To Explore the Putative Molecular Targets of Diabetic Nephropathy and their Inhibition Utilizing Potential Phytocompounds
- Авторлар: Bhattacharjee B.1, Chakrovorty A.2, Biswas M.1, Samadder A.3, Nandi S.4
-
Мекемелер:
- Endocrinology and Reproductive Biology Laboratory, Department of Zoology, University of Kalyani
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani
- ytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University
- Шығарылым: Том 31, № 24 (2024)
- Беттер: 3752-3790
- Бөлім: Anti-Infectives and Infectious Diseases
- URL: https://medjrf.com/0929-8673/article/view/644847
- DOI: https://doi.org/10.2174/0929867330666230519112312
- ID: 644847
Дәйексөз келтіру
Толық мәтін
Аннотация
Background:This review critically addresses the putative molecular targets of Diabetic Nephropathy (DN) and screens effective phytocompounds that can be therapeutically beneficial, and highlights their mechanistic modalities of action.
Introduction:DN has become one of the most prevalent complications of clinical hyperglycemia, with individual-specific variations in the disease spectrum that leads to fatal consequences. Diverse etiologies involving oxidative and nitrosative stress, activation of polyol pathway, inflammasome formation, Extracellular Matrix (ECM) modifications, fibrosis, and change in dynamics of podocyte functional and mesangial cell proliferation adds up to the clinical complexity of DN. Current synthetic therapeutics lacks target-specific approach, and is associated with the development of inevitable residual toxicity and drug resistance. Phytocompounds provides a vast diversity of novel compounds that can become an alternative therapeutic approach to combat the DN.
Method:Relevant publications were searched and screened from research databases like GOOGLE SCHOLAR, PUBMED and SCISEARCH. Out of 4895 publications, the most relevant publications were selected and included in this article.
Result:This study critically reviews over 60 most promising phytochemical and provides with their molecular targets, that can be of pharmacological significance in context to current treatment and concomitant research in DN.
Conclusion:This review highlights those most promising phytocompounds that have the potential of becoming new safer naturally-sourced therapeutic candidates and demands further attention at clinical level.
Негізгі сөздер
Авторлар туралы
Banani Bhattacharjee
Endocrinology and Reproductive Biology Laboratory, Department of Zoology, University of Kalyani
Email: info@benthamscience.net
Arnob Chakrovorty
Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani
Email: info@benthamscience.net
Maharaj Biswas
Endocrinology and Reproductive Biology Laboratory, Department of Zoology, University of Kalyani
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Asmita Samadder
ytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Sisir Nandi
Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Әдебиет тізімі
- Diabetes in America. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases., 1995. Available from: https://diabetes.org/healthylivingnews?gad=1
- Genuth, S.; Alberti, K.G.; Bennett, P.; Buse, J.; Defronzo, R.; Kahn, R.; Kitzmiller, J.; Knowler, W.C.; Lebovitz, H.; Lernmark, A.; Nathan, D.; Palmer, J.; Rizza, R.; Saudek, C.; Shaw, J.; Steffes, M.; Stern, M.; Tuomilehto, J.; Zimmet, P. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care, 2003, 26(11), 3160-3167. doi: 10.2337/diacare.26.11.3160 PMID: 14578255
- Daneman, D. Type 1 diabetes. Lancet, 2006, 367(9513), 847-858. doi: 10.1016/S0140-6736(06)68341-4 PMID: 16530579
- Chatterjee, S.; Khunti, K.; Davies, M.J. Type 2 diabetes. Lancet, 2017, 389(10085), 2239-2251. doi: 10.1016/S0140-6736(17)30058-2 PMID: 28190580
- Samadder, A.; Das, J.; Das, S.; De, A.; Saha, S.K.; Bhattacharyya, S.S.; Khuda-Bukhsh, A.R. Poly(lactic-co-glycolic) acid loaded nano-insulin has greater potentials of combating arsenic induced hyperglycemia in mice: Some novel findings. Toxicol. Appl. Pharmacol., 2013, 267(1), 57-73. doi: 10.1016/j.taap.2012.12.018 PMID: 23276653
- Samadder, A.; Das, S.; Das, J.; Khuda-Bukhsh, A.R. Relative efficacies of insulin and poly (lactic-co-glycolic) acid encapsulated nano-insulin in modulating certain significant biomarkers in arsenic intoxicated L6 cells. Colloids Surf. B Biointerfaces, 2013, 109, 10-19. doi: 10.1016/j.colsurfb.2013.03.028 PMID: 23603037
- Rayanagoudar, G.; Hashi, A.A.; Zamora, J.; Khan, K.S.; Hitman, G.A.; Thangaratinam, S. Quantification of the type 2 diabetes risk in women with gestational diabetes: A systematic review and meta-analysis of 95,750 women. Diabetologia, 2016, 59(7), 1403-1411. doi: 10.1007/s00125-016-3927-2 PMID: 27073002
- Su, W.; Cao, R.; He, Y.C.; Guan, Y.F.; Ruan, X.Z. Crosstalk of hyperglycemia and dyslipidemia in diabetic kidney disease. Kidney Dis., 2017, 3(4), 171-180. doi: 10.1159/000479874 PMID: 29344511
- Laakso, M. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes, 1999, 48(5), 937-942. doi: 10.2337/diabetes.48.5.937 PMID: 10331395
- Madhusudhanan, J.; Suresh, G.; Devanathan, V. Neurodegeneration in type 2 diabetes: Alzheimers as a case study. Brain Behav., 2020, 10(5), e01577. doi: 10.1002/brb3.1577 PMID: 32170854
- Morais, T.; Seabra, A.L.; Patrício, B.G.; Guimarães, M.; Nora, M.; Oliveira, P.F.; Alves, M.G.; Monteiro, M.P. Visceral adipose tissue displays unique metabolomic fingerprints in obesity, pre-diabetes and type 2 diabetes. Int. J. Mol. Sci., 2021, 22(11), 5695. doi: 10.3390/ijms22115695 PMID: 34071774
- Chouchani, E.T.; Kajimura, S. Metabolic adaptation and maladaptation in adipose tissue. Nat. Metab., 2019, 1(2), 189-200. doi: 10.1038/s42255-018-0021-8 PMID: 31903450
- Olefsky, J.M. The insulin receptor: its role in insulin resistance of obesity and diabetes. Diabetes, 1976, 25(12), 1154-1161. doi: 10.2337/diab.25.12.1154 PMID: 791735
- Sobrevia, L.; Mann, G.E. Dysfunction of the endothelial nitric oxide signalling pathway in diabetes and hyperglycaemia. Exp. Physiol., 1997, 82(3), 423-452. doi: 10.1113/expphysiol.1997.sp004038 PMID: 9179565
- Khalid, M.; Alkaabi, J.; Khan, M.A.B.; Adem, A. Insulin signal transduction perturbations in insulin resistance. Int. J. Mol. Sci., 2021, 22(16), 8590. doi: 10.3390/ijms22168590 PMID: 34445300
- Svensson, M.; Eriksson, J.W. Insulin resistance in diabetic nephropathy - cause or consequence? Diabetes Metab. Res. Rev., 2006, 22(5), 401-410. doi: 10.1002/dmrr.648 PMID: 16703644
- Boström, P.; Andersson, L.; Vind, B.; Håversen, L.; Rutberg, M.; Wickström, Y.; Larsson, E.; Jansson, P.A.; Svensson, M.K.; Brånemark, R.; Ling, C.; Beck-Nielsen, H.; Borén, J.; Højlund, K.; Olofsson, S.O. The SNARE protein SNAP23 and the SNARE-interacting protein Munc18c in human skeletal muscle are implicated in insulin resistance/type 2 diabetes. Diabetes, 2010, 59(8), 1870-1878. doi: 10.2337/db09-1503 PMID: 20460426
- Rezaei Farimani, A.; Saidijam, M.; Goodarzi, M.T.; Yadegar Azari, R.; Asadi, S.; Zarei, S.; Shabab, N. Effect of resveratrol supplementation on the SNARE proteins expression in adipose tissue of stroptozotocin-nicotinamide induced type 2 diabetic rats. Iran. J. Med. Sci., 2015, 40(3), 248-255. PMID: 25999625
- Samadder, A.; Chakraborty, D.; De, A.; Bhattacharyya, S.S.; Bhadra, K.; Khuda-Bukhsh, A.R. Possible signaling cascades involved in attenuation of alloxan-induced oxidative stress and hyperglycemia in mice by ethanolic extract of Syzygium jambolanum: Drug-DNA interaction with calf thymus DNA as target. Eur. J. Pharm. Sci., 2011, 44(3), 207-217. doi: 10.1016/j.ejps.2011.07.012 PMID: 21839831
- Esper, A.M.; Moss, M.; Martin, G.S. The effect of diabetes mellitus on organ dysfunction with sepsis: an epidemiological study. Crit. Care, 2009, 13(1), R18. doi: 10.1186/cc7717 PMID: 19216780
- Oschatz, E.; Müllner, M.; Herkner, H.; Laggner, A.N. Multiple organ failure and prognosis in adult patients with diabetic ketoacidosis. Wien. Klin. Wochenschr., 1999, 111(15), 590-595. PMID: 10483673
- Keane, W.F.; Zhang, Z.; Lyle, P.A.; Cooper, M.E.; de Zeeuw, D.; Grunfeld, J.P.; Lash, J.P.; McGill, J.B.; Mitch, W.E.; Remuzzi, G.; Shahinfar, S.; Snapinn, S.M.; Toto, R.; Brenner, B.M. Risk scores for predicting outcomes in patients with type 2 diabetes and nephropathy: The RENAAL study. Clin. J. Am. Soc. Nephrol., 2006, 1(4), 761-767. doi: 10.2215/CJN.01381005 PMID: 17699284
- Gross, J.L.; de Azevedo, M.J.; Silveiro, S.P.; Canani, L.H.; Caramori, M.L.; Zelmanovitz, T. Diabetic nephropathy: Diagnosis, prevention, and treatment. Diabetes Care, 2005, 28(1), 164-176. doi: 10.2337/diacare.28.1.164 PMID: 15616252
- Umanath, K.; Lewis, J.B. Update on diabetic nephropathy: Core curriculum 2018. Am. J. Kidney Dis., 2018, 71(6), 884-895. doi: 10.1053/j.ajkd.2017.10.026 PMID: 29398179
- Samsu, N. Diabetic nephropathy: Challenges in pathogenesis, diagnosis, and treatment. BioMed Res. Int., 2021, 2021, 1-17. doi: 10.1155/2021/1497449 PMID: 34307650
- Strippoli, G.F.M.; Bonifati, C.; Craig, M.E.; Navaneethan, S.D.; Craig, J.C. Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists for preventing the progression of diabetic kidney disease. Cochrane Libr., 2006, 2006(4), CD006257. doi: 10.1002/14651858.CD006257 PMID: 17054288
- Anderson, S.; Rennke, H.G.; Brenner, B.M. Therapeutic advantage of converting enzyme inhibitors in arresting progressive renal disease associated with systemic hypertension in the rat. J. Clin. Invest., 1986, 77(6), 1993-2000. doi: 10.1172/JCI112528 PMID: 3011863
- Mittler, R. ROS are good. Trends Plant Sci., 2017, 22(1), 11-19. doi: 10.1016/j.tplants.2016.08.002 PMID: 27666517
- David, L.; Nelson, D.L.; Cox, M.M.; Stiedemann, L.; McGlynn, M.E., Jr; Fay, M.R. Lehninger principles of biochemistry; Macmillan, 2008.
- Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y.; Dong, W. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell. Longev., 2016, 2016, 1-18. doi: 10.1155/2016/4350965
- Martínez, M.C.; Andriantsitohaina, R. Reactive nitrogen species: Molecular mechanisms and potential significance in health and disease. Antioxid. Redox Signal., 2009, 11(3), 669-702. doi: 10.1089/ars.2007.1993 PMID: 19014277
- Dupré-Crochet, S.; Erard, M. Nüβe, O. ROS production in phagocytes: Why, when, and where? J. Leukoc. Biol., 2013, 94(4), 657-670. doi: 10.1189/jlb.1012544 PMID: 23610146
- Brieger, K.; Schiavone, S.; Miller, J., Jr; Krause, K.H. Reactive oxygen species: From health to disease. Swiss Med. Wkly., 2012, 142, w13659. doi: 10.4414/smw.2012.13659 PMID: 22903797
- Møller, P.; Wallin, H. Adduct formation, mutagenesis and nucleotide excision repair of DNA damage produced by reactive oxygen species and lipid peroxidation product. Mutat. Res. Rev. Mutat. Res., 1998, 410(3), 271-290. doi: 10.1016/S1383-5742(97)00041-0 PMID: 9630671
- Yajima, D.; Motani, H.; Hayakawa, M.; Sato, Y.; Sato, K.; Iwase, H. The relationship between cell membrane damage and lipid peroxidation under the condition of hypoxia-reoxygenation: Analysis of the mechanism using antioxidants and electron transport inhibitors. Cell Biochem., 2009, 27(6), 338-343. doi: 10.1002/cbf.1578
- Lin, T.K.; Cheng, C.H.; Chen, S.D.; Liou, C.W.; Huang, C.R.; Chuang, Y.C. Mitochondrial dysfunction and oxidative stress promote apoptotic cell death in the striatum via cytochrome c/caspase-3 signaling cascade following chronic rotenone intoxication in rats. Int. J. Mol. Sci., 2012, 13(7), 8722-8739. doi: 10.3390/ijms13078722 PMID: 22942730
- Kobayashi, N.; DeLano, F.A.; Schmid-Schönbein, G.W. Oxidative stress promotes endothelial cell apoptosis and loss of microvessels in the spontaneously hypertensive rats. Arterioscler. Thromb. Vasc. Biol., 2005, 25(10), 2114-2121. doi: 10.1161/01.ATV.0000178993.13222.f2 PMID: 16037565
- Kashihara, N.; Haruna, Y.; Kondeti, V.K.; Kanwar, Y.S. Oxidative stress in diabetic nephropathy. Curr. Med. Chem., 2010, 17(34), 4256-4269. doi: 10.2174/092986710793348581 PMID: 20939814
- Tan, A.L.Y.; Forbes, J.M.; Cooper, M.E. AGE, RAGE, and ROS in diabetic nephropathy. Semin. Nephrol., 2007, 27(2), 130-143. doi: 10.1016/j.semnephrol.2007.01.006 PMID: 17418682
- Bohlender, J.M.; Franke, S.; Stein, G.; Wolf, G. Advanced glycation end products and the kidney. Am. J. Physiol. Renal Physiol., 2005, 289(4), F645-F659. doi: 10.1152/ajprenal.00398.2004 PMID: 16159899
- Ho, F.M.; Liu, S.H.; Liau, C.S.; Huang, P.J.; Lin-Shiau, S.Y. High glucose-induced apoptosis in human endothelial cells is mediated by sequential activations of c-Jun NH(2)-terminal kinase and caspase-3. Circulation, 2000, 101(22), 2618-2624. doi: 10.1161/01.CIR.101.22.2618 PMID: 10840014
- Konishi, H.; Tanaka, M.; Takemura, Y.; Matsuzaki, H.; Ono, Y.; Kikkawa, U.; Nishizuka, Y. Activation of protein kinase C by tyrosine phosphorylation in response to H2O2. Proc. Natl. Acad. Sci., 1997, 94(21), 11233-11237. doi: 10.1073/pnas.94.21.11233 PMID: 9326592
- Burg, M.B. Coordinate regulation of organic osmolytes in renal cells. Kidney Int., 1996, 49(6), 1684-1685. doi: 10.1038/ki.1996.247 PMID: 8743477
- Burger-Kentischer, A.; Müller, E.; März, J.; Fraek, M.L.; Thurau, K.; Beck, F.X. Hypertonicity-induced accumulation of organic osmolytes in papillary interstitial cells. Kidney Int., 1999, 55(4), 1417-1425. doi: 10.1046/j.1523-1755.1999.00382.x PMID: 10201006
- Chung, S.S.M.; Ho, E.C.M.; Lam, K.S.L.; Chung, S.K. Contribution of polyol pathway to diabetes-induced oxidative stress. J. Am. Soc. Nephrol., 2003, 14(8)(Suppl. 3), S233-S236. doi: 10.1097/01.ASN.0000077408.15865.06 PMID: 12874437
- Shah, V.O.; Dorin, R.I.; Sun, Y.; Braun, M.; Zager, P.G. Aldose reductase gene expression is increased in diabetic nephropathy. J. Clin. Endocrinol. Metab., 1997, 82(7), 2294-2298. doi: 10.1210/jc.82.7.2294 PMID: 9215310
- Williamson, J.R.; Chang, K.; Frangos, M.; Hasan, K.S.; Ido, Y.; Kawamura, T.; Nyengaard, J.R.; Den Enden, M.; Kilo, C.; Tilton, R.G. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes, 1993, 42(6), 801-813. doi: 10.2337/diab.42.6.801 PMID: 8495803
- Cheng, X.; Ni, B.; Zhang, Z.; Liu, Q.; Wang, L.; Ding, Y.; Hu, Y. Polyol pathway mediates enhanced degradation of extracellular matrix via p38 MAPK activation in intervertebral disc of diabetic rats. Connect. Tissue Res., 2013, 54(2), 118-122. doi: 10.3109/03008207.2012.754886 PMID: 23215968
- Dunlop, M. Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney Int., 2000, 58, S3-S12. doi: 10.1046/j.1523-1755.2000.07702.x PMID: 10997684
- Niimi, N.; Yako, H.; Takaku, S.; Chung, S.K.; Sango, K. Aldose reductase and the polyol pathway in schwann cells: Old and new problems. Int. J. Mol. Sci., 2021, 22(3), 1031. doi: 10.3390/ijms22031031 PMID: 33494154
- Zill, H.; Bek, S.; Hofmann, T.; Huber, J.; Frank, O.; Lindenmeier, M.; Weigle, B.; Erbersdobler, H.F.; Scheidler, S.; Busch, A.E.; Faist, V. RAGE-mediated MAPK activation by food-derived AGE and non-AGE products. Biochem. Biophys. Res. Commun., 2003, 300(2), 311-315. doi: 10.1016/S0006-291X(02)02856-5 PMID: 12504085
- Hu, H.; Jiang, H.; Ren, H.; Hu, X.; Wang, X.; Han, C. AGEs and chronic subclinical inflammation in diabetes: Disorders of immune system. Diabetes Metab. Res. Rev., 2015, 31(2), 127-137. doi: 10.1002/dmrr.2560 PMID: 24846076
- Qiu, Y.; Tang, L. Roles of the NLRP3 inflammasome in the pathogenesis of diabetic nephropathy. Pharmacol. Res., 2016, 114, 251-264. doi: 10.1016/j.phrs.2016.11.004 PMID: 27826011
- Wang, J.; Shen, X.; Liu, J.; Chen, W.; Wu, F.; Wu, W.; Meng, Z.; Zhu, M.; Miao, C. High glucose mediates NLRP3 inflammasome activation via upregulation of ELF3 expression. Cell Death Dis., 2020, 11(5), 383. doi: 10.1038/s41419-020-2598-6 PMID: 32439949
- de Zoete, M.R.; Palm, N.W.; Zhu, S.; Flavell, R.A. Inflammasomes. Cold Spring Harb. Perspect. Biol., 2014, 6(12), a016287. doi: 10.1101/cshperspect.a016287 PMID: 25324215
- Müller, R.; Daniel, C.; Hugo, C.; Amann, K.; Mielenz, D.; Endlich, K.; Braun, T.; van der Veen, B.; Heeringa, P.; Schett, G.; Zwerina, J. The mitogen-activated protein kinase p38α regulates tubular damage in murine anti-glomerular basement membrane nephritis. PLoS One, 2013, 8(2), e56316. doi: 10.1371/journal.pone.0056316 PMID: 23441175
- Navarro-González, J.F.; Mora-Fernández, C. The role of inflammatory cytokines in diabetic nephropathy. J. Am. Soc. Nephrol., 2008, 19(3), 433-442. doi: 10.1681/ASN.2007091048 PMID: 18256353
- Okada, M.; Matsuzawa, A.; Yoshimura, A.; Ichijo, H. The lysosome rupture-activated TAK1-JNK pathway regulates NLRP3 inflammasome activation. J. Biol. Chem., 2014, 289(47), 32926-32936. doi: 10.1074/jbc.M114.579961 PMID: 25288801
- Yang, R.; Trevillyan, J.M. c-Jun N-terminal kinase pathways in diabetes. Int. J. Biochem. Cell Biol., 2008, 40(12), 2702-2706. doi: 10.1016/j.biocel.2008.06.012 PMID: 18678273
- Harijith, A.; Ebenezer, D.L.; Natarajan, V. Reactive oxygen species at the crossroads of inflammasome and inflammation. Front. Physiol., 2014, 5, 352. doi: 10.3389/fphys.2014.00352 PMID: 25324778
- Sun, X.; Jiao, X.; Ma, Y.; Liu, Y.; Zhang, L.; He, Y.; Chen, Y. Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome. Biochem. Biophys. Res. Commun., 2016, 481(1-2), 63-70. doi: 10.1016/j.bbrc.2016.11.017 PMID: 27833015
- Kolset, S.O.; Reinholt, F.P.; Jenssen, T. Diabetic nephropathy and extracellular matrix. J. Histochem. Cytochem., 2012, 60(12), 976-986. doi: 10.1369/0022155412465073 PMID: 23103723
- Moriya, T.; Groppoli, T.J.; Kim, Y.; Mauer, M. Quantitative immunoelectron microscopy of type VI collagen in glomeruli in type I diabetic patients. Kidney Int., 2001, 59(1), 317-323. doi: 10.1046/j.1523-1755.2001.00493.x PMID: 11135085
- Yard, B.A.; Kahlert, S.; Engelleiter, R.; Resch, S.; Waldherr, R.; Groffen, A.J.; van den Heuvel, L.P.W.J.; van der Born, J.; Berden, J.H.M.; Kröger, S.; Hafner, M.; van der Woude, F.J. Decreased glomerular expression of agrin in diabetic nephropathy and podocytes, cultured in high glucose medium. Nephron, Exp. Nephrol., 2001, 9(3), 214-222. doi: 10.1159/000052614 PMID: 11340306
- Holmquist, P.; Torffvit, O. Urinary transforming growth factor-β 1, collagen IV and the effect of insulin in children at diagnosis of diabetes mellitus. Scand. J. Urol. Nephrol., 2009, 43(2), 142-147. doi: 10.1080/00365590802502111 PMID: 18979373
- Stokes, M.B.; Holler, S.; Cui, Y.; Hudkins, K.L.; Eitner, F.; Fogo, A.; Alpers, C.E. Expression of decorin, biglycan, and collagen type I in human renal fibrosing disease. Kidney Int., 2000, 57(2), 487-498. doi: 10.1046/j.1523-1755.2000.00868.x PMID: 10652025
- Figarola, J.L.; Scott, S.; Loera, S.; Xi, B.; Synold, T.; Rahbar, S. Renoprotective and lipid-lowering effects of LR compounds, novel advanced glycation end product inhibitors, in streptozotocin-induced diabetic rats. Ann. N. Y. Acad. Sci., 2005, 1043(1), 767-776. doi: 10.1196/annals.1333.089 PMID: 16037304
- Dimas, G.G.; Didangelos, T.P.; Grekas, D.M. Matrix gelatinases in atherosclerosis and diabetic nephropathy: progress and challenges. Curr. Vasc. Pharmacol., 2017, 15(6), 557-565. PMID: 28155628
- Srivastava, S.P.; Koya, D.; Kanasaki, K. MicroRNAs in kidney fibrosis and diabetic nephropathy: Roles on EMT and EndMT. BioMed Res. Int., 2013, 2013, 1-10. doi: 10.1155/2013/125469 PMID: 24089659
- Zeisberg, M.; Bottiglio, C.; Kumar, N.; Maeshima, Y.; Strutz, F.; Müller, G.A.; Kalluri, R. Bone morphogenic protein-7 inhibits progression of chronic renal fibrosis associated with two genetic mouse models. Am. J. Physiol. Renal Physiol., 2003, 285(6), F1060-F1067. doi: 10.1152/ajprenal.00191.2002 PMID: 12915382
- Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest., 2009, 119(6), 1420-1428. doi: 10.1172/JCI39104 PMID: 19487818
- Tan, T.K.; Zheng, G.; Hsu, T.T.; Wang, Y.; Lee, V.W.S.; Tian, X.; Wang, Y.; Cao, Q.; Wang, Y.; Harris, D.C.H. Macrophage matrix metalloproteinase-9 mediates epithelial-mesenchymal transition in vitro in murine renal tubular cells. Am. J. Pathol., 2010, 176(3), 1256-1270. doi: 10.2353/ajpath.2010.090188 PMID: 20075196
- Jiang, Q.; Wang, Y.; Hao, Y.; Juan, L.; Teng, M.; Zhang, X.; Li, M.; Wang, G.; Liu, Y. miR2Disease: A manually curated database for microRNA deregulation in human disease. Nucleic Acids Res., 2009, 37(S1), D98-D104. doi: 10.1093/nar/gkn714 PMID: 18927107
- Bracken, C.P.; Gregory, P.A.; Kolesnikoff, N.; Bert, A.G.; Wang, J.; Shannon, M.F.; Goodall, G.J. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res., 2008, 68(19), 7846-7854. doi: 10.1158/0008-5472.CAN-08-1942 PMID: 18829540
- Pavenstädt, H.; Kriz, W.; Kretzler, M. Cell biology of the glomerular podocyte. Physiol. Rev., 2003, 83(1), 253-307. doi: 10.1152/physrev.00020.2002 PMID: 12506131
- Abboud, H.E. Mesangial cell biology. Exp. Cell Res., 2012, 318(9), 979-985. doi: 10.1016/j.yexcr.2012.02.025 PMID: 22414873
- Schöcklmann, H.O.; Lang, S.; Sterzel, R.B. Regulation of mesangial cell proliferation. Kidney Int., 1999, 56(4), 1199-1207. doi: 10.1046/j.1523-1755.1999.00710.x PMID: 10610410
- Simonson, M.S. Phenotypic transitions and fibrosis in diabetic nephropathy. Kidney Int., 2007, 71(9), 846-854. doi: 10.1038/sj.ki.5002180 PMID: 17342177
- Li, J.J.; Kwak, S.J.; Jung, D.S.; Kim, J.J.; Yoo, T.H.; Ryu, D.R.; Han, S.H.; Choi, H.Y.; Lee, J.E.; Moon, S.J.; Kim, D.K.; Han, D.S.; Kang, S.W. Podocyte biology in diabetic nephropathy. Kidney Int., 2007, 72(106), S36-S42. doi: 10.1038/sj.ki.5002384 PMID: 17653209
- Bai, Y.; Wang, L.; Li, Y.; Liu, S.; Li, J.; Wang, H.; Huang, H. High ambient glucose levels modulates the production of MMP-9 and alpha5(IV) collagen by cultured podocytes. Cell. Physiol. Biochem., 2006, 17(1-2), 57-68. doi: 10.1159/000091464 PMID: 16543722
- Xu, Z.G.; Yoo, T.H.; Ryu, D.R.; Park, H.C.; Ha, S.K.; Han, D.S.; Adler, S.G.; Natarajan, R.; Kang, S.W. Angiotensin II receptor blocker inhibits p27Kip1 expression in glucose-stimulated podocytes and in diabetic glomeruli. Kidney Int., 2005, 67(3), 944-952. doi: 10.1111/j.1523-1755.2005.00158.x PMID: 15698433
- Lee, E.Y.; Shim, M.S.; Kim, M.J.; Hong, S.Y.; Shin, Y.G.; Chung, C.H. Angiotensin II receptor blocker attenuates overexpression of vascular endothelial growth factor in diabetic podocytes. Exp. Mol. Med., 2004, 36(1), 65-70. doi: 10.1038/emm.2004.9 PMID: 15031673
- Tufro, A.; Veron, D. VEGF and podocytes in diabetic nephropathy. Semin. Nephrol., 2012, 32(4), 385-393. doi: 10.1016/j.semnephrol.2012.06.010 PMID: 22958493
- Veron, D.; Reidy, K.; Bertuccio, C.; Techman, J.; Villegas, G.; Jimenez, J.; Shen, W.; Kopp, J.; Thomas, D.; Tufro, A. Induction of podocyte VEGF-A overexpression in adult mice causes glomerular disease. Kidney Int., 2010, 77, 989-999. doi: 10.1038/ki.2010.64 PMID: 20375978
- Nijenhuis, T.; Sloan, A.J.; Hoenderop, J.G.J.; Flesche, J.; van Goor, H.; Kistler, A.D.; Bakker, M.; Bindels, R.J.M.; de Boer, R.A.; Möller, C.C.; Hamming, I.; Navis, G.; Wetzels, J.F.M.; Berden, J.H.M.; Reiser, J.; Faul, C.; van der Vlag, J. Angiotensin II contributes to podocyte injury by increasing TRPC6 expression via an NFAT-mediated positive feedback signaling pathway. Am. J. Pathol., 2011, 179(4), 1719-1732. doi: 10.1016/j.ajpath.2011.06.033 PMID: 21839714
- Lin, C.L.; Wang, J.Y.; Huang, Y.T.; Kuo, Y.H.; Surendran, K.; Wang, F.S. Wnt/beta-catenin signaling modulates survival of high glucose-stressed mesangial cells. J. Am. Soc. Nephrol., 2006, 17(10), 2812-2820. doi: 10.1681/ASN.2005121355 PMID: 16943306
- Lin, C.L.; Wang, J.Y.; Ko, J.Y.; Huang, Y.T.; Kuo, Y.H.; Wang, F.S. Dickkopf-1 promotes hyperglycemia-induced accumulation of mesangial matrix and renal dysfunction. J. Am. Soc. Nephrol., 2010, 21(1), 124-135. doi: 10.1681/ASN.2008101059 PMID: 20019166
- Tung, C.W.; Hsu, Y.C.; Shih, Y.H.; Chang, P.J.; Lin, C.L. Glomerular mesangial cell and podocyte injuries in diabetic nephropathy. Nephrology (Carlton), 2018, 23(S4), 32-37. doi: 10.1111/nep.13451 PMID: 30298646
- Lin, C.L.; Wang, J.Y.; Ko, J.Y.; Surendran, K.; Huang, Y.T.; Kuo, Y.H.; Wang, F.S. Superoxide destabilization of beta-catenin augments apoptosis of high-glucose-stressed mesangial cells. Endocrinology, 2008, 149(6), 2934-2942. doi: 10.1210/en.2007-1372 PMID: 18339714
- Wang, F.; Fisher, S.A.; Zhong, J.; Wu, Y.; Yang, P. Superoxide dismutase 1 in vivo ameliorates maternal diabetes mellitus-induced apoptosis and heart defects through restoration of impaired Wnt signaling. Circ. Cardiovasc. Genet., 2015, 8(5), 665-676. doi: 10.1161/CIRCGENETICS.115.001138 PMID: 26232087
- Lin, C.L.; Lee, P.H.; Hsu, Y.C.; Lei, C.C.; Ko, J.Y.; Chuang, P.C.; Huang, Y.T.; Wang, S.Y.; Wu, S.L.; Chen, Y.S.; Chiang, W.C.; Reiser, J.; Wang, F.S. MicroRNA-29a promotion of nephrin acetylation ameliorates hyperglycemia-induced podocyte dysfunction. J. Am. Soc. Nephrol., 2014, 25(8), 1698-1709. doi: 10.1681/ASN.2013050527 PMID: 24578127
- Li, X.; Chuang, P.Y.; DAgati, V.D.; Dai, Y.; Yacoub, R.; Fu, J.; Xu, J.; Taku, O.; Premsrirut, P.K.; Holzman, L.B.; He, J.C. Nephrin preserves podocyte viability and glomerular structure and function in adult kidneys. J. Am. Soc. Nephrol., 2015, 26(10), 2361-2377. doi: 10.1681/ASN.2014040405 PMID: 25644109
- Niranjan, T.; Bielesz, B.; Gruenwald, A.; Ponda, M.P.; Kopp, J.B.; Thomas, D.B.; Susztak, K. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat. Med., 2008, 14(3), 290-298. doi: 10.1038/nm1731 PMID: 18311147
- Gruden, G.; Perin, P.; Camussi, G. Insight on the pathogenesis of diabetic nephropathy from the study of podocyte and mesangial cell biology. Curr. Diabetes Rev., 2005, 1(1), 27-40. doi: 10.2174/1573399052952622 PMID: 18220580
- Kitsiou, P.V.; Tzinia, A.K.; Stetler-Stevenson, W.G.; Michael, A.F.; Fan, W.W.; Zhou, B.; Tsilibary, E.C. Glucose-induced changes in integrins and matrix-related functions in cultured human glomerular epithelial cells. Am. J. Physiol. Renal Physiol., 2003, 284(4), F671-F679. doi: 10.1152/ajprenal.00266.2002 PMID: 12620921
- Endlich, N.; Sunohara, M.; Nietfeld, W.; Wolski, E.W.; Schiwek, D. KräNzlin, B.; Gretz, N.; Kriz, W.; Eickhoff, H.; Endlich, K. Analysis of differential gene expression in stretched podocytes: osteopontin enhances adaptation of podocytes to mechanical stress. FASEB J., 2002, 16(13), 1-24. doi: 10.1096/fj.02-0125fje PMID: 12354696
- Endlich, N.; Kress, K.R.; Reiser, J.; Uttenweiler, D.; Kriz, W.; Mundel, P.; Endlich, K. Podocytes respond to mechanical stress in vitro. J. Am. Soc. Nephrol., 2001, 12(3), 413-422. doi: 10.1681/ASN.V123413 PMID: 11181788
- Safavi, M.; Foroumadi, A.; Abdollahi, M. The importance of synthetic drugs for type 2 diabetes drug discovery. Expert Opin. Drug Discov., 2013, 8(11), 1339-1363. doi: 10.1517/17460441.2013.837883 PMID: 24050217
- Eggleton, J.S.; Jialal, I. Thiazolidinediones. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2021.
- Yki-Järvinen, H. Thiazolidinediones. N. Engl. J. Med., 2004, 351(11), 1106-1118. doi: 10.1056/NEJMra041001 PMID: 15356308
- Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia, 2017, 60(9), 1577-1585. doi: 10.1007/s00125-017-4342-z PMID: 28776086
- Hawley, S.A.; Ross, F.A.; Chevtzoff, C.; Green, K.A.; Evans, A.; Fogarty, S.; Towler, M.C.; Brown, L.J.; Ogunbayo, O.A.; Evans, A.M.; Hardie, D.G. Use of cells expressing γ subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab., 2010, 11(6), 554-565. doi: 10.1016/j.cmet.2010.04.001 PMID: 20519126
- Vincent, M.F.; Marangos, P.J.; Gruber, H.E.; van den Berghe, G. Inhibition by AICA riboside of gluconeogenesis in isolated rat hepatocytes. Diabetes, 1991, 40(10), 1259-1266. doi: 10.2337/diab.40.10.1259 PMID: 1657665
- Rendell, M. The role of sulphonylureas in the management of type 2 diabetes mellitus. Drugs, 2004, 64(12), 1339-1358. doi: 10.2165/00003495-200464120-00006 PMID: 15200348
- Groop, L.C.; Pelkonen, R.; Koskimies, S.; Bottazzo, G.F.; Doniach, D. Secondary failure to treatment with oral antidiabetic agents in non-insulin-dependent diabetes. Diabetes Care, 1986, 9(2), 129-133. doi: 10.2337/diacare.9.2.129 PMID: 3516607
- Yildiz, B.; Gürlek, A. Failure of sulfonylureas in type 2 diabetes. Horm. Metab. Res., 1999, 31(4), 293-294. doi: 10.1055/s-2007-978737 PMID: 10333089
- Guardado-Mendoza, R.; Prioletta, A.; Jiménez-Ceja, L.M.; Sosale, A.; Folli, F. State of the art paper The role of nateglinide and repaglinide, derivatives of meglitinide, in the treatment of type 2 diabetes mellitus. Arch. Med. Sci., 2013, 5(5), 936-943. doi: 10.5114/aoms.2013.34991 PMID: 24273582
- Hansen, A.M.K.; Christensen, I.T.; Hansen, J.B.; Carr, R.D.; Ashcroft, F.M.; Wahl, P. Differential interactions of nateglinide and repaglinide on the human β-cell sulphonylurea receptor 1. Diabetes, 2002, 51(9), 2789-2795. doi: 10.2337/diabetes.51.9.2789 PMID: 12196472
- Halas, C.J. Nateglinide. Am. J. Health Syst. Pharm., 2001, 58(13), 1200-1205. doi: 10.1093/ajhp/58.13.1200 PMID: 11449877
- Klag, M.J.; Whelton, P.K.; Randall, B.L.; Neaton, J.D.; Brancati, F.L.; Ford, C.E.; Shulman, N.B.; Stamler, J. Blood pressure and end-stage renal disease in men. N. Engl. J. Med., 1996, 334(1), 13-18. doi: 10.1056/NEJM199601043340103 PMID: 7494564
- Lee, G.S. Retarding the progression of diabetic nephropathy in type 2 diabetes mellitus: Focus on hypertension and proteinuria. Ann. Acad. Med. Singap., 2005, 34(1), 24-30. PMID: 15726216
- Yacoub, R.; Campbell, K.N. Inhibition of RAS in diabetic nephropathy. Int. J. Nephrol. Renovasc. Dis., 2015, 8, 29-40. PMID: 25926752
- Kshirsagar, A.V.; Joy, M.S.; Hogan, S.L.; Falk, R.J.; Colindres, R.E. Effect of ACE inhibitors in diabetic and nondiabetic chronic renal disease: A systematic overview of randomized placebo-controlled trials. Am. J. Kidney Dis., 2000, 35(4), 695-707. doi: 10.1016/S0272-6386(00)70018-7 PMID: 10739792
- Noel Van Buren, P.; Toto, R. Current update in the management of diabetic nephropathy. Curr. Diabetes Rev., 2013, 9(1), 62-77. doi: 10.2174/157339913804143207 PMID: 23167665
- Sharma, K.; Ix, J.H.; Mathew, A.V.; Cho, M.; Pflueger, A.; Dunn, S.R.; Francos, B.; Sharma, S.; Falkner, B.; McGowan, T.A.; Donohue, M. RamachandraRao, S.; Xu, R.; Fervenza, F.C.; Kopp, J.B. Pirfenidone for diabetic nephropathy. J. Am. Soc. Nephrol., 2011, 22(6), 1144-1151. doi: 10.1681/ASN.2010101049 PMID: 21511828
- Li, R.; Xing, J.; Mu, X.; Wang, H.; Zhang, L.; Zhao, Y.; Zhang, Y. Sulodexide therapy for the treatment of diabetic nephropathy, a meta-analysis and literature review. Drug Des. Devel. Ther., 2015, 9, 6275-6283. PMID: 26664049
- Soma, J.; Sugawara, T.; Huang, Y.D.; Nakajima, J.; Kawamura, M. Tranilast slows the progression of advanced diabetic nephropathy. Nephron J., 2002, 92(3), 693-698. doi: 10.1159/000064071 PMID: 12372957
- Tuttle, K.R.; Bakris, G.L.; Toto, R.D.; McGill, J.B.; Hu, K.; Anderson, P.W. The effect of ruboxistaurin on nephropathy in type 2 diabetes. Diabetes Care, 2005, 28(11), 2686-2690. doi: 10.2337/diacare.28.11.2686 PMID: 16249540
- Chen, J.L.T.; Francis, J. Pyridoxamine, advanced glycation inhibition, and diabetic nephropathy. J. Am. Soc. Nephrol., 2012, 23(1), 6-8. doi: 10.1681/ASN.2011111097 PMID: 22158434
- Kanda, H.; Yamawaki, K. Bardoxolone methyl: drug development for diabetic kidney disease. Clin. Exp. Nephrol., 2020, 24(10), 857-864. doi: 10.1007/s10157-020-01917-5 PMID: 32594372
- Herman-Edelstein, M.; Scherzer, P.; Tobar, A.; Levi, M.; Gafter, U. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J. Lipid Res., 2014, 55(3), 561-572. doi: 10.1194/jlr.P040501 PMID: 24371263
- Tsun, J.G.S.; Yung, S.; Chau, M.K.M.; Shiu, S.W.M.; Chan, T.M.; Tan, K.C.B. Cellular cholesterol transport proteins in diabetic nephropathy. PLoS One, 2014, 9(9), e105787. doi: 10.1371/journal.pone.0105787 PMID: 25181357
- Ruan, X.; Varghese, Z.; Fernando, R.; Moorhead, J.F. Cytokines regulation of low-density lipoprotein receptor gene transcription in human mesangial cells. Nephrol. Dial. Transplant., 1998, 13(6), 1391-1397. doi: 10.1093/ndt/13.6.1391 PMID: 9641167
- Ruan, X.Z.; Moorhead, J.F.; Fernando, R.; Wheeler, D.C.; Powis, S.H.; Varghese, Z. PPAR agonists protect mesangial cells from interleukin 1beta-induced intracellular lipid accumulation by activating the ABCA1 cholesterol efflux pathway. J. Am. Soc. Nephrol., 2003, 14(3), 593-600. doi: 10.1097/01.ASN.0000050414.52908.DA PMID: 12595494
- Ling, L.J. Calcium channel blockers. In: Emergency Medicine: A Comprehensive Study Guide; Tintinalli, J.E.; Ruiz, E.; Krome, R.L., Eds.; McGraw-Hill: New York, NY, 1996; pp. 803-805.
- Lip, G.Y.H.; Ferner, R.E. Poisoning with anti-hypertensive drugs: Calcium antagonists. J. Hum. Hypertens., 1995, 9(3), 155-161. PMID: 7783095
- Adams, B.D.; Browne, W.T. Amlodipine overdose causes prolonged calcium channel blocker toxicity. Am. J. Emerg. Med., 1998, 16(5), 527-528. doi: 10.1016/S0735-6757(98)90011-0 PMID: 9725975
- Eland, I.A.; Sundström, A.; Velo, G.P.; Andersen, M.; Sturkenboom, M.C.J.M.; Langman, M.J.S.; Stricker, B.H.C.H.; Wiholm, B.; Eland, I.A.; Sundström, A.; Velo, G.P.; Andersen, M.; Sturkenboom, M.C.J.M.; Langman, M.J.S.; Stricker, B.H.C.H.; Wiholm, B. Antihypertensive medication and the risk of acute pancreatitis: The European case-control study on drug-induced acute pancreatitis (EDIP). Scand. J. Gastroenterol., 2006, 41(12), 1484-1490. doi: 10.1080/00365520600761676 PMID: 17101581
- Serreau, R.; Luton, D.; Macher, M.A.; Delezoide, A.L.; Garel, C.; Jacqz-Aigrain, E. Developmental toxicity of the angiotensin II type 1 receptor antagonists during human pregnancy: A report of 10 cases. BJOG, 2005, 112(6), 710-712. doi: 10.1111/j.1471-0528.2004.00525.x PMID: 15924524
- Payen, V.; Chemin, A.; Jonville-Béra, A.P.; Saliba, E.; Cantagrel, S. Fetal toxicity of angiotensin-II receptor antagonists. J. Gynecol. Obstet. Biol. Reprod. (Paris), 2006, 35(7), 729-731. doi: 10.1016/S0368-2315(06)76471-7 PMID: 17088776
- Simonetti, G.D.; Baumann, T.; Pachlopnik, J.M.; von Vigier, R.O.; Bianchetti, M.G. Non-lethal fetal toxicity of the angiotensin receptor blocker candesartan. Pediatr. Nephrol., 2006, 21(9), 1329-1330. doi: 10.1007/s00467-006-0162-y PMID: 16807764
- Roger, N.; Popovic, I.; Madelenat, P.; Mahieu-Caputo, D. Fetal toxicity of angiotensin-II-receptor inhibitors. Case report. Gynécol. Obstét. Fertil., 2007, 35(6), 556-560. doi: 10.1016/j.gyobfe.2007.03.015 PMID: 17544313
- Wang, G.S.; Hoyte, C. Review of biguanide (metformin) toxicity. J. Intensive Care Med., 2019, 34(11-12), 863-876. doi: 10.1177/0885066618793385 PMID: 30126348
- Perrone, J.; Phillips, C.; Gaieski, D. Occult metformin toxicity in three patients with profound lactic acidosis. J. Emerg. Med., 2011, 40(3), 271-275. doi: 10.1016/j.jemermed.2007.11.055 PMID: 18571361
- Shadnia, S.; Barzi, F.; Askari, A.; Hassanian-Moghaddam, H.; Zamani, N.; Ebrahimian, K. Metformin toxicity: A report of 204 cases from Iran. Curr. Drug Saf., 2013, 8(4), 278-281. doi: 10.2174/1574210195346398863 PMID: 24070002
- Mallick, S. Metformin induced acute pancreatitis precipitated by renal failure. Postgrad. Med. J., 2004, 80(942), 239-240. doi: 10.1136/pgmj.2003.011957 PMID: 15082849
- Scheen, A.J. Thiazolidinediones and liver toxicity. Diabetes Metab., 2001, 27(3), 305-313. PMID: 11431595
- Famularo, G.; Gasbarrone, L.; Minisola, G. Pancreatitis during treatment with liraglutide. JOP, 2012, 13(5), 540-541. PMID: 22964963
- Maor, Y.; Ergaz, D.; Malnick, S.D.H.; Melzer, E.; Neuman, M.G. Liraglutide-induced hepatotoxicity. Biomedicines, 2021, 9(2), 106. doi: 10.3390/biomedicines9020106 PMID: 33498980
- Denker, P.S.; Dimarco, P.E. Exenatide (exendin-4)-induced pancreatitis: A case report. Diabetes Care, 2006, 29(2), 471. doi: 10.2337/diacare.29.02.06.dc05-2043 PMID: 16443920
- McGill, J.B.; King, G.L.; Berg, P.H.; Price, K.L.; Kles, K.A.; Bastyr, E.J.; Hyslop, D.L. Clinical safety of the selective PKC-β inhibitor, ruboxistaurin. Expert Opin. Drug Saf., 2006, 5(6), 835-845. doi: 10.1517/14740338.5.6.835 PMID: 17044810
- Waanders, F.; van Goor, H.; Navis, G. Adverse renal effects of the AGE inhibitor pyridoxamine in combination with ACEi in non-diabetic adriamycin-induced renal damage in rats. Kidney Blood Press. Res., 2008, 31(5), 350-359. doi: 10.1159/000173253 PMID: 19018148
- Dabeek, W.M.; Marra, M.V. Dietary quercetin and kaempferol: Bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients, 2019, 11(10), 2288. doi: 10.3390/nu11102288 PMID: 31557798
- Lu, N.T.; Crespi, C.M.; Liu, N.M.; Vu, J.Q.; Ahmadieh, Y.; Wu, S.; Lin, S.; McClune, A.; Durazo, F.; Saab, S.; Han, S.; Neiman, D.C.; Beaven, S.; French, S.W. A phase I dose escalation study demonstrates quercetin safety and explores potential for bioflavonoid antivirals in patients with chronic hepatitis C. Phytother. Res., 2016, 30(1), 160-168. doi: 10.1002/ptr.5518 PMID: 26621580
- Vivarelli, S.; Salemi, R.; Candido, S.; Falzone, L.; Santagati, M.; Stefani, S.; Torino, F.; Banna, G.L.; Tonini, G.; Libra, M. Gut microbiota and cancer: From pathogenesis to therapy. Cancers, 2019, 11(1), 38. doi: 10.3390/cancers11010038 PMID: 30609850
- Gubert, C.; Kong, G.; Renoir, T.; Hannan, A.J. Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases. Neurobiol. Dis., 2020, 134, 104621. doi: 10.1016/j.nbd.2019.104621 PMID: 31628992
- Fung, T.C.; Olson, C.A.; Hsiao, E.Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci., 2017, 20(2), 145-155. doi: 10.1038/nn.4476 PMID: 28092661
- Witkowski, M.; Weeks, T.L.; Hazen, S.L. Gut microbiota and cardiovascular disease. Circ. Res., 2020, 127(4), 553-570. doi: 10.1161/CIRCRESAHA.120.316242 PMID: 32762536
- Nagase, N.; Ikeda, Y.; Tsuji, A.; Kitagishi, Y.; Matsuda, S. Efficacy of probiotics on the modulation of gut microbiota in the treatment of diabetic nephropathy. World J. Diabetes, 2022, 13(3), 150-160. doi: 10.4239/wjd.v13.i3.150 PMID: 35432750
- Chen, W.; Zhang, M.; Guo, Y.; Wang, Z.; Liu, Q.; Yan, R.; Wang, Y.; Wu, Q.; Yuan, K.; Sun, W. The profile and function of gut microbiota in diabetic nephropathy. Diabetes Metab. Syndr. Obes., 2021, 14, 4283-4296. doi: 10.2147/DMSO.S320169 PMID: 34703261
- Zaky, A.; Glastras, S.J.; Wong, M.Y.W.; Pollock, C.A.; Saad, S. The role of the gut microbiome in diabetes and obesity-related kidney disease. Int. J. Mol. Sci., 2021, 22(17), 9641. doi: 10.3390/ijms22179641 PMID: 34502562
- Patcharatrakul, T.; Gonlachanvit, S. Chili peppers, curcumins, and prebiotics in gastrointestinal health and disease. Curr. Gastroenterol. Rep., 2016, 18(4), 19. doi: 10.1007/s11894-016-0494-0 PMID: 26973345
- Nissen, L.; Valerii, M.C.; Spisni, E.; Casciano, F.; Gianotti, A. multiunit in vitro Colon model for the evaluation of prebiotic potential of a fiber plus D- Limonene food supplement. Foods, 2021, 10(10), 2371. doi: 10.3390/foods10102371 PMID: 34681420
- Parkar, S.G.; Stevenson, D.E.; Skinner, M.A. The potential influence of fruit polyphenols on colonic microflora and human gut health. Int. J. Food Microbiol., 2008, 124(3), 295-298. doi: 10.1016/j.ijfoodmicro.2008.03.017 PMID: 18456359
- Zhang, Z.B.; Luo, D.D.; Xie, J.H.; Xian, Y.F.; Lai, Z.Q.; Liu, Y.H.; Liu, W.H.; Chen, J.N.; Lai, X.P.; Lin, Z.X.; Su, Z.R. Curcumins metabolites, tetrahydrocurcumin and octahydrocurcumin, possess superior anti-inflammatory effects in vivo through suppression of TAK1-NF-κB pathway. Front. Pharmacol., 2018, 9, 1181. doi: 10.3389/fphar.2018.01181 PMID: 30386242
- Jarret, R.L.; Barboza, G.E.; Costa Batista, F.R.; Berke, T.; Chou, Y.Y.; Hulse-Kemp, A.; Ochoa-Alejo, N.; Tripodi, P.; Veres, A.; Garcia, C.C.; Csillery, G.; Huang, Y.K.; Kiss, E.; Kovacs, Z.; Kondrak, M.; Arce-Rodriguez, M.L.; Scaldaferro, M.A.; Szoke, A. Capsicum - An abbreviated compendium. J. Am. Soc. Hortic. Sci., 2019, 144(1), 3-22. doi: 10.21273/JASHS04446-18
- Guala, G. Integrated Taxonomic Information System (ITIS). Available from: https://www.itis.gov/ (Accessed Oct-2022).
- Aranha, B.C.; Hoffmann, J.F.; Barbieri, R.L.; Rombaldi, C.V.; Chaves, F.C. Untargeted metabolomic analysis of Capsicum spp. by GCMS. Phytochem. Anal., 2017, 28(5), 439-447. doi: 10.1002/pca.2692 PMID: 28497560
- Saito, A.; Yamamoto, M. Acute oral toxicity of capsaicin in mice and rats. J. Toxicol. Sci., 1996, 21(3), 195-200. doi: 10.2131/jts.21.3_195 PMID: 8887888
- Reyes-Escogido, M.; Gonzalez-Mondragon, E.G.; Vazquez-Tzompantzi, E. Chemical and pharmacological aspects of capsaicin. Molecules, 2011, 16(2), 1253-1270. doi: 10.3390/molecules16021253 PMID: 21278678
- Li, J.; Wang, D.H. Increased GFR and renal excretory function by activation of TRPV1 in the isolated perfused kidney. Pharmacol. Res., 2008, 57(3), 239-246. doi: 10.1016/j.phrs.2008.01.011 PMID: 18329285
- Suri, A.; Szallasi, A. The emerging role of TRPV1 in diabetes and obesity. Trends Pharmacol. Sci., 2008, 29(1), 29-36. doi: 10.1016/j.tips.2007.10.016 PMID: 18055025
- Caballero, J. A new era for the design of TRPV1 antagonists and agonists with the use of structural information and molecular docking of capsaicin-like compounds. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 2169-2178. doi: 10.1080/14756366.2022.2110089 PMID: 35975286
- Darré, L.; Domene, C. Binding of capsaicin to the TRPV1 ion channel. Mol. Pharm., 2015, 12(12), 4454-4465. doi: 10.1021/acs.molpharmaceut.5b00641 PMID: 26502196
- Backes, T.M.; Rössler, O.G.; Hui, X.; Grötzinger, C.; Lipp, P.; Thiel, G. Stimulation of TRPV1 channels activates the AP-1 transcription factor. Biochem. Pharmacol., 2018, 150, 160-169. doi: 10.1016/j.bcp.2018.02.008 PMID: 29452097
- Luo, Z.; Ma, L.; Zhao, Z.; He, H.; Yang, D.; Feng, X.; Ma, S.; Chen, X.; Zhu, T.; Cao, T.; Liu, D.; Nilius, B.; Huang, Y.; Yan, Z.; Zhu, Z. TRPV1 activation improves exercise endurance and energy metabolism through PGC-1α upregulation in mice. Cell Res., 2012, 22(3), 551-564. doi: 10.1038/cr.2011.205 PMID: 22184011
- Wei, X.; Wei, X.; Lu, Z.; Li, L.; Hu, Y.; Sun, F.; Jiang, Y.; Ma, H.; Zheng, H.; Yang, G.; Liu, D.; Gao, P.; Zhu, Z. Activation of TRPV1 channel antagonizes diabetic nephropathy through inhibiting endoplasmic reticulum-mitochondria contact in podocytes. Metabolism, 2020, 105, 154182. doi: 10.1016/j.metabol.2020.154182 PMID: 32061660
- Hazarika, T.K. Citrus genetic diversity of north-east India, their distribution, ecogeography and ecobiology. Genet. Resour. Crop Evol., 2012, 59(6), 1267-1280. doi: 10.1007/s10722-012-9846-2
- Sadka, A.; Shlizerman, L.; Kamara, I.; Blumwald, E. Primary metabolism in citrus fruit as affected by its unique structure. Front. Plant Sci., 2019, 10(10), 1167. doi: 10.3389/fpls.2019.01167 PMID: 31611894
- Dugo, G.; Di Giacomo, A. Eds.; Citrus: the genus citrus; CRC Press, 2002. doi: 10.1201/9780203216613
- Champagne, D.E.; Koul, O.; Isman, M.B.; Scudder, G.G.E.; Neil Towers, G.H. Biological activity of limonoids from the rutales. Phytochemistry, 1992, 31(2), 377-394. doi: 10.1016/0031-9422(92)90003-9
- Reinhard, H.; Sager, F.; Zoller, O. Citrus juice classification by SPME-GC-MS and electronic nose measurements. Lebensm. Wiss. Technol., 2008, 41(10), 1906-1912. doi: 10.1016/j.lwt.2007.11.012
- Brendel, R.; Schwolow, S.; Rohn, S.; Weller, P. Volatilomic profiling of citrus juices by dual-detection HS-GC-MS-IMS and machine learning - An alternative authentication approach. J. Agric. Food Chem., 2021, 69(5), 1727-1738. doi: 10.1021/acs.jafc.0c07447 PMID: 33527826
- Surendran, S.; Qassadi, F.; Surendran, G.; Lilley, D.; Heinrich, M. Myrcene - what are the potential health benefits of this flavouring and aroma agent? Front. Nutr., 2021, 8(699666), 699666. doi: 10.3389/fnut.2021.699666 PMID: 34350208
- Jiang, M.H.; Yang, L.; Zhu, L.; Piao, J.H.; Jiang, J.G. Comparative GC/MS analysis of essential oils extracted by 3 methods from the bud of Citrus aurantium L. var. amara Engl. J. Food Sci., 2011, 76(9), C1219-C1225. doi: 10.1111/j.1750-3841.2011.02421.x PMID: 22416680
- Smith, D.C.; Forland, S.; Bachanos, E.; Matejka, M.; Barrett, V. Qualitative analysis of citrus fruit extracts by GC/MS: An undergraduate experiment. Chem. Educ., 2001, 6(1), 28-31. doi: 10.1007/s00897000450a
- Benavente-García, O.; Castillo, J.; Marin, F.R.; Ortuño, A.; Del Río, J.A. Uses and properties of citrus flavonoids. J. Agric. Food Chem., 1997, 45(12), 4505-4515. doi: 10.1021/jf970373s PMID: 18593176
- Kurogi, Y. Mesangial cell proliferation inhibitors for the treatment of proliferative glomerular disease. Med. Res. Rev., 2003, 23(1), 15-31. doi: 10.1002/med.10028 PMID: 12424751
- Yan, N.; Wen, L.; Peng, R.; Li, H.; Liu, H.; Peng, H.; Sun, Y.; Wu, T.; Chen, L.; Duan, Q.; Sun, Y.; Zhou, Q.; Wei, L.; Zhang, Z. Naringenin ameliorated kidney injury through Let-7a/TGFBR1 signaling in diabetic nephropathy. J. Diabetes Res., 2016, 2016, 1-13. doi: 10.1155/2016/8738760 PMID: 27446963
- Ortiz-Andrade, R.R.; Sánchez-Salgado, J.C.; Navarrete-Vázquez, G.; Webster, S.P.; Binnie, M.; García-Jiménez, S.; León-Rivera, I.; Cigarroa-Vázquez, P.; Villalobos-Molina, R.; Estrada-Soto, S. Antidiabetic and toxicological evaluations of naringenin in normoglycaemic and NIDDM rat models and its implications on extra-pancreatic glucose regulation. Diabetes Obes. Metab., 2008, 10(11), 1097-1104. doi: 10.1111/j.1463-1326.2008.00869.x PMID: 18355329
- Bickers, D.; Calow, P.; Greim, H.; Hanifin, J.M.; Rogers, A.E.; Saurat, J.H.; Sipes, I.G.; Smith, R.L.; Tagami, H. A toxicologic and dermatologic assessment of linalool and related esters when used as fragrance ingredients. Food Chem. Toxicol., 2003, 41(7), 919-942. doi: 10.1016/S0278-6915(03)00016-4 PMID: 12804649
- Deepa, B.; Venkatraman, C. Effects of linalool on inflammation, matrix accumulation and podocyte loss in kidney of streptozotocin-induced diabetic rats. Toxicol. Mech. Methods, 2013, 23(4), 223-234. doi: 10.3109/15376516.2012.743638 PMID: 23193997
- Aaltonen, P.; Luimula, P.; Åström, E.; Palmen, T.; Grönholm, T.; Palojoki, E.; Jaakkola, I.; Ahola, H.; Tikkanen, I.; Holthöfer, H. Changes in the expression of nephrin gene and protein in experimental diabetic nephropathy. Lab. Invest., 2001, 81(9), 1185-1190. doi: 10.1038/labinvest.3780332 PMID: 11555666
- Deepa, B.; Anuradha, C.V. Linalool, a plant derived monoterpene alcohol, rescues kidney from diabetes-induced nephropathic changes via blood glucose reduction. Diabetol. Croat., 2011, 40(4), 121-138.
- Forbes, J.M.; Coughlan, M.T.; Cooper, M.E. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes, 2008, 57(6), 1446-1454. doi: 10.2337/db08-0057 PMID: 18511445
- Baud, L.; Ardaillou, R. Reactive oxygen species: Production and role in the kidney. Am. J. Physiol., 1986, 251(5 Pt 2), F765-F776. PMID: 3022602
- Sedeek, M.; Nasrallah, R.; Touyz, R.M.; Hébert, R.L. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J. Am. Soc. Nephrol., 2013, 24(10), 1512-1518. doi: 10.1681/ASN.2012111112 PMID: 23970124
- Yan, L. Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. Animal Model. Exp. Med., 2018, 1(1), 7-13. doi: 10.1002/ame2.12001 PMID: 29863179
- Van Nguyen, C. Toxicity of the AGEs generated from the Maillard reaction: On the relationship of food-AGEs and biological-AGEs. Mol. Nutr. Food Res., 2006, 50(12), 1140-1149. doi: 10.1002/mnfr.200600144 PMID: 17131455
- Makino, H.; Shikata, K.; Hironaka, K.; Kushiro, M.; Yamasaki, Y.; Sugimoto, H.; Ota, Z.; Araki, N.; Horiuchi, S. Ultrastructure of nonenzymatically glycated mesangial matrix in diabetic nephropathy. Kidney Int., 1995, 48(2), 517-526. doi: 10.1038/ki.1995.322 PMID: 7564121
- Kummer, R.; Fachini-Queiroz, F.C.; Estevão-Silva, C.F.; Grespan, R.; Silva, E.L.; Bersani-Amado, C.A.; Cuman, R.K. Evaluation of anti-inflammatory activity of Citrus latifolia Tanaka essential oil and limonene in experimental mouse models. Evid. based Complement. Altern. Med., 2013, 2013, 859083.
- Delort, E.; Jaquier, A.; Decorzant, E.; Chapuis, C.; Casilli, A.; Frérot, E. Comparative analysis of three Australian finger lime (Citrus australasica) cultivars: Identification of unique citrus chemotypes and new volatile molecules. Phytochemistry, 2015, 109, 111-124. doi: 10.1016/j.phytochem.2014.10.023 PMID: 25468539
- Joglekar, M.M.; Panaskar, S.N.; Chougale, A.D.; Kulkarni, M.J.; Arvindekar, A.U. A novel mechanism for antiglycative action of limonene through stabilization of protein conformation. Mol. Biosyst., 2013, 9(10), 2463-2472. doi: 10.1039/c3mb00020f PMID: 23872839
- Chaturvedi, S.K.; Ahmad, E.; Khan, J.M.; Alam, P.; Ishtikhar, M.; Khan, R.H. Elucidating the interaction of limonene with bovine serum albumin: a multi-technique approach. Mol. Biosyst., 2015, 11(1), 307-316. doi: 10.1039/C4MB00548A PMID: 25382435
- Panaskar, S.N.; Joglekar, M.M.; Taklikar, S.S.; Haldavnekar, V.S.; Arvindekar, A.U. Aegle marmelos Correa leaf extract prevents secondary complications in streptozotocin-induced diabetic rats and demonstration of limonene as a potent antiglycating agent. J. Pharm. Pharmacol., 2013, 65(6), 884-894. doi: 10.1111/jphp.12044 PMID: 23647682
- Yoon, W.J.; Lee, N.H.; Hyun, C.G. Limonene suppresses lipopolysaccharide-induced production of nitric oxide, prostaglandin E2, and pro-inflammatory cytokines in RAW 264.7 macrophages. J. Oleo Sci., 2010, 59(8), 415-421. doi: 10.5650/jos.59.415 PMID: 20625233
- Iwanage, Y. Studies on d-limonene, as gallstone solubilizer. II. Acute and subacute toxicities. Oyo Yakuri, 1975, 9, 387-401.
- Kumar, J.; Verma, V.; Goyal, A.; Shahi, A.K.; Sparoo, R.; Sangwan, R.S.; Qazi, G.N. Genetic diversity analysis in Cymbopogon species using DNA markers. Plant Omics, 2009, 2(1), 20.
- Ganjewala, D. Cymbopogon essential oils: Chemical compositions and bioactivities. Int. J. Essent. Oil Res, 2009, 3(2-3), 56-65.
- Ilayperuma, I. Effects of intraperitoneal administration of Citral on male reproductive organs in the rat. Galen Med. J., 2009, 13(1), 29-32. doi: 10.4038/gmj.v13i1.891
- Babukumar, S.; Vinothkumar, V.; Sankaranarayanan, C.; Srinivasan, S. Geraniol, a natural monoterpene, ameliorates hyperglycemia by attenuating the key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Pharm. Biol., 2017, 55(1), 1442-1449. doi: 10.1080/13880209.2017.1301494 PMID: 28330423
- Kpoviessi, S.; Bero, J.; Agbani, P.; Gbaguidi, F.; Kpadonou-Kpoviessi, B.; Sinsin, B.; Accrombessi, G.; Frédérich, M.; Moudachirou, M.; Quetin-Leclercq, J. Chemical composition, cytotoxicity and in vitro antitrypanosomal and antiplasmodial activity of the essential oils of four Cymbopogon species from Benin. J. Ethnopharmacol., 2014, 151(1), 652-659. doi: 10.1016/j.jep.2013.11.027 PMID: 24269775
- Robbins, S.R.J. Selected markets for the essential oils of lemongrass, citronella and eucalyptus. Tropical Products Institute Report, 1983, 17, 13.
- Mishra, C.; Khalid, M.A.; Tripathi, D.; Mahdi, A.A. Comparative anti-diabetic study of three phytochemicals on high-fat diet and streptozotocin-induced diabetic dyslipidemic rats. Int. J. Biomed. Adv. Res., 2018, 9(8), 8.
- Katsukawa, M.; Nakata, R.; Takizawa, Y.; Hori, K.; Takahashi, S.; Inoue, H. Citral, a component of lemongrass oil, activates PPARα and γ and suppresses COX-2 expression. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2010, 1801(11), 1214-1220. doi: 10.1016/j.bbalip.2010.07.004 PMID: 20656057
- Sforcin, J.M.; Amaral, J.T.; Fernandes, A., Jr; Sousa, J.P.B.; Bastos, J.K. Lemongrass effects on IL-1β and IL-6 production by macrophages. Nat. Prod. Res., 2009, 23(12), 1151-1159. doi: 10.1080/14786410902800681 PMID: 19662581
- Zarandi, M.H.; Sharifiyazdi, H.; Nazifi, S.; Ghaemi, M.; Bakhtyari, M.K. Effects of citral on serum inflammatory factors and liver gene expression of IL-6 and TNF-alpha in experimental diabetes. Comp. Clin. Pathol., 2021, 30(3), 351-361. doi: 10.1007/s00580-021-03205-4
- Lee, H.J.; Jeong, H.S.; Kim, D.J.; Noh, Y.H.; Yuk, D.Y.; Hong, J.T. Inhibitory effect of citral on NO production by suppression of iNOS expression and NF-κB activation in RAW264.7 cells. Arch. Pharm. Res., 2008, 31(3), 342-349. doi: 10.1007/s12272-001-1162-0 PMID: 18409048
- El-Said, Y.A.M.; Sallam, N.A.A.; Ain-Shoka, A.A.M.; Abdel-Latif, H.A.T. Geraniol ameliorates diabetic nephropathy via interference with miRNA-21/PTEN/Akt/mTORC1 pathway in rats. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(12), 2325-2337. doi: 10.1007/s00210-020-01944-9 PMID: 32666288
- Shah, G.; Shri, R.; Panchal, V.; Sharma, N.; Singh, B.; Mann, A.S. Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (Lemon grass). J. Adv. Pharm. Technol. Res., 2011, 2(1), 3-8. doi: 10.4103/2231-4040.79796 PMID: 22171285
- Rauter, A.P.; Lopes, R.G.; Martins, A. CGlycosylflavonoids: Identification, bioactivity and synthesis. Nat. Prod. Commun., 2007, 2(11), 1934578X0700201125.
- Figueirinha, A.; Paranhos, A.; Pérez-Alonso, J.J.; Santos-Buelga, C.; Batista, M.T. Cymbopogon citratus leaves: Characterization of flavonoids by HPLCPDAESI/MS/MS and an approach to their potential as a source of bioactive polyphenols. Food Chem., 2008, 110(3), 718-728. doi: 10.1016/j.foodchem.2008.02.045
- Fonseca-Silva, F.; Inacio, J.D.F.; Canto-Cavalheiro, M.M.; Menna-Barreto, R.F.S.; Almeida-Amaral, E.E. Oral efficacy of apigenin against cutaneous leishmaniasis: Involvement of reactive oxygen species and autophagy as a mechanism of action. PLoS Negl. Trop. Dis., 2016, 10(2), e0004442. doi: 10.1371/journal.pntd.0004442 PMID: 26862901
- Malik, S.; Suchal, K.; Khan, S.I.; Bhatia, J.; Kishore, K.; Dinda, A.K.; Arya, D.S. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways. Am. J. Physiol. Renal Physiol., 2017, 313(2), F414-F422. doi: 10.1152/ajprenal.00393.2016 PMID: 28566504
- Xu, Y.; Zhang, J.; Fan, L.; He, X. miR-423-5p suppresses high-glucose-induced podocyte injury by targeting Nox4. Biochem. Biophys. Res. Commun., 2018, 505(2), 339-345. doi: 10.1016/j.bbrc.2018.09.067 PMID: 30245133
- Hou, Y.; Zhang, Y.; Lin, S.; Yu, Y.; Yang, L.; Li, L.; Wang, W. Protective mechanism of apigenin in diabetic nephropathy is related to its regulation of miR-423-5P-USF2 axis. Am. J. Transl. Res., 2021, 13(4), 2006-2020. PMID: 34017372
- Hossain, C.M.; Ghosh, M.K.; Satapathy, B.S.; Dey, N.S.; Mukherjee, B. Apigenin causes biochemical modulation, GLUT4 and Cd38 alterations to improve diabetes and to protect damages of some vital organs in experimental diabetes. Am. J. Pharmacol. Toxicol., 2014, 9(1), 39-52. doi: 10.3844/ajptsp.2014.39.52
- DeRango-Adem, E.F.; Blay, J. Does oral apigenin have real potential for a therapeutic effect in the context of human gastrointestinal and other cancers? Front. Pharmacol., 2021, 12, 681477. doi: 10.3389/fphar.2021.681477 PMID: 34084146
- Mukherjee, B.; Banerjee, S.; Mondal, L.; Chakraborty, S.; Chanda, D.; Perera, J.A. Bioactive flavonoid apigenin and its nanoformulations: a promising hope for diabetes and cancer. In: Nanomedicine for Bioactives; Springer: Singapore, 2020; pp. 367-382. doi: 10.1007/978-981-15-1664-1_13
- Chakrovorty, A.; Bhattacharjee, B.; Dey, R.; Samadder, A.; Nandi, S. Graphene: the magic carbon derived biological weapon for human welfare. Int. Acad. Publ. House, 2021, 25, 9-17. doi: 10.52756/ijerr.2021.v25.002
- Syamkumar, S.; Sasikumar, B. Molecular marker based genetic diversity analysis of curcuma species from India. Sci. Hortic., 2007, 112(2), 235-241. doi: 10.1016/j.scienta.2006.12.021
- Samadder, A.; Khuda-Bukhsh, A.R. Nanotechnological approaches in diabetes treatment: A new horizon. World J. Transl. Med., 2014, 3(2), 84-95. doi: 10.5528/wjtm.v3.i2.84
- Chen, L.; Liu, T.; Wang, Q.; Liu, J. Anti-inflammatory effect of combined tetramethylpyrazine, resveratrol and curcumin in vivo. BMC Complement. Altern. Med., 2017, 17(1), 233. doi: 10.1186/s12906-017-1739-7 PMID: 28449676
- Widyananda, M.H.; Ansori, A.N.; Kharisma, V.D.; Rizky, W.C.; Dings, T.G.; Rebezov, M.; Maksimiuk, N.; Denisenko, A.; Nugraha, A.P. Investigating the potential of curcumin, demethoxycurcumin and bisdemethoxycurcumin as wild-type and mutant her2 inhibitors against various cancer types using bioinformatics analysis. Biochem. Cell. Arch., 2021, 21(2), 3335-3343.
- Zhang, D.W.; Fu, M.; Gao, S.H.; Liu, J.L. Curcumin and diabetes: A systematic review. Evid.-. Based Complementary Altern.Med, 2013, 2013, 636053.
- Chuengsamarn, S.; Rattanamongkolgul, S.; Luechapudiporn, R.; Phisalaphong, C.; Jirawatnotai, S. Curcumin extract for prevention of type 2 diabetes. Diabetes Care, 2012, 35(11), 2121-2127. doi: 10.2337/dc12-0116 PMID: 22773702
- Bisht, S.; Feldmann, G.; Soni, S.; Ravi, R.; Karikar, C.; Maitra, A.; Maitra, A. Polymeric nanoparticle-encapsulated curcumin ("nanocurcumin"): A novel strategy for human cancer therapy. J. Nanobiotechnology, 2007, 5(1), 3. doi: 10.1186/1477-3155-5-3 PMID: 17439648
- Chakrovorty, A.; Bhattacharjee, B.; Saxena, A.; Samadder, A.; Nandi, S. Current naturopathy to combat Alzheimers disease. Curr. Neuropharmacol., 2022, 20, 808-841. doi: 10.2174/1570159X20666220927121022 PMID: 36173068
- Tabrizi, R.; Vakili, S.; Akbari, M.; Mirhosseini, N.; Lankarani, K.B.; Rahimi, M.; Mobini, M.; Jafarnejad, S.; Vahedpoor, Z.; Asemi, Z. The effects of curcumin-containing supplements on biomarkers of inflammation and oxidative stress: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res., 2019, 33(2), 253-262. doi: 10.1002/ptr.6226 PMID: 30402990
- He, Y.; Yue, Y.; Zheng, X.; Zhang, K.; Chen, S.; Du, Z. Curcumin, inflammation, and chronic diseases: How are they linked? Molecules, 2015, 20(5), 9183-9213. doi: 10.3390/molecules20059183 PMID: 26007179
- Motterlini, R.; Foresti, R.; Bassi, R.; Green, C.J. Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic. Biol. Med., 2000, 28(8), 1303-1312. doi: 10.1016/S0891-5849(00)00294-X PMID: 10889462
- Karlowee, H.; Gumay, A.R. Turmeric as a preventive agent of oxidative stress and diabetic nephropathy in alloxan induced wistar rats. Pak. J. Med. Health Sci., 2019, 13(4), 1208-1213.
- Nowotny, K.; Jung, T.; Höhn, A.; Weber, D.; Grune, T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules, 2015, 5(1), 194-222. doi: 10.3390/biom5010194 PMID: 25786107
- Soetikno, V.; Watanabe, K.; Sari, F.R.; Harima, M.; Thandavarayan, R.A.; Veeraveedu, P.T.; Arozal, W.; Sukumaran, V.; Lakshmanan, A.P.; Arumugam, S.; Suzuki, K. Curcumin attenuates diabetic nephropathy by inhibiting PKC-α and PKC-β1 activity in streptozotocin-induced type I diabetic rats. Mol. Nutr. Food Res., 2011, 55(11), 1655-1665. doi: 10.1002/mnfr.201100080 PMID: 22045654
- Riser, B.L.; Denichilo, M.; Cortes, P.; Baker, C.; Grondin, J.M.; Yee, J.; Narins, R.G. Regulation of connective tissue growth factor activity in cultured rat mesangial cells and its expression in experimental diabetic glomerulosclerosis. J. Am. Soc. Nephrol., 2000, 11(1), 25-38. doi: 10.1681/ASN.V11125 PMID: 10616837
- Huang, J.; Huang, K.; Lan, T.; Xie, X.; Shen, X.; Liu, P.; Huang, H. Curcumin ameliorates diabetic nephropathy by inhibiting the activation of the SphK1-S1P signaling pathway. Mol. Cell. Endocrinol., 2013, 365(2), 231-240. doi: 10.1016/j.mce.2012.10.024 PMID: 23127801
- Yuan, F.; Kolb, R.; Pandey, G.; Li, W.; Sun, L.; Liu, F.; Sutterwala, F.S.; Liu, Y.; Zhang, W. Involvement of the NLRC4-inflammasome in diabetic nephropathy. PLoS One, 2016, 11(10), e0164135. doi: 10.1371/journal.pone.0164135 PMID: 27706238
- Lu, M.; Yin, N.; Liu, W.; Cui, X.; Chen, S.; Wang, E. Curcumin ameliorates diabetic nephropathy by suppressing NLRP3 inflammasome signaling. BioMed Res. Int., 2017, 2017, 1-10. doi: 10.1155/2017/1516985 PMID: 28194406
- Zhang, J.; Li, Q.; Zhang, X.; Chen, Y.; Lu, Y.; Wang, X.; Zhang, L.; Wang, T. Bisdemethoxycurcumin alleviates dextran sodium sulfate-induced colitis via inhibiting NLRP3 inflammasome activation and modulating the gut microbiota in mice. Antioxidants, 2022, 11(10), 1994. doi: 10.3390/antiox11101994 PMID: 36290717
- Tang, J.; Tan, X.; Huang, X.; Zhang, J.; Chen, L.; Li, A.; Wang, D. Dual targeting of autophagy and NF-κB pathway by PPARγ contributes to the inhibitory effect of demethoxycurcumin on NLRP3 inflammasome priming. Curr. Mol. Pharmacol., 2021, 14(5), 914-921. doi: 10.2174/1874467214666210301121020 PMID: 33645492
- Sun, L.N.; Yang, Z.Y.; Lv, S.S.; Liu, X.C.; Guan, G.J.; Liu, G. Curcumin prevents diabetic nephropathy against inflammatory response via reversing caveolin-1 Tyr14 phosphorylation influenced TLR4 activation. Int. Immunopharmacol., 2014, 23(1), 236-246. doi: 10.1016/j.intimp.2014.08.023 PMID: 25196431
- ALTamimi, J.Z.; AlFaris, N.A.; AL-Farga, A.M.; Alshammari, G.M.; BinMowyna, M.N.; Yahya, M.A. Curcumin reverses diabetic nephropathy in streptozotocin-induced diabetes in rats by inhibition of PKCβ/p66Shc axis and activation of FOXO-3a. J. Nutr. Biochem., 2021, 87, 108515. doi: 10.1016/j.jnutbio.2020.108515 PMID: 33017608
- Meshkibaf, M.H.; Maleknia, M.; Noroozi, S. Effect of curcumin on gene expression and protein level of methionine sulfoxide reductase A (MSRA), SOD, CAT and GPx in Freunds adjuvant inflammation-induced male rats. J. Inflamm. Res., 2019, 12, 241-249. doi: 10.2147/JIR.S212577 PMID: 31564949
- Nishinaka, T.; Ichijo, Y.; Ito, M.; Kimura, M.; Katsuyama, M.; Iwata, K.; Miura, T.; Terada, T.; Yabe-Nishimura, C. Curcumin activates human glutathione S-transferase P1 expression through antioxidant response element. Toxicol. Lett., 2007, 170(3), 238-247. doi: 10.1016/j.toxlet.2007.03.011 PMID: 17449203
- Kim, B.H.; Lee, E.S.; Choi, R.; Nawaboot, J.; Lee, M.Y.; Lee, E.Y.; Kim, H.S.; Chung, C.H. Protective effects of curcumin on renal oxidative stress and lipid metabolism in a rat model of type 2 diabetic nephropathy. Yonsei Med. J., 2016, 57(3), 664-673. doi: 10.3349/ymj.2016.57.3.664 PMID: 26996567
- Tu, Q.; Li, Y.; Jin, J.; Jiang, X.; Ren, Y.; He, Q. Curcumin alleviates diabetic nephropathy via inhibiting podocyte mesenchymal transdifferentiation and inducing autophagy in rats and MPC5 cells. Pharm. Biol., 2019, 57(1), 778-786. doi: 10.1080/13880209.2019.1688843 PMID: 31741405
- Zhang, M.; Lu, P.; Zhao, F.; Sun, X.; Ma, W.; Tang, J.; Zhang, C.; Ji, H.; Wang, X. Uncovering the molecular mechanisms of Curcumae rhizoma against myocardial fibrosis using network pharmacology and experimental validation. J. Ethnopharmacol., 2023, 300, 115751. doi: 10.1016/j.jep.2022.115751 PMID: 36162550
- de Oliveira Filho, J.G.; de Almeida, M.J.; Sousa, T.L.; dos Santos, D.C.; Egea, M.B. Bioactive Compounds of Turmeric (Curcuma longa L.). In: Bioactive Compounds in Underutilized Vegetables and Legumes. Reference Series in Phytochemistry; Murthy, H.N.; Paek, K.Y., Eds.; Springer: Cham, 2021. doi: 10.1007/978-3-030-57415-4_37
- Ye, M.; Shang, Z-P.; Xu, L-L.; Lu, Y-Y.; Guan, M.; Li, D-Y.; Le, Z-Y.; Bai, Z-L.; Qiao, X. Advances in chemical constituents and quality control of turmeric. World J. Tradit. Chin. Med., 2019, 5(2), 116. doi: 10.4103/wjtcm.wjtcm_12_19
- Dong, Y.; Yin, S.; Song, X.; Huo, Y.; Fan, L.; Ye, M.; Hu, H. Involvement of ROS-p38-H2AX axis in novel curcumin analogues-induced apoptosis in breast cancer cells. Mol. Carcinog., 2016, 55(4), 323-334. doi: 10.1002/mc.22280 PMID: 25647442
- Sueth-Santiago, V.; Moraes, J.B.B.; Sobral Alves, E.S.; Vannier-Santos, M.A.; Freire-de-Lima, C.G.; Castro, R.N.; Mendes-Silva, G.P.; Del Cistia, C.N.; Magalhães, L.G.; Andricopulo, A.D.; SantAnna, C.M.R.; Decoté-Ricardo, D.; Freire de Lima, M.E. The effectiveness of natural diarylheptanoids against trypanosoma cruzi: Cytotoxicity, ultrastructural alterations and molecular modeling studies. PLoS One, 2016, 11(9), e0162926. doi: 10.1371/journal.pone.0162926 PMID: 27658305
- Li, Y.; Toscano, M.; Mazzone, G.; Russo, N. Antioxidant properties and free radical scavenging mechanisms of cyclocurcumin. New J. Chem., 2018, 42(15), 12698-12705. doi: 10.1039/C8NJ01819G
- Fu, M.; Chen, L.; Zhang, L.; Yu, X.; Yang, Q. Cyclocurcumin, a curcumin derivative, exhibits immune-modulating ability and is a potential compound for the treatment of rheumatoid arthritis as predicted by the MM-PBSA method. Int. J. Mol. Med., 2017, 39(5), 1164-1172. doi: 10.3892/ijmm.2017.2926 PMID: 28339004
- Zhou, C.X.; Zhang, L.S.; Chen, F.F.; Wu, H.S.; Mo, J.X.; Gan, L.S. Terpenoids from Curcuma wenyujin increased glucose consumption on HepG2 cells. Fitoterapia, 2017, 121, 141-145. doi: 10.1016/j.fitote.2017.06.011 PMID: 28625730
- Das, J.M.; Sarma, B.; Nath, N.; Borthakur, M.K. Sustainable prospective of some selected species from moraceae and araceae family of Northeast India: A review. Plant Sci. Today, 2022, 9(2), 312-321. doi: 10.14719/pst.1427
- Yende, S.; Harle, U.; Rajgure, D.; Tuse, T.; Vyawahare, N. Pharmacological profile of Acorus calamus: an overview. Phcog Rev., 2008, 2(4), 23.
- Sharma, V.; Sharma, R.; Gautam, D.; Kuca, K.; Nepovimova, E.; Martins, N. Role of Vacha (Acorus calamus Linn.) in neurological and metabolic disorders: evidence from ethnopharmacology, phytochemistry, pharmacology and clinical study. J. Clin. Med., 2020, 9(4), 1176. doi: 10.3390/jcm9041176 PMID: 32325895
- Zhao, Z.F.; Zhou, L.L.; Chen, X.; Cheng, Y.X.; Hou, F.F.; Nie, J. Acortatarin A inhibits high glucose-induced extracellular matrix production in mesangial cells. Chin. Med. J., 2013, 126(7), 1230-1235. PMID: 23557549
- Samadder, A.; Dey, S.; Sow, P.; Das, R.; Nandi, S.; Das, J.; Bhattacharjee, B.; Chakrovorty, A.; Biswas, M.; Guptaroy, P. Phyto-chlorophyllin prevents food additive induced genotoxicity and mitochondrial dysfunction via cytochrome c mediated pathway in mice model. Comb. Chem. High Throughput Screen., 2021, 24(10), 1618-1627. doi: 10.2174/1386207323666201230093510 PMID: 33380297
- Das, J.; Samadder, A.; Mondal, J.; Abraham, S.K.; Khuda-Bukhsh, A.R. Nano-encapsulated chlorophyllin significantly delays progression of lung cancer both in in vitro and in vivo models through activation of mitochondrial signaling cascades and drug-DNA interaction. Environ. Toxicol. Pharmacol., 2016, 46, 147-157. doi: 10.1016/j.etap.2016.07.006 PMID: 27458703
- Fahey, J.W.; Stephenson, K.K.; Dinkova-Kostova, A.T.; Egner, P.A.; Kensler, T.W.; Talalay, P. Chlorophyll, chlorophyllin and related tetrapyrroles are significant inducers of mammalian phase 2 cytoprotective genes. Carcinogenesis, 2005, 26(7), 1247-1255. doi: 10.1093/carcin/bgi068 PMID: 15774490
- Abouzaid, O. Ameliorating role of chlorophyllin on oxidative stress induced by pirimiphos methyl in erythrocytes and brain of rats. Benha Vet. Med. J., 2013, 24(1), 141-150.
- Suryavanshi, S.V.; Gharpure, M.; Kulkarni, Y.A. Sodium copper chlorophyllin attenuates adenine-induced chronic kidney disease via suppression of TGF-beta and inflammatory cytokines. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(11), 2029-2041. doi: 10.1007/s00210-020-01912-3 PMID: 32500189
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5, e47. doi: 10.1017/jns.2016.41 PMID: 28620474
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as anticancer agents. Nutrients, 2020, 12(2), 457. doi: 10.3390/nu12020457 PMID: 32059369
- Hu, Q.; Qu, C.; Xiao, X.; Zhang, W.; Jiang, Y.; Wu, Z.; Song, D.; Peng, X.; Ma, X.; Zhao, Y. Flavonoids on diabetic nephropathy: Advances and therapeutic opportunities. Chin. Med., 2021, 16(1), 74. doi: 10.1186/s13020-021-00485-4 PMID: 34364389
- Yao, L.H.; Jiang, Y.M.; Shi, J.; Tomás-Barberán, F.A.; Datta, N.; Singanusong, R.; Chen, S.S. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr., 2004, 59(3), 113-122. doi: 10.1007/s11130-004-0049-7 PMID: 15678717
- Amri, J.; Alaee, M.; Babaei, R.; Salemi, Z.; Meshkani, R.; Ghazavi, A.; Akbari, A.; Salehi, M. Biochanin-A has antidiabetic, antihyperlipidemic, antioxidant, and protective effects on diabetic nephropathy via suppression of TGF-β1 and PAR-2 genes expression in kidney tissues of STZ-induced diabetic rats. Biotechnol. Appl. Biochem., 2022, 69(5), 2112-2121. doi: 10.1002/bab.2272 PMID: 34652037
- Ramada, M.M.; Ali, M.A.; Albohy, A.; Zada, S.K.; Tolba, M.F.; Abu-ELElla, D. Molecular modeling studies on biochanin-a as a potential dual inhibitor for VEGFR-2 and Cyclin D1-CDK-4 complex. Arch. Pharm. Sci. Ain Shams Univ, 2021, 5(1), 16-32.
- Sun, M.Y.; Ye, Y.; Xiao, L.; Rahman, K.; Xiad, W.; Zhang, H. Daidzein: A review of pharmacological effects. Afr. J. Tradit. Complement. Altern. Med., 2016, 13(3), 117-132. doi: 10.21010/ajtcam.v13i3.15
- Laddha, A.P.; Kulkarni, Y.A. Daidzein attenuates kidney damage in diabetic rats. FASEB J., 2020, 34(S1), 1. doi: 10.1096/fasebj.2020.34.s1.05292
- Laddha, A.P.; Murugesan, S.; Kulkarni, Y.A. In-vivo and in-silico toxicity studies of daidzein: an isoflavone from soy. Drug Chem. Toxicol., 2022, 45(3), 1408-1416. doi: 10.1080/01480545.2020.1833906 PMID: 33059469
- Katyal, T.; Garg, A.; Budhiraja, R. Combination of daidzein, hemin and bms182874 halts the progression of diabetes-induced experimental nephropathy. Endocr. Metab. Immune Disord. Drug Targets, 2013, 13(2), 152-162. doi: 10.2174/1871530311313020003 PMID: 23701217
- Qian, Y.; Guan, T.; Huang, M.; Cao, L.; Li, Y.; Cheng, H.; Jin, H.; Yu, D. Neuroprotection by the soy isoflavone, genistein, via inhibition of mitochondria-dependent apoptosis pathways and reactive oxygen induced-NF-κB activation in a cerebral ischemia mouse model. Neurochem. Int., 2012, 60(8), 759-767. doi: 10.1016/j.neuint.2012.03.011 PMID: 22490611
- Elmarakby, A.A.; Ibrahim, A.S.; Faulkner, J.; Mozaffari, M.S.; Liou, G.I.; Abdelsayed, R. Tyrosine kinase inhibitor, genistein, reduces renal inflammation and injury in streptozotocin-induced diabetic mice. Vascul. Pharmacol., 2011, 55(5-6), 149-156. doi: 10.1016/j.vph.2011.07.007 PMID: 21807121
- Kim, M.J.; Lim, Y. Protective effect of short-term genistein supplementation on the early stage in diabetes-induced renal damage. Mediators Inflamm., 2013, 2013, 1-14. doi: 10.1155/2013/510212 PMID: 23737649
- Wang, Y.; Li, Y.; Zhang, T.; Chi, Y.; Liu, M.; Liu, Y. Genistein and myd88 activate autophagy in high glucose-induced renal podocytes in vitro. Med. Sci. Monit., 2018, 24, 4823-4831. doi: 10.12659/MSM.910868 PMID: 29999001
- Xiong, C.; Wu, Q.; Fang, M.; Li, H.; Chen, B.; Chi, T. Protective effects of luteolin on nephrotoxicity induced by long-term hyperglycaemia in rats. Int. J. Med. Res., 2020, 202048(4), 0300060520903642.
- Zhang, M.; He, L.; Liu, J.; Zhou, L. Luteolin attenuates diabetic nephropathy through suppressing inflammatory response and oxidative stress by inhibiting STAT3 pathway. Exp. Clin. Endocrinol. Diabetes, 2021, 129(10), 729-739. doi: 10.1055/a-0998-7985 PMID: 31896157
- Asuzu, I.U.; Asuzu, I.U. Luteolin isolate from the methanol extract identified as the single-carbon compound responsible for broad antiulcer activities of Cassia singueana Leaves. IOSR J. Pharm., 2014, 4(10), 17-23. doi: 10.9790/3013-04010017023
- Das, S.; Das, J.; Samadder, A.; Paul, A.; Khuda-Bukhsh, A.R. Strategic formulation of apigenin-loaded PLGA nanoparticles for intracellular trafficking, DNA targeting and improved therapeutic effects in skin melanoma in vitro. Toxicol. Lett., 2013, 223(2), 124-138. doi: 10.1016/j.toxlet.2013.09.012 PMID: 24070738
- Das, S.; Das, J.; Paul, A.; Samadder, A.; Khuda-Bukhsh, A.R. Apigenin, a bioactive flavonoid from Lycopodium clavatum, stimulates nucleotide excision repair genes to protect skin keratinocytes from ultraviolet B-induced reactive oxygen species and DNA damage. J. Acupunct. Meridian Stud., 2013, 6(5), 252-262. doi: 10.1016/j.jams.2013.07.002 PMID: 24139463
- Das, S.; Das, J.; Samadder, A.; Paul, A.; Khuda-Bukhsh, A.R. Efficacy of PLGA-loaded apigenin nanoparticles in Benzoapyrene and ultraviolet-B induced skin cancer of mice: Mitochondria mediated apoptotic signalling cascades. Food Chem. Toxicol., 2013, 62, 670-680. doi: 10.1016/j.fct.2013.09.037 PMID: 24120900
- Harishkumar, R.; Reddy, L.P.K.; Karadkar, S.H.; Murad, M.A.; Karthik, S.S.; Manigandan, S.; Selvaraj, C.I.; Christopher, J.G. Toxicity and selective biochemical assessment of quercetin, gallic acid, and curcumin in zebrafish. Biol. Pharm. Bull., 2019, 42(12), 1969-1976. doi: 10.1248/bpb.b19-00296 PMID: 31787712
- Mu, M.; An, P.; Wu, Q.; Shen, X.; Shao, D.; Wang, H.; Zhang, Y.; Zhang, S.; Yao, H.; Min, J.; Wang, F. The dietary flavonoid myricetin regulates iron homeostasis by suppressing hepcidin expression. J. Nutr. Biochem., 2016, 30, 53-61. doi: 10.1016/j.jnutbio.2015.10.015 PMID: 27012621
- Bigoniya, P.; Singh, C.S.; Shrivastava, B. In vivo and in vitro hepatoprotective potential of kaempferol, a flavone glycoside from Capparis spinosa. Int. J. Pharm. Biol. Sci., 2013, 3(4), 139-152.
- Samadder, A.; Tarafdar, D.; Das, R.; Khuda-Bukhsh, A.R.; Abraham, S.K. Efficacy of nanoencapsulated pelargonidin in ameliorating pesticide toxicity in fish and L6 cells: Modulation of oxidative stress and signalling cascade. Sci. Total Environ., 2019, 671, 466-473. doi: 10.1016/j.scitotenv.2019.03.381 PMID: 31331442
- Dey, R.; Nandi, S.; Samadder, A. "Pelargonidin mediated selective activation of p53 and parp proteins in preventing food additive induced genotoxicity: an in vivo coupled in silico molecular docking study". Eur. J. Pharm. Sci., 2021, 156, 105586. doi: 10.1016/j.ejps.2020.105586 PMID: 33039567
- Samadder, A.; Tarafdar, D.; Abraham, S.; Ghosh, K.; Khuda-Bukhsh, A. Nano-pelargonidin protects hyperglycemic-induced L6 cells against mitochondrial dysfunction. Planta Med., 2017, 83(5), 468-475. doi: 10.1055/s-0043-100017 PMID: 28073120
- Samadder, A.; Abraham, S.K.; Khuda-Bukhsh, A.R. Nanopharmaceutical approach using pelargonidin towards enhancement of efficacy for prevention of alloxan-induced DNA damage in L6 cells via activation of PARP and p53. Environ. Toxicol. Pharmacol., 2016, 43, 27-37. doi: 10.1016/j.etap.2016.02.010 PMID: 26943895
- Lee, I.C.; Bae, J.S. Pelargonidin protects against renal injury in a mouse model of sepsis. J. Med. Food, 2019, 22(1), 57-61. doi: 10.1089/jmf.2018.4230 PMID: 30160593
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Chemistry, pharmacology and health benefits of anthocyanins. Phytother. Res., 2016, 30(8), 1265-1286. doi: 10.1002/ptr.5642 PMID: 27221033
- Francomano, F. Caruso, A.; Barbarossa, A.; Fazio, A.; La Torre, C.; Ceramella, J.; Mallamaci, R.; Saturnino, C.; Iacopetta, D.; Sinicropi, M.S. β-Caryophyllene: A sesquiterpene with countless biological properties. Appl. Sci. (Basel), 2019, 9(24), 5420. doi: 10.3390/app9245420
- Hashiesh, H.M.; Meeran, M.F.N.; Sharma, C.; Sadek, B.; Kaabi, J.A.; Ojha, S.K. Therapeutic potential of β-caryophyllene: A dietary cannabinoid in diabetes and associated complications. Nutrients, 2020, 12(10), 2963. doi: 10.3390/nu12102963 PMID: 32998300
- Abbas, M.A. Taha, M.O.; Zihlif, M.A.; Disi, A.M. β-Caryophyllene causes regression of endometrial implants in a rat model of endometriosis without affecting fertility. Eur. J. Pharmacol., 2013, 702(1-3), 12-19. doi: 10.1016/j.ejphar.2013.01.011 PMID: 23353590
- Horváth, B. Mukhopadhyay, P.; Kechrid, M.; Patel, V.; Tanchian, G.; Wink, D.A.; Gertsch, J.; Pacher, P. β-Caryophyllene ameliorates cisplatin-induced nephrotoxicity in a cannabinoid 2 receptor-dependent manner. Free Radic. Biol. Med., 2012, 52(8), 1325-1333. doi: 10.1016/j.freeradbiomed.2012.01.014 PMID: 22326488
- Li, H. Wang, D.; Chen, Y.; Yang, M. β-Caryophyllene inhibits high glucose-induced oxidative stress, inflammation and extracellular matrix accumulation in mesangial cells. Int. Immunopharmacol., 2020, 84, 106556. doi: 10.1016/j.intimp.2020.106556 PMID: 32416450
- Rajab, B.S.; Albukhari, T.A.; Khan, A.A.; Refaat, B.; Almehmadi, S.J.; Nasreldin, N.; Elshopakey, G.E.; El-Boshy, M. Antioxidative and anti-inflammatory protective effects of β-caryophyllene against amikacin-induced nephrotoxicity in rat by regulating the Nrf2/AMPK/AKT and NF-κB/TGF-β/KIM-1 molecular pathways. Oxid. Med. Cell. Longev., 2022, 2022, 1-12. doi: 10.1155/2022/4212331 PMID: 36062191
- Lo, J.Y.; Kamarudin, M.N.A.; Hamdi, O.A.A.; Awang, K.; Kadir, H.A. Curcumenol isolated from Curcuma zedoaria suppresses Akt-mediated NF-κB activation and p38 MAPK signaling pathway in LPS-stimulated BV-2 microglial cells. Food Funct., 2015, 6(11), 3550-3559. doi: 10.1039/C5FO00607D PMID: 26301513
- Yoshioka, T.; Fujii, E.; Endo, M.; Wada, K.; Tokunaga, Y.; Shiba, N.; Hohsho, H.; Shibuya, H.; Muraki, T. Antiinflammatory potency of dehydrocurdione, a zedoary-derived sesquiterpene. Inflamm. Res., 1998, 47(12), 476-481. doi: 10.1007/s000110050361 PMID: 9892041
- Ohnishi, M.; Urasaki, T.; Egusa, K.; Kunobu, C.; Harada, T.; Shinkado, R.; Nishi, H.; Maehara, S.; Kitamura, C.; Hata, T.; Ohashi, K.; Shibuya, H.; Inoue, A. Curcuma sp.-derived dehydrocurdione induces heme oxygenase-1 through a Michael reaction between its α, β-unsaturated carbonyl and Keap1. Phytother. Res., 2018, 32(5), 892-897. doi: 10.1002/ptr.6028 PMID: 29356228
- Cui, H.; Zhang, B.; Li, G.; Li, L.; Chen, H.; Qi, J.; Liu, W.; Chen, J.; Wang, P.; Lei, H. Identification of a quality marker of vinegar-Processed Curcuma zedoaria on oxidative liver injury. Molecules, 2019, 24(11), 2073. doi: 10.3390/molecules24112073 PMID: 31151312
- Wang, G.G.; Lu, X.H.; Li, W.; Zhao, X.; Zhang, C. Protective effects of luteolin on diabetic nephropathy in STZ-induced diabetic rats. Evid.-based Complement. Altern. Med., 2011, 2011, 323-171.
- Yu, Q.; Zhang, M.; Qian, L.; Wen, D.; Wu, G. Luteolin attenuates high glucose-induced podocyte injury via suppressing NLRP3 inflammasome pathway. Life Sci., 2019, 225, 1-7. doi: 10.1016/j.lfs.2019.03.073 PMID: 30935950
- Iskender, H.; Dokumacioglu, E.; Sen, T.M.; Ince, I.; Kanbay, Y.; Saral, S. The effect of hesperidin and quercetin on oxidative stress, NF-κB and SIRT1 levels in a STZ-induced experimental diabetes model. Biomed. Pharmacother., 2017, 90, 500-508. doi: 10.1016/j.biopha.2017.03.102 PMID: 28395272
- Elbe, H.; Vardi, N.; Esrefoglu, M.; Ates, B.; Yologlu, S.; Taskapan, C. Amelioration of streptozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats. Hum. Exp. Toxicol., 2015, 34(1), 100-113. doi: 10.1177/0960327114531995 PMID: 24812155
- Wang, C.; Pan, Y.; Zhang, Q.Y.; Wang, F.M.; Kong, L.D. Quercetin and allopurinol ameliorate kidney injury in STZ-treated rats with regulation of renal NLRP3 inflammasome activation and lipid accumulation. PLoS One, 2012, 7(6), e38285. doi: 10.1371/journal.pone.0038285 PMID: 22701621
- Hu, Q.H.; Wang, C.; Li, J.M.; Zhang, D.M.; Kong, L.D. Allopurinol, rutin, and quercetin attenuate hyperuricemia and renal dysfunction in rats induced by fructose intake: renal organic ion transporter involvement. Am. J. Physiol. Renal Physiol., 2009, 297(4), F1080-F1091. doi: 10.1152/ajprenal.90767.2008 PMID: 19605544
- Kandasamy, N.; Ashokkumar, N. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocincadmium induced diabetic nephrotoxic rats. Toxicol. Appl. Pharmacol., 2014, 279(2), 173-185. doi: 10.1016/j.taap.2014.05.014 PMID: 24923654
- Kandasamy, N.; Ashokkumar, N. Renoprotective effect of myricetin restrains dyslipidemia and renal mesangial cell proliferation by the suppression of sterol regulatory element binding proteins in an experimental model of diabetic nephropathy. Eur. J. Pharmacol., 2014, 743, 53-62. doi: 10.1016/j.ejphar.2014.09.014 PMID: 25240712
- Luo, W.; Chen, X.; Ye, L.; Chen, X.; Jia, W.; Zhao, Y.; Samorodov, A.V.; Zhang, Y.; Hu, X.; Zhuang, F.; Qian, J.; Zheng, C.; Liang, G.; Wang, Y. Kaempferol attenuates streptozotocin-induced diabetic nephropathy by downregulating TRAF6 expression: The role of TRAF6 in diabetic nephropathy. J. Ethnopharmacol., 2021, 268, 113553. doi: 10.1016/j.jep.2020.113553 PMID: 33152432
- Ozcan, F.; Ozmen, A.; Akkaya, B.; Aliciguzel, Y.; Aslan, M. Beneficial effect of myricetin on renal functions in streptozotocin-induced diabetes. Clin. Exp. Med., 2012, 12(4), 265-272. doi: 10.1007/s10238-011-0167-0 PMID: 22083509
- Yang, L.; Liao, M. Influence of myrcene on inflammation, matrix accumulation in the kidney tissues of streptozotocin-induced diabetic rat. Saudi J. Biol. Sci., 2021, 28(10), 5555-5560. doi: 10.1016/j.sjbs.2020.11.090 PMID: 34588865
- Zhongliu, Y. Cancer Review; Yu, R., Ed.; Shanghai Science/Technology Publisher, Peop. Rep: China, 1994.
- Senthil Kumar, K.J.; Gokila Vani, M.; Wang, C.S.; Chen, C.C.; Chen, Y.C.; Lu, L.P.; Huang, C.H.; Lai, C.S.; Wang, S.Y. Geranium and lemon essential oils and their active compounds downregulate angiotensin-converting enzyme 2 (ACE2), a SARS-CoV-2 spike receptor-binding domain, in epithelial cells. Plants, 2020, 9(6), 770. doi: 10.3390/plants9060770 PMID: 32575476
- Kim, H.R.; Kim, W.K.; Ha, A.W. Effects of phytochemicals on blood pressure and neuroprotection mediated via brain renin-angiotensin system. Nutrients, 2019, 11(11), 2761. doi: 10.3390/nu11112761 PMID: 31739443
- Jones, H.S.; Gordon, A.; Magwenzi, S.G.; Naseem, K.; Atkin, S.L.; Courts, F.L. The dietary flavonol quercetin ameliorates angiotensin II-induced redox signaling imbalance in a human umbilical vein endothelial cell model of endothelial dysfunction via ablation of p47 phox expression. Mol. Nutr. Food Res., 2016, 60(4), 787-797. doi: 10.1002/mnfr.201500751 PMID: 26778209
- Luo, J.; Zhang, C.; Liu, Q.; Ou, S.; Zhang, L.; Peng, X. Combinative effect of sardine peptides and quercetin alleviates hypertension through inhibition of angiotensin I converting enzyme activity and inflammation. Food Res. Int., 2017, 100(Pt 1), 579-585. doi: 10.1016/j.foodres.2017.07.019 PMID: 28873724
- Guo, X.; Chen, M.; Zeng, H.; Liu, P.; Zhu, X.; Zhou, F.; Liu, J.; Zhang, J.; Dong, Z.; Tang, Y.; Gao, C.; Yao, P. Quercetin attenuates ethanol-induced iron uptake and myocardial injury by regulating the angiotensin II-L-type calcium channel. Mol. Nutr. Food Res., 2018, 62(5), 1700772. doi: 10.1002/mnfr.201700772 PMID: 29266790
- Suchal, K.; Malik, S.; Khan, S.; Malhotra, R.; Goyal, S.; Bhatia, J.; Ojha, S.; Arya, D. Molecular pathways involved in the amelioration of myocardial injury in diabetic rats by kaempferol. Int. J. Mol. Sci., 2017, 18(5), 1001. doi: 10.3390/ijms18051001 PMID: 28505121
Қосымша файлдар
