 239-250. doi: 10.1016/S2222-1808(12)60054-1
  50. Sabu, M.C.; Smitha, K.; Kuttan, R. Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J. Ethnopharmacol., 2002, 83(1-2), 109-116. doi: 10.1016/S0378-8741(02)00217-9 PMID: 12413715
  51. Goyal, R.K.; Patel, S.S. Cardioprotective effects of gallic acid in diabetes-induced myocardial dysfunction in rats. Pharmacognosy Res., 2011, 3(4), 239-245. doi: 10.4103/0974-8490.89743 PMID: 22224046
  52. Rao, T.P.; Sakaguchi, N.; Juneja, L.R.; Wada, E.; Yokozawa, T. Amla (Emblica officinalis Gaertn.) extracts reduce oxidative stress in streptozotocin-induced diabetic rats. J. Med. Food, 2005, 8(3), 362-368. doi: 10.1089/jmf.2005.8.362 PMID: 16176148
  53. Variya, B.C.; Bakrania, A.K.; Patel, S.S. Antidiabetic potential of gallic acid from Emblica officinalis: Improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling. Phytomedicine, 2020, 73, 152906. doi: 10.1016/j.phymed.2019.152906 PMID: 31064680
  54. Nayeem, N.; Smb, A. Gallic acid: A promising lead molecule for drug development. J. Appl. Pharm., 2016, 8(2), 1-4. doi: 10.4172/1920-4159.1000213
  55. Badhani, B.; Sharma, N.; Kakkar, R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Adv., 2015, 5(35), 27540-27557. doi: 10.1039/C5RA01911G
  56. Ashrafizadeh M, Ahmadi Z, Kotla NG, Afshar EG, Samarghandian S, Mandegary A, Pardakhty A, Mohammadinejad R, Sethi G. Nanoparticles targeting STATs in cancer therapy. Cells. 2019, 8(10):1158.
  57. Kaur, M.; Velmurugan, B.; Rajamanickam, S.; Agarwal, R.; Agarwal, C. Gallic acid, an active constituent of grape seed extract, exhibits anti-proliferative, pro-apoptotic and anti-tumorigenic effects against prostate carcinoma xenograft growth in nude mice. Pharm. Res., 2009, 26(9), 2133-2140. doi: 10.1007/s11095-009-9926-y PMID: 19543955
  58. Wang, K.; Zhu, X.; Zhang, K.; Zhu, L.; Zhou, F. Investigation of gallic acid induced anticancer effect in human breast carcinoma MCF-7 cells. J. Biochem. Mol. Toxicol., 2014, 28(9), 387-393. doi: 10.1002/jbt.21575 PMID: 24864015
  59. Lu, Y.; Jiang, F.; Jiang, H.; Wu, K.; Zheng, X.; Cai, Y.; Katakowski, M.; Chopp, M.; To, S.S.T. Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells. Eur. J. Pharmacol., 2010, 641(2-3), 102-107. doi: 10.1016/j.ejphar.2010.05.043 PMID: 20553913
  60. Liu, Z.; Li, D.; Yu, L.; Niu, F. Gallic acid as a cancer-selective agent induces apoptosis in pancreatic cancer cells. Chemotherapy, 2012, 58(3), 185-194. doi: 10.1159/000337103 PMID: 22739044
  61. Tiejing, L.; Xin, Z.; Xinhuai, Z. Powerful protective effects of gallic acid and tea polyphenols on human hepatocytes injury induced by hydrogen peroxide or carbon tetrachloride in vitro. J. Med. Plants Res., 2010, 4(3), 247-254.
  62. Verma, S.; Singh, A.; Mishra, A. Gallic acid: Molecular rival of cancer. Environ. Toxicol. Pharmacol., 2013, 35(3), 473-485. doi: 10.1016/j.etap.2013.02.011 PMID: 23501608
  63. Kee, H.J.; Cho, S.N.; Kim, G.R.; Choi, S.Y.; Ryu, Y.; Kim, I.K.; Hong, Y.J.; Park, H.W.; Ahn, Y.; Cho, J.G.; Park, J.C.; Jeong, M.H. Gallic acid inhibits vascular calcification through the blockade of BMP2–Smad1/5/8 signaling pathway. Vascul. Pharmacol., 2014, 63(2), 71-78. doi: 10.1016/j.vph.2014.08.005 PMID: 25446167
  64. Yan, X.; Zhang, Y.L.; Zhang, L.; Zou, L.X.; Chen, C.; Liu, Y.; Xia, Y.L.; Li, H.H. Gallic acid suppresses cardiac hypertrophic remodeling and heart failure. Mol. Nutr. Food Res., 2019, 63(5), 1800807. doi: 10.1002/mnfr.201800807 PMID: 30521107
  65. Ferk, F.; Kundi, M.; Brath, H.; Szekeres, T.; Al-Serori, H.; Mišík, M.; Saiko, P.; Marculescu, R.; Wagner, K.H.; Knasmueller, S. Gallic acid improves health-associated biochemical parameters and prevents oxidative damage of DNA in Type 2 diabetes patients: Results of a placebo-controlled pilot study. Mol. Nutr. Food Res., 2018, 62(4), 1700482. doi: 10.1002/mnfr.201700482 PMID: 29193677
  66. Sandoo, A.; Veldhuijzen van Zanten, J.J.C.S.; Metsios, G.S.; Carroll, D.; Kitas, G.D. The endothelium and its role in regulating vascular tone. Open Cardiovasc. Med. J., 2010, 4(1), 302-312. doi: 10.2174/1874192401004010302 PMID: 21339899
  67. Bakheet, M.S. Antioxidants (vitamin E and gallic acid) as valuable protective factors against myocardial infarction. Basic. Res. J. Med. Clin. Sci., 2014, 11, 109-122.
  68. Akbari, G. Molecular mechanisms underlying gallic acid effects against cardiovascular diseases: An update review. Avicenna J. Phytomed., 2020, 10(1), 11-23. PMID: 31921604
  69. He, X.; Chen, M.G.; Ma, Q. Activation of Nrf2 in defense against cadmium-induced oxidative stress. Chem. Res. Toxicol., 2008, 21(7), 1375-1383. doi: 10.1021/tx800019a PMID: 18512965
  70. Gryglewski, R.J.; Palmer, R.M.J.; Moncada, S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature, 1986, 320(6061), 454-456. doi: 10.1038/320454a0 PMID: 3007998
  71. Schrader, L.I.; Kinzenbaw, D.A.; Johnson, A.W.; Faraci, F.M.; Didion, S.P. IL-6 deficiency protects against angiotensin II induced endothelial dysfunction and hypertrophy. Arterioscler. Thromb. Vasc. Biol., 2007, 27(12), 2576-2581. doi: 10.1161/ATVBAHA.107.153080 PMID: 17962626
  72. Garcia, V.; Sessa, W.C. Endothelial NOS: Perspective and recent developments. Br. J. Pharmacol., 2019, 176(2), 189-196. doi: 10.1111/bph.14522 PMID: 30341769
  73. Kam, A.; Li, K.M.; Razmovski-Naumovski, V.; Nammi, S.; Chan, K.; Li, G.Q. Gallic acid protects against endothelial injury by restoring the depletion of DNA methyltransferase 1 and inhibiting proteasome activities. Int. J. Cardiol., 2014, 171(2), 231-242. doi: 10.1016/j.ijcard.2013.12.020 PMID: 24388544
  74. Yan, X.; Zhang, Q.Y.; Zhang, Y.L.; Han, X.; Guo, S.B.; Li, H.H. Gallic acid attenuates angiotensin ii-induced hypertension and vascular dysfunction by inhibiting the degradation of endothelial nitric oxide synthase. Front. Pharmacol., 2020, 11, 1121. doi: 10.3389/fphar.2020.01121 PMID: 32848742
  75. Jin, L.; Piao, Z.H.; Sun, S.; Liu, B.; Kim, G.R.; Seok, Y.M.; Lin, M.Q.; Ryu, Y.; Choi, S.Y.; Kee, H.J.; Jeong, M.H. Gallic acid reduces blood pressure and attenuates oxidative stress and cardiac hypertrophy in spontaneously hypertensive rats. Sci. Rep., 2017, 7(1), 15607. doi: 10.1038/s41598-017-15925-1 PMID: 29142252
  76. Goossens, E.A.C.; de Vries, M.R.; Jukema, J.W.; Quax, P.H.A.; Nossent, A.Y. Myostatin inhibits vascular smooth muscle cell proliferation and local 14q32 microrna expression, but not systemic inflammation or restenosis. Int. J. Mol. Sci., 2020, 21(10), 3508. doi: 10.3390/ijms21103508 PMID: 32429150
  77. Kleemann, R.; Zadelaar, S.; Kooistra, T. Cytokines and atherosclerosis: A comprehensive review of studies in mice. Cardiovasc. Res., 2008, 79(3), 360-376. doi: 10.1093/cvr/cvn120 PMID: 18487233
  78. Libby, P.; Ridker, P.M.; Hansson, G.K. Progress and challenges in translating the biology of atherosclerosis. Nature, 2011, 473(7347), 317-325. doi: 10.1038/nature10146 PMID: 21593864
  79. Ramji, D.P.; Davies, T.S. Cytokines in atherosclerosis: Key players in all stages of disease and promising therapeutic targets. Cytokine Growth Factor Rev., 2015, 26(6), 673-685. doi: 10.1016/j.cytogfr.2015.04.003 PMID: 26005197
  80. García-Miguel, M.; Riquelme, J.A.; Norambuena-Soto, I.; Morales, P.E.; Sanhueza-Olivares, F.; Nuñez-Soto, C.; Mondaca-Ruff, D.; Cancino-Arenas, N.; San Martín, A.; Chiong, M. Autophagy mediates tumor necrosis factor-α-induced phenotype switching in vascular smooth muscle A7r5 cell line. PLoS One, 2018, 13(5), e0197210. doi: 10.1371/journal.pone.0197210 PMID: 29750813
  81. Carthew, R.W.; Sontheimer, E.J. Origins and mechanisms of miRNAs and siRNAs. Cell, 2009, 136(4), 642-655. doi: 10.1016/j.cell.2009.01.035 PMID: 19239886
  82. Sayed, A.S.M.; Xia, K.; Salma, U.; Yang, T.; Peng, J. Diagnosis, prognosis and therapeutic role of circulating miRNAs in cardiovascular diseases. Heart Lung Circ., 2014, 23(6), 503-510. doi: 10.1016/j.hlc.2014.01.001 PMID: 24726001
  83. Sarkar, J.; Gou, D.; Turaka, P.; Viktorova, E.; Ramchandran, R.; Raj, J.U. MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. Am. J. Physiol. Lung Cell. Mol. Physiol., 2010, 299(6), L861-L871. doi: 10.1152/ajplung.00201.2010 PMID: 20693317
  84. Vacante, F.; Denby, L.; Sluimer, J.C.; Baker, A.H. The function of miR-143, miR-145 and the MiR-143 host gene in cardiovascular development and disease. Vascul. Pharmacol., 2019, 112, 24-30. doi: 10.1016/j.vph.2018.11.006 PMID: 30502421
  85. Zhang, M.; Li, F.; Wang, X.; Gong, J.; Xian, Y.; Wang, G.; Zheng, Z.; Shang, C.; Wang, B.; He, Y.; Wang, W.; Lin, R. MiR-145 alleviates Hcy-induced VSMC proliferation, migration, and phenotypic switch through repression of the PI3K/Akt/mTOR pathway. Histochem. Cell Biol., 2020, 153(5), 357-366. doi: 10.1007/s00418-020-01847-z PMID: 32124010
  86. Wang, W.; Chen, L.; Shang, C.; Jin, Z.; Yao, F.; Bai, L.; Wang, R.; Zhao, S.; Liu, E. miR-145 inhibits the proliferation and migration of vascular smooth muscle cells by regulating autophagy. J. Cell. Mol. Med., 2020, 24(12), 6658-6669. doi: 10.1111/jcmm.15316 PMID: 32337837
  87. Shafique, E.; Choy, W.C.; Liu, Y.; Feng, J.; Cordeiro, B.; Lyra, A.; Arafah, M.; Yassin-Kassab, A.; Zanetti, A.V.D.; Clements, R.T.; Bianchi, C.; Benjamin, L.E.; Sellke, F.W.; Abid, M.R. Oxidative stress improves coronary endothelial function through activation of the pro-survival kinase AMPK. Aging, 2013, 5(7), 515-530. doi: 10.18632/aging.100569 PMID: 24018842
  88. Ou, T.T.; Lin, M.C.; Wu, C.H.; Lin, W.L.; Wang, C.J. Gallic acid attenuates oleic acid-induced proliferation of vascular smooth muscle cell through regulation of AMPK-eNOS-FAS signaling. Curr. Med. Chem., 2013, 20(31), 3944-3953. doi: 10.2174/09298673113209990175 PMID: 23848534
  89. Chung, D.J.; Wu, Y.L.; Yang, M.Y.; Chan, K.C.; Lee, H.J.; Wang, C.J. Nelumbo nucifera leaf polyphenol extract and gallic acid inhibit TNF-α-induced vascular smooth muscle cell proliferation and migration involving the regulation of miR-21, miR-143 and miR-145. Food Funct., 2020, 11(10), 8602-8611. doi: 10.1039/D0FO02135K PMID: 33084700
  90. Sun, Q.; Xin, F.; Wen, X.; Lu, C.; Chen, R.; Ruan, G. Protective effects of different kinds of filtered water on hypertensive mouse by suppressing oxidative stress and inflammation. Oxid. Med. Cell. Longev., 2018, 2018, 1-8. doi: 10.1155/2018/2917387 PMID: 30622665
  91. Ondimu, D.O.; Kikuvi, G.M.; Otieno, W.N. Risk factors for hypertension among young adults (18-35) years attending in Tenwek Mission Hospital, Bomet County, Kenya in 2018. Pan Afr. Med. J., 2019, 33, 210. doi: 10.11604/pamj.2019.33.210.18407 PMID: 31692887
  92. Dinh, Q.N.; Drummond, G.R.; Sobey, C.G.; Chrissobolis, S. Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. BioMed Res. Int., 2014, 2014, 1-11. doi: 10.1155/2014/406960 PMID: 25136585
  93. Chow, C.K.; Teo, K.K.; Rangarajan, S.; Islam, S.; Gupta, R.; Avezum, A.; Bahonar, A.; Chifamba, J.; Dagenais, G.; Diaz, R.; Kazmi, K.; Lanas, F.; Wei, L.; Lopez-Jaramillo, P.; Fanghong, L.; Ismail, N.H.; Puoane, T.; Rosengren, A.; Szuba, A.; Temizhan, A.; Wielgosz, A.; Yusuf, R.; Yusufali, A.; McKee, M.; Liu, L.; Mony, P.; Yusuf, S. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA, 2013, 310(9), 959-968. doi: 10.1001/jama.2013.184182 PMID: 24002282
  94. Xu, R.; Yang, K.; Ding, J.; Chen, G. Effect of green tea supplementation on blood pressure. Medicine, 2020, 99(6), e19047. doi: 10.1097/MD.0000000000019047 PMID: 32028419
  95. Dikalova, A.E.; Pandey, A.; Xiao, L.; Arslanbaeva, L.; Sidorova, T.; Lopez, M.G.; Billings, F.T., IV; Verdin, E.; Auwerx, J.; Harrison, D.G.; Dikalov, S.I. Mitochondrial deacetylase sirt3 reduces vascular dysfunction and hypertension while sirt3 depletion in essential hypertension is linked to vascular inflammation and oxidative stress. Circ. Res., 2020, 126(4), 439-452. doi: 10.1161/CIRCRESAHA.119.315767 PMID: 31852393
  96. Kearney, P.M.; Whelton, M.; Reynolds, K.; Muntner, P.; Whelton, P.K.; He, J. Global burden of hypertension: Analysis of worldwide data. Lancet, 2005, 365(9455), 217-223. doi: 10.1016/S0140-6736(05)17741-1 PMID: 15652604
  97. Lu, Y.; Sun, X.; Peng, L.; Jiang, W.; Li, W.; Yuan, H.; Cai, J. Angiotensin II-Induced vascular remodeling and hypertension involves cathepsin L/V- MEK/ERK mediated mechanism. Int. J. Cardiol., 2020, 298, 98-106. doi: 10.1016/j.ijcard.2019.09.070 PMID: 31668507
  98. Iulita, M.F.; Vallerand, D.; Beauvillier, M.; Haupert, N.; A Ulysse, C.; Gagné, A.; Vernoux, N.; Duchemin, S.; Boily, M.; Tremblay, M.È.; Girouard, H. Differential effect of angiotensin II and blood pressure on hippocampal inflammation in mice. J. Neuroinflammation, 2018, 15(1), 62. doi: 10.1186/s12974-018-1090-z PMID: 29490666
  99. Czesnikiewicz-Guzik, M.; Osmenda, G.; Siedlinski, M.; Nosalski, R.; Pelka, P.; Nowakowski, D.; Wilk, G.; Mikolajczyk, T.P.; Schramm-Luc, A.; Furtak, A.; Matusik, P.; Koziol, J.; Drozdz, M.; Munoz-Aguilera, E.; Tomaszewski, M.; Evangelou, E.; Caulfield, M.; Grodzicki, T.; D’Aiuto, F.; Guzik, T.J. Causal association between periodontitis and hypertension: Evidence from Mendelian randomization and a randomized controlled trial of non-surgical periodontal therapy. Eur. Heart J., 2019, 40(42), 3459-3470. doi: 10.1093/eurheartj/ehz646 PMID: 31504461
  100. Agita, A.; Alsagaff, M.T. Inflammation, immunity, and hypertension. Acta Med. Indones., 2017, 49(2), 158-165. PMID: 28790231
  101. Tanaka, M.; Kishimoto, Y.; Sasaki, M.; Sato, A.; Kamiya, T.; Kondo, K.; Iida, K. Terminalia bellirica (Gaertn.) roxb. extract and gallic acid attenuate lps-induced inflammation and oxidative stress via MAPK/NF- κ B and Akt/AMPK/Nrf2 Pathways. Oxid. Med. Cell. Longev., 2018, 2018, 1-15. doi: 10.1155/2018/9364364 PMID: 30533177
  102. Lin, Y.; Luo, T.; Weng, A.; Huang, X.; Yao, Y.; Fu, Z.; Li, Y.; Liu, A.; Li, X.; Chen, D.; Pan, H. Gallic acid alleviates gouty arthritis by inhibiting NLRP3 inflammasome activation and pyroptosis through enhancing Nrf2 signaling. Front. Immunol., 2020, 11, 580593. doi: 10.3389/fimmu.2020.580593 PMID: 33365024
  103. Jin, L.; Piao, Z.H.; Liu, C.P.; Sun, S.; Liu, B.; Kim, G.R.; Choi, S.Y.; Ryu, Y.; Kee, H.J.; Jeong, M.H. Gallic acid attenuates calcium calmodulin-dependent kinase II-induced apoptosis in spontaneously hypertensive rats. J. Cell. Mol. Med., 2018, 22(3), 1517-1526. doi: 10.1111/jcmm.13419 PMID: 29266709
  104. Cao, B.; Wang, H.; Zhang, C.; Xia, M.; Yang, X. Remote ischemic postconditioning (RIPC) of the upper arm results in protection from cardiac ischemia-reperfusion injury following primary percutaneous coronary intervention (PCI) for acute ST-Segment Elevation myocardial infarction (STEMI). Med. Sci. Monit., 2018, 24, 1017-1026. doi: 10.12659/MSM.908247 PMID: 29456238
  105. Lai, T.C.; Lee, T.L.; Chang, Y.C.; Chen, Y.C.; Lin, S.R.; Lin, S.W.; Pu, C.M.; Tsai, J.S.; Chen, Y.L. MicroRNA-221/222 mediates adsc-exosome-induced cardioprotection against ischemia/reperfusion by targeting PUMA and ETS-1. Front. Cell Dev. Biol., 2020, 8, 569150. doi: 10.3389/fcell.2020.569150 PMID: 33344446
  106. Zhou, H.; Zhang, Y.; Hu, S.; Shi, C.; Zhu, P.; Ma, Q.; Jin, Q.; Cao, F.; Tian, F.; Chen, Y. Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis. J. Pineal Res., 2017, 63(1), e12413. doi: 10.1111/jpi.12413 PMID: 28398674
  107. Zhang, B.; Zhai, M.; Li, B.; Liu, Z.; Li, K.; Jiang, L.; Zhang, M.; Yi, W.; Yang, J.; Yi, D.; Liang, H.; Jin, Z.; Duan, W.; Yu, S. Honokiol ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by reducing oxidative stress and apoptosis through activating the SIRT1-Nrf2 signaling pathway. Oxid. Med. Cell. Longev., 2018, 2018, 1-16. doi: 10.1155/2018/3159801 PMID: 29675132
  108. Kura, B.; Szeiffova Bacova, B.; Kalocayova, B.; Sykora, M.; Slezak, J. Oxidative stress-responsive MicroRNAs in heart injury. Int. J. Mol. Sci., 2020, 21(1), 358. doi: 10.3390/ijms21010358 PMID: 31948131
  109. Wei, G.; Wu, Y.; Gao, Q.; Shen, C.; Chen, Z.; Wang, K.; Yu, J.; Li, X.; Sun, X. Gallic acid attenuates postoperative intra-abdominal adhesion by inhibiting inflammatory reaction in a rat model. Med. Sci. Monit., 2018, 24, 827-838. doi: 10.12659/MSM.908550 PMID: 29429982
  110. Dianat, M.; Sadeghi, N.; Badavi, M.; Panahi, M.; Taheri Moghadam, M. Protective effects of co-administration of gallic Acid and cyclosporine on rat myocardial morphology against ischemia/reperfusion. Jundishapur J. Nat. Pharm. Prod., 2014, 9(4), e17186. doi: 10.17795/jjnpp-17186 PMID: 25625048
  111. Samarghandian, S.; Asadi-Samani, M.; Farkhondeh, T.; Bahmani, M. Assessment the effect of saffron ethanolic extract (Crocus sativus L.) on oxidative damages in aged male rat liver. Der. Pharm. Lett. 2016; 8(3):283-90.
  112. Takahashi, M. Role of NLRP3 inflammasome in cardiac inflammation and remodeling after myocardial infarction. Biol. Pharm. Bull., 2019, 42(4), 518-523. doi: 10.1248/bpb.b18-00369 PMID: 30930410
  113. Yu, B.; Akushevich, I.; Yashkin, A.P.; Kravchenko, J. Epidemiology of geographic disparities of myocardial infarction among older adults in the united states: Analysis of 2000–2017 medicare data. Front. Cardiovasc. Med., 2021, 8, 707102. doi: 10.3389/fcvm.2021.707102 PMID: 34568451
  114. Farkhondeh T, Samarghandian S, Azimin-Nezhad M, Samini F. Effect of chrysin on nociception in formalin test and serum levels of noradrenalin and corticosterone in rats. Int. J. Clin. Exp. Med., 2015, 8(2), 2465. doi: 10.1016/j.gheart.2018.08.004 PMID: 30154043
  115. Thackeray, J.T.; Hupe, H.C.; Wang, Y.; Bankstahl, J.P.; Berding, G.; Ross, T.L.; Bauersachs, J.; Wollert, K.C.; Bengel, F.M. Myocardial inflammation predicts remodeling and neuroinflammation after myocardial infarction. J. Am. Coll. Cardiol., 2018, 71(3), 263-275. doi: 10.1016/j.jacc.2017.11.024 PMID: 29348018
  116. Basit, H.; Huecker, M.R. Myocardial Infarction Serum Markers; StatPearls Publishing: Treasure Island (FL), 2022.
  117. Khan, H.A.; Ekhzaimy, A.; Khan, I.; Sakharkar, M.K. Potential of lipoproteins as biomarkers in acute myocardial infarction. Anatol. J. Cardiol., 2017, 18(1), 68-74. doi: 10.14744/AnatolJCardiol.2017.7403 PMID: 28680021
  118. Saleh, M.; Ambrose, J.A. Understanding myocardial infarction. F1000 Res., 2018, 7, 1378. doi: 10.12688/f1000research.15096.1 PMID: 30228871
  119. Johansson, S.; Rosengren, A.; Young, K.; Jennings, E. Mortality and morbidity trends after the first year in survivors of acute myocardial infarction: A systematic review. BMC Cardiovasc. Disord., 2017, 17(1), 53. doi: 10.1186/s12872-017-0482-9 PMID: 28173750
  120. Zhang, Q.; Yu, N.; Yu, B.T. MicroRNA-298 regulates apoptosis of cardiomyocytes after myocardial infarction. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(2), 532-539. PMID: 29424914
  121. Wang, X.; Guo, Z.; Ding, Z.; Mehta, J.L. Inflammation, autophagy, and apoptosis after myocardial infarction. J. Am. Heart Assoc., 2018, 7(9), e008024. doi: 10.1161/JAHA.117.008024 PMID: 29680826
  122. Dehghani, M.A.; Shakiba Maram, N.; Moghimipour, E.; Khorsandi, L.; Atefi khah, M.; Mahdavinia, M. Protective effect of gallic acid and gallic acid-loaded Eudragit-RS 100 nanoparticles on cisplatin-induced mitochondrial dysfunction and inflammation in rat kidney. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(12), 165911. doi: 10.1016/j.bbadis.2020.165911 PMID: 32768679
  123. Li, W.; Yue, X.; Li, F. Gallic acid caused cultured mice TM4 Sertoli cells apoptosis and necrosis. Asian-Australas. J. Anim. Sci., 2019, 32(5), 629-636. doi: 10.5713/ajas.18.0317 PMID: 30381745
  124. Hochman, J.S.; Bulkley, B.H. Expansion of acute myocardial infarction: An experimental study. Circulation, 1982, 65(7), 1446-1450. doi: 10.1161/01.CIR.65.7.1446 PMID: 7074800
  125. Cohn, J.N.; Ferrari, R.; Sharpe, N. Cardiac remodeling— concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. J. Am. Coll. Cardiol., 2000, 35(3), 569-582. doi: 10.1016/S0735-1097(99)00630-0 PMID: 10716457
  126. Zivarpour, P.; Reiner, Ž.; Hallajzadeh, J.; Mirsafaei, L. Resveratrol and cardiac fibrosis prevention and treatment. Curr. Pharm. Biotechnol., 2022, 23(2), 190-200. doi: 10.2174/1389201022666210212125003 PMID: 33583368
  127. Yang, D.; Liu, H.Q.; Liu, F.Y.; Tang, N.; Guo, Z.; Ma, S.Q.; An, P.; Wang, M.Y.; Wu, H.M.; Yang, Z.; Fan, D.; Tang, Q.Z. The roles of noncardiomyocytes in cardiac remodeling. Int. J. Biol. Sci., 2020, 16(13), 2414-2429. doi: 10.7150/ijbs.47180 PMID: 32760209
  128. Azevedo, P.S.; Polegato, B.F.; Minicucci, M.F.; Paiva, S.A.R.; Zornoff, L.A.M. Cardiac remodeling: Concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arq. Bras. Cardiol., 2016, 106(1), 62-69. doi: 10.5935/abc.20160005 PMID: 26647721
  129. Schirone, L. A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxid. Med. Cell. Longev., 2017, 2017, 3920195. doi: 10.1155/2017/3920195
  130. Anand, I.S.; Florea, V.G.; Solomon, S.D.; Konstam, M.A.; Udelson, J.E. Noninvasive assessment of left ventricular remodeling: Concepts, techniques, and implications for clinical trials. J. Card. Fail., 2002, 8(6)(Suppl.), S452-S464. doi: 10.1054/jcaf.2002.129286 PMID: 12555158
  131. Poncelas, M.; Inserte, J.; Aluja, D.; Hernando, V.; Vilardosa, U.; Garcia-Dorado, D. Delayed, oral pharmacological inhibition of calpains attenuates adverse post-infarction remodelling. Cardiovasc. Res., 2017, 113(8), 950-961. doi: 10.1093/cvr/cvx073 PMID: 28460013
  132. Tarone, G.; Balligand, J.L.; Bauersachs, J.; Clerk, A.; De Windt, L.; Heymans, S.; Hilfiker-Kleiner, D.; Hirsch, E.; Iaccarino, G.; Knöll, R.; Leite-Moreira, A.F.; Lourenço, A.P.; Mayr, M.; Thum, T.; Tocchetti, C.G. Targeting myocardial remodelling to develop novel therapies for heart failure. Eur. J. Heart Fail., 2014, 16(5), 494-508. doi: 10.1002/ejhf.62 PMID: 24639064
  133. Rose, B.A.; Force, T.; Wang, Y. Mitogen-activated protein kinase signaling in the heart: Angels versus demons in a heart-breaking tale. Physiol. Rev., 2010, 90(4), 1507-1546. doi: 10.1152/physrev.00054.2009 PMID: 20959622
  134. Ryu, Y.; Jin, L.; Kee, H.J.; Piao, Z.H.; Cho, J.Y.; Kim, G.R.; Choi, S.Y.; Lin, M.Q.; Jeong, M.H. Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity. Sci. Rep., 2016, 6(1), 34790. doi: 10.1038/srep34790 PMID: 27703224
  135. Liang, Q.; De Windt, L.J.; Witt, S.A.; Kimball, T.R.; Markham, B.E.; Molkentin, J.D. The transcription factors GATA4 and GATA6 regulate cardiomyocyte hypertrophy in vitro and in vivo. J. Biol. Chem., 2001, 276(32), 30245-30253. doi: 10.1074/jbc.M102174200 PMID: 11356841
  136. Shackebaei, D.; Hesari, M.; Ramezani-Aliakbari, S.; Hoseinkhani, Z.; Ramezani-Aliakbari, F. Gallic acid protects against isoproterenol-induced cardiotoxicity in rats. Hum. Exp. Toxicol., 2022, 41 doi: 10.1177/09603271211064532 PMID: 35193428
  137. Segura, A.M.; Frazier, O.H.; Buja, L.M. Fibrosis and heart failure. Heart Fail. Rev., 2014, 19(2), 173-185. doi: 10.1007/s10741-012-9365-4 PMID: 23124941
  138. Kong, P.; Christia, P.; Frangogiannis, N.G. The pathogenesis of cardiac fibrosis. Cell. Mol. Life Sci., 2014, 71(4), 549-574. doi: 10.1007/s00018-013-1349-6 PMID: 23649149
  139. Arola, O.J.; Saraste, A.; Pulkki, K.; Kallajoki, M.; Parvinen, M.; Voipio-Pulkki, L.M. Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Res., 2000, 60(7), 1789-1792. PMID: 10766158
  140. Pohlers, D.; Brenmoehl, J.; Löffler, I.; Müller, C.K.; Leipner, C.; Schultze-Mosgau, S.; Stallmach, A.; Kinne, R.W.; Wolf, G. TGF-β and fibrosis in different organs : Molecular pathway imprints. Biochim. Biophys. Acta Mol. Basis Dis., 2009, 1792(8), 746-756. doi: 10.1016/j.bbadis.2009.06.004
  141. Jin, L.; Lin, M.Q.; Piao, Z.H.; Cho, J.Y.; Kim, G.R.; Choi, S.Y.; Ryu, Y.; Sun, S.; Kee, H.J.; Jeong, M.H. Gallic acid attenuates hypertension, cardiac remodeling, and fibrosis in mice with N G-nitro-L-arginine methyl ester-induced hypertension via regulation of histone deacetylase 1 or histone deacetylase 2. J. Hypertens., 2017, 35(7), 1502-1512. doi: 10.1097/HJH.0000000000001327 PMID: 28234674
  142. Moore-Morris, T.; Guimarães-Camboa, N.; Banerjee, I.; Zambon, A.C.; Kisseleva, T.; Velayoudon, A.; Stallcup, W.B.; Gu, Y.; Dalton, N.D.; Cedenilla, M.; Gomez-Amaro, R.; Zhou, B.; Brenner, D.A.; Peterson, K.L.; Chen, J.; Evans, S.M. Resident fibroblast lineages mediate pressure overload–induced cardiac fibrosis. J. Clin. Invest., 2014, 124(7), 2921-2934. doi: 10.1172/JCI74783 PMID: 24937432
  143. Jin, L.; Sun, S.; Ryu, Y.; Piao, Z.H.; Liu, B.; Choi, S.Y.; Kim, G.R.; Kim, H.S.; Kee, H.J.; Jeong, M.H. Gallic acid improves cardiac dysfunction and fibrosis in pressure overload-induced heart failure. Sci. Rep., 2018, 8(1), 9302. doi: 10.1038/s41598-018-27599-4 PMID: 29915390
  144. Meinardi, M.T.; Gietema, J.A.; van Veldhuisen, D.J.; van der Graaf, W.T.A.; de Vries, E.G.E.; Sleijfer, D.T. Long-term chemotherapy-related cardiovascular morbidity. Cancer Treat. Rev., 2000, 26(6), 429-447. doi: 10.1053/ctrv.2000.0175 PMID: 11139373
  145. Mohan, I.K.; Kumar, K.V.; Naidu, M.U.R.; Khan, M.; Sundaram, C. Protective effect of CardiPro against doxorubicin-induced cardiotoxicity in mice. Phytomedicine, 2006, 13(4), 222-229. doi: 10.1016/j.phymed.2004.09.003 PMID: 16492523
  146. Octavia, Y.; Tocchetti, C.G.; Gabrielson, K.L.; Janssens, S.; Crijns, H.J.; Moens, A.L. Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. J. Mol. Cell. Cardiol., 2012, 52(6), 1213-1225. doi: 10.1016/j.yjmcc.2012.03.006 PMID: 22465037
  147. Swamy, A.H.M.V.; Kulkarni, J.M. Cardioprotective effect of gallic acid against doxorubicin-induced myocardial toxicity in albino rats. Ind. J. Heal. Sci. Biomed. Res., 2015, 8(1), 28. doi: 10.4103/2349-5006.158219
  148. Han, S.; Bao, L.; Li, W.; Liu, K.; Tang, Y.; Han, X.; Liu, Z.; Wang, H.; Zhang, F.; Mi, S.; Du, H. Gallic acid inhibits mesaconitine-activated TRPV1-channel-induced cardiotoxicity. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-12. doi: 10.1155/2022/5731372 PMID: 35463061
  149. Salimi, A.; Atashbar, S.; Shabani, M. Gallic acid inhibits celecoxib-induced mitochondrial permeability transition and reduces its toxicity in isolated cardiomyocytes and mitochondria. Hum. Exp. Toxicol., 2021, 40(12_suppl)(Suppl.), S530-S539. doi: 10.1177/09603271211053299 PMID: 34715756
  150. Ekinci Akdemir, F.N.; Yildirim, S.; Kandemir, F.M.; Tanyeli, A.; Küçükler, S.; Bahaeddin Dortbudak, M. Protective effects of gallic acid on doxorubicin-induced cardiotoxicity; An experimantal study. Arch. Physiol. Biochem., 2021, 127(3), 258-265. doi: 10.1080/13813455.2019.1630652 PMID: 31240966
  151. Jin, L.; Piao, Z.H.; Sun, S.; Liu, B.; Ryu, Y.; Choi, S.Y.; Kim, G.R.; Kim, H.S.; Kee, H.J.; Jeong, M.H. Gallic acid attenuates pulmonary fibrosis in a mouse model of transverse aortic contraction-induced heart failure. Vascul. Pharmacol., 2017, 99, 74-82. doi: 10.1016/j.vph.2017.10.007 PMID: 29097327
  152. Han, D.; Zhang, Q.Y.; Zhang, Y.L.; Han, X.; Guo, S.B.; Teng, F.; Yan, X.; Li, H.H. Gallic acid ameliorates angiotensin II-induced atrial fibrillation by inhibiting immunoproteasome-mediated PTEN degradation in mice. Front. Cell Dev. Biol., 2020, 8, 594683. doi: 10.3389/fcell.2020.594683 PMID: 33251220
  153. Clark, M.; Centner, A.M.; Ukhanov, V.; Nagpal, R.; Salazar, G. Gallic acid ameliorates atherosclerosis and vascular senescence and remodels the microbiome in a sex-dependent manner in ApoE−/− mice. J. Nutr. Biochem., 2022, 110, 109132. doi: 10.1016/j.jnutbio.2022.109132 PMID: 36028099
  154. Ramezani-Aliakbari, F.; Badavi, M.; Dianat, M.; Mard, S.A.; Ahangarpour, A. Effects of gallic acid on hemodynamic parameters and infarct size after ischemia-reperfusion in isolated rat hearts with alloxan-induced diabetes. Biomed. Pharmacother., 2017, 96, 612-618. doi: 10.1016/j.biopha.2017.10.014 PMID: 29035826
  155. Ramezani-Aliakbari, F.; Badavi, M.; Dianat, M.; Mard, S.A.; Ahangarpour, A. Protective effects of gallic acid on cardiac electrophysiology and arrhythmias during reperfusion in diabetes. Iran. J. Basic Med. Sci., 2019, 22(5), 515-520. PMID: 31217931

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024