To Explore the Putative Molecular Targets of Diabetic Nephropathy and their Inhibition Utilizing Potential Phytocompounds


Дәйексөз келтіру

Толық мәтін

Аннотация

Background:This review critically addresses the putative molecular targets of Diabetic Nephropathy (DN) and screens effective phytocompounds that can be therapeutically beneficial, and highlights their mechanistic modalities of action.

Introduction:DN has become one of the most prevalent complications of clinical hyperglycemia, with individual-specific variations in the disease spectrum that leads to fatal consequences. Diverse etiologies involving oxidative and nitrosative stress, activation of polyol pathway, inflammasome formation, Extracellular Matrix (ECM) modifications, fibrosis, and change in dynamics of podocyte functional and mesangial cell proliferation adds up to the clinical complexity of DN. Current synthetic therapeutics lacks target-specific approach, and is associated with the development of inevitable residual toxicity and drug resistance. Phytocompounds provides a vast diversity of novel compounds that can become an alternative therapeutic approach to combat the DN.

Method:Relevant publications were searched and screened from research databases like GOOGLE SCHOLAR, PUBMED and SCISEARCH. Out of 4895 publications, the most relevant publications were selected and included in this article.

Result:This study critically reviews over 60 most promising phytochemical and provides with their molecular targets, that can be of pharmacological significance in context to current treatment and concomitant research in DN.

Conclusion:This review highlights those most promising phytocompounds that have the potential of becoming new safer naturally-sourced therapeutic candidates and demands further attention at clinical level.

Авторлар туралы

Banani Bhattacharjee

Endocrinology and Reproductive Biology Laboratory, Department of Zoology, University of Kalyani

Email: info@benthamscience.net

Arnob Chakrovorty

Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani

Email: info@benthamscience.net

Maharaj Biswas

Endocrinology and Reproductive Biology Laboratory, Department of Zoology, University of Kalyani

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Asmita Samadder

ytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Sisir Nandi

Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Diabetes in America. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases., 1995. Available from: https://diabetes.org/healthylivingnews?gad=1
  2. Genuth, S.; Alberti, K.G.; Bennett, P.; Buse, J.; Defronzo, R.; Kahn, R.; Kitzmiller, J.; Knowler, W.C.; Lebovitz, H.; Lernmark, A.; Nathan, D.; Palmer, J.; Rizza, R.; Saudek, C.; Shaw, J.; Steffes, M.; Stern, M.; Tuomilehto, J.; Zimmet, P. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care, 2003, 26(11), 3160-3167. doi: 10.2337/diacare.26.11.3160 PMID: 14578255
  3. Daneman, D. Type 1 diabetes. Lancet, 2006, 367(9513), 847-858. doi: 10.1016/S0140-6736(06)68341-4 PMID: 16530579
  4. Chatterjee, S.; Khunti, K.; Davies, M.J. Type 2 diabetes. Lancet, 2017, 389(10085), 2239-2251. doi: 10.1016/S0140-6736(17)30058-2 PMID: 28190580
  5. Samadder, A.; Das, J.; Das, S.; De, A.; Saha, S.K.; Bhattacharyya, S.S.; Khuda-Bukhsh, A.R. Poly(lactic-co-glycolic) acid loaded nano-insulin has greater potentials of combating arsenic induced hyperglycemia in mice: Some novel findings. Toxicol. Appl. Pharmacol., 2013, 267(1), 57-73. doi: 10.1016/j.taap.2012.12.018 PMID: 23276653
  6. Samadder, A.; Das, S.; Das, J.; Khuda-Bukhsh, A.R. Relative efficacies of insulin and poly (lactic-co-glycolic) acid encapsulated nano-insulin in modulating certain significant biomarkers in arsenic intoxicated L6 cells. Colloids Surf. B Biointerfaces, 2013, 109, 10-19. doi: 10.1016/j.colsurfb.2013.03.028 PMID: 23603037
  7. Rayanagoudar, G.; Hashi, A.A.; Zamora, J.; Khan, K.S.; Hitman, G.A.; Thangaratinam, S. Quantification of the type 2 diabetes risk in women with gestational diabetes: A systematic review and meta-analysis of 95,750 women. Diabetologia, 2016, 59(7), 1403-1411. doi: 10.1007/s00125-016-3927-2 PMID: 27073002
  8. Su, W.; Cao, R.; He, Y.C.; Guan, Y.F.; Ruan, X.Z. Crosstalk of hyperglycemia and dyslipidemia in diabetic kidney disease. Kidney Dis., 2017, 3(4), 171-180. doi: 10.1159/000479874 PMID: 29344511
  9. Laakso, M. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes, 1999, 48(5), 937-942. doi: 10.2337/diabetes.48.5.937 PMID: 10331395
  10. Madhusudhanan, J.; Suresh, G.; Devanathan, V. Neurodegeneration in type 2 diabetes: Alzheimer’s as a case study. Brain Behav., 2020, 10(5), e01577. doi: 10.1002/brb3.1577 PMID: 32170854
  11. Morais, T.; Seabra, A.L.; Patrício, B.G.; Guimarães, M.; Nora, M.; Oliveira, P.F.; Alves, M.G.; Monteiro, M.P. Visceral adipose tissue displays unique metabolomic fingerprints in obesity, pre-diabetes and type 2 diabetes. Int. J. Mol. Sci., 2021, 22(11), 5695. doi: 10.3390/ijms22115695 PMID: 34071774
  12. Chouchani, E.T.; Kajimura, S. Metabolic adaptation and maladaptation in adipose tissue. Nat. Metab., 2019, 1(2), 189-200. doi: 10.1038/s42255-018-0021-8 PMID: 31903450
  13. Olefsky, J.M. The insulin receptor: its role in insulin resistance of obesity and diabetes. Diabetes, 1976, 25(12), 1154-1161. doi: 10.2337/diab.25.12.1154 PMID: 791735
  14. Sobrevia, L.; Mann, G.E. Dysfunction of the endothelial nitric oxide signalling pathway in diabetes and hyperglycaemia. Exp. Physiol., 1997, 82(3), 423-452. doi: 10.1113/expphysiol.1997.sp004038 PMID: 9179565
  15. Khalid, M.; Alkaabi, J.; Khan, M.A.B.; Adem, A. Insulin signal transduction perturbations in insulin resistance. Int. J. Mol. Sci., 2021, 22(16), 8590. doi: 10.3390/ijms22168590 PMID: 34445300
  16. Svensson, M.; Eriksson, J.W. Insulin resistance in diabetic nephropathy - cause or consequence? Diabetes Metab. Res. Rev., 2006, 22(5), 401-410. doi: 10.1002/dmrr.648 PMID: 16703644
  17. Boström, P.; Andersson, L.; Vind, B.; Håversen, L.; Rutberg, M.; Wickström, Y.; Larsson, E.; Jansson, P.A.; Svensson, M.K.; Brånemark, R.; Ling, C.; Beck-Nielsen, H.; Borén, J.; Højlund, K.; Olofsson, S.O. The SNARE protein SNAP23 and the SNARE-interacting protein Munc18c in human skeletal muscle are implicated in insulin resistance/type 2 diabetes. Diabetes, 2010, 59(8), 1870-1878. doi: 10.2337/db09-1503 PMID: 20460426
  18. Rezaei Farimani, A.; Saidijam, M.; Goodarzi, M.T.; Yadegar Azari, R.; Asadi, S.; Zarei, S.; Shabab, N. Effect of resveratrol supplementation on the SNARE proteins expression in adipose tissue of stroptozotocin-nicotinamide induced type 2 diabetic rats. Iran. J. Med. Sci., 2015, 40(3), 248-255. PMID: 25999625
  19. Samadder, A.; Chakraborty, D.; De, A.; Bhattacharyya, S.S.; Bhadra, K.; Khuda-Bukhsh, A.R. Possible signaling cascades involved in attenuation of alloxan-induced oxidative stress and hyperglycemia in mice by ethanolic extract of Syzygium jambolanum: Drug-DNA interaction with calf thymus DNA as target. Eur. J. Pharm. Sci., 2011, 44(3), 207-217. doi: 10.1016/j.ejps.2011.07.012 PMID: 21839831
  20. Esper, A.M.; Moss, M.; Martin, G.S. The effect of diabetes mellitus on organ dysfunction with sepsis: an epidemiological study. Crit. Care, 2009, 13(1), R18. doi: 10.1186/cc7717 PMID: 19216780
  21. Oschatz, E.; Müllner, M.; Herkner, H.; Laggner, A.N. Multiple organ failure and prognosis in adult patients with diabetic ketoacidosis. Wien. Klin. Wochenschr., 1999, 111(15), 590-595. PMID: 10483673
  22. Keane, W.F.; Zhang, Z.; Lyle, P.A.; Cooper, M.E.; de Zeeuw, D.; Grunfeld, J.P.; Lash, J.P.; McGill, J.B.; Mitch, W.E.; Remuzzi, G.; Shahinfar, S.; Snapinn, S.M.; Toto, R.; Brenner, B.M. Risk scores for predicting outcomes in patients with type 2 diabetes and nephropathy: The RENAAL study. Clin. J. Am. Soc. Nephrol., 2006, 1(4), 761-767. doi: 10.2215/CJN.01381005 PMID: 17699284
  23. Gross, J.L.; de Azevedo, M.J.; Silveiro, S.P.; Canani, L.H.; Caramori, M.L.; Zelmanovitz, T. Diabetic nephropathy: Diagnosis, prevention, and treatment. Diabetes Care, 2005, 28(1), 164-176. doi: 10.2337/diacare.28.1.164 PMID: 15616252
  24. Umanath, K.; Lewis, J.B. Update on diabetic nephropathy: Core curriculum 2018. Am. J. Kidney Dis., 2018, 71(6), 884-895. doi: 10.1053/j.ajkd.2017.10.026 PMID: 29398179
  25. Samsu, N. Diabetic nephropathy: Challenges in pathogenesis, diagnosis, and treatment. BioMed Res. Int., 2021, 2021, 1-17. doi: 10.1155/2021/1497449 PMID: 34307650
  26. Strippoli, G.F.M.; Bonifati, C.; Craig, M.E.; Navaneethan, S.D.; Craig, J.C. Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists for preventing the progression of diabetic kidney disease. Cochrane Libr., 2006, 2006(4), CD006257. doi: 10.1002/14651858.CD006257 PMID: 17054288
  27. Anderson, S.; Rennke, H.G.; Brenner, B.M. Therapeutic advantage of converting enzyme inhibitors in arresting progressive renal disease associated with systemic hypertension in the rat. J. Clin. Invest., 1986, 77(6), 1993-2000. doi: 10.1172/JCI112528 PMID: 3011863
  28. Mittler, R. ROS are good. Trends Plant Sci., 2017, 22(1), 11-19. doi: 10.1016/j.tplants.2016.08.002 PMID: 27666517
  29. David, L.; Nelson, D.L.; Cox, M.M.; Stiedemann, L.; McGlynn, M.E., Jr; Fay, M.R. Lehninger principles of biochemistry; Macmillan, 2008.
  30. Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y.; Dong, W. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell. Longev., 2016, 2016, 1-18. doi: 10.1155/2016/4350965
  31. Martínez, M.C.; Andriantsitohaina, R. Reactive nitrogen species: Molecular mechanisms and potential significance in health and disease. Antioxid. Redox Signal., 2009, 11(3), 669-702. doi: 10.1089/ars.2007.1993 PMID: 19014277
  32. Dupré-Crochet, S.; Erard, M. Nüβe, O. ROS production in phagocytes: Why, when, and where? J. Leukoc. Biol., 2013, 94(4), 657-670. doi: 10.1189/jlb.1012544 PMID: 23610146
  33. Brieger, K.; Schiavone, S.; Miller, J., Jr; Krause, K.H. Reactive oxygen species: From health to disease. Swiss Med. Wkly., 2012, 142, w13659. doi: 10.4414/smw.2012.13659 PMID: 22903797
  34. Møller, P.; Wallin, H. Adduct formation, mutagenesis and nucleotide excision repair of DNA damage produced by reactive oxygen species and lipid peroxidation product. Mutat. Res. Rev. Mutat. Res., 1998, 410(3), 271-290. doi: 10.1016/S1383-5742(97)00041-0 PMID: 9630671
  35. Yajima, D.; Motani, H.; Hayakawa, M.; Sato, Y.; Sato, K.; Iwase, H. The relationship between cell membrane damage and lipid peroxidation under the condition of hypoxia-reoxygenation: Analysis of the mechanism using antioxidants and electron transport inhibitors. Cell Biochem., 2009, 27(6), 338-343. doi: 10.1002/cbf.1578
  36. Lin, T.K.; Cheng, C.H.; Chen, S.D.; Liou, C.W.; Huang, C.R.; Chuang, Y.C. Mitochondrial dysfunction and oxidative stress promote apoptotic cell death in the striatum via cytochrome c/caspase-3 signaling cascade following chronic rotenone intoxication in rats. Int. J. Mol. Sci., 2012, 13(7), 8722-8739. doi: 10.3390/ijms13078722 PMID: 22942730
  37. Kobayashi, N.; DeLano, F.A.; Schmid-Schönbein, G.W. Oxidative stress promotes endothelial cell apoptosis and loss of microvessels in the spontaneously hypertensive rats. Arterioscler. Thromb. Vasc. Biol., 2005, 25(10), 2114-2121. doi: 10.1161/01.ATV.0000178993.13222.f2 PMID: 16037565
  38. Kashihara, N.; Haruna, Y.; Kondeti, V.K.; Kanwar, Y.S. Oxidative stress in diabetic nephropathy. Curr. Med. Chem., 2010, 17(34), 4256-4269. doi: 10.2174/092986710793348581 PMID: 20939814
  39. Tan, A.L.Y.; Forbes, J.M.; Cooper, M.E. AGE, RAGE, and ROS in diabetic nephropathy. Semin. Nephrol., 2007, 27(2), 130-143. doi: 10.1016/j.semnephrol.2007.01.006 PMID: 17418682
  40. Bohlender, J.M.; Franke, S.; Stein, G.; Wolf, G. Advanced glycation end products and the kidney. Am. J. Physiol. Renal Physiol., 2005, 289(4), F645-F659. doi: 10.1152/ajprenal.00398.2004 PMID: 16159899
  41. Ho, F.M.; Liu, S.H.; Liau, C.S.; Huang, P.J.; Lin-Shiau, S.Y. High glucose-induced apoptosis in human endothelial cells is mediated by sequential activations of c-Jun NH(2)-terminal kinase and caspase-3. Circulation, 2000, 101(22), 2618-2624. doi: 10.1161/01.CIR.101.22.2618 PMID: 10840014
  42. Konishi, H.; Tanaka, M.; Takemura, Y.; Matsuzaki, H.; Ono, Y.; Kikkawa, U.; Nishizuka, Y. Activation of protein kinase C by tyrosine phosphorylation in response to H2O2. Proc. Natl. Acad. Sci., 1997, 94(21), 11233-11237. doi: 10.1073/pnas.94.21.11233 PMID: 9326592
  43. Burg, M.B. Coordinate regulation of organic osmolytes in renal cells. Kidney Int., 1996, 49(6), 1684-1685. doi: 10.1038/ki.1996.247 PMID: 8743477
  44. Burger-Kentischer, A.; Müller, E.; März, J.; Fraek, M.L.; Thurau, K.; Beck, F.X. Hypertonicity-induced accumulation of organic osmolytes in papillary interstitial cells. Kidney Int., 1999, 55(4), 1417-1425. doi: 10.1046/j.1523-1755.1999.00382.x PMID: 10201006
  45. Chung, S.S.M.; Ho, E.C.M.; Lam, K.S.L.; Chung, S.K. Contribution of polyol pathway to diabetes-induced oxidative stress. J. Am. Soc. Nephrol., 2003, 14(8)(Suppl. 3), S233-S236. doi: 10.1097/01.ASN.0000077408.15865.06 PMID: 12874437
  46. Shah, V.O.; Dorin, R.I.; Sun, Y.; Braun, M.; Zager, P.G. Aldose reductase gene expression is increased in diabetic nephropathy. J. Clin. Endocrinol. Metab., 1997, 82(7), 2294-2298. doi: 10.1210/jc.82.7.2294 PMID: 9215310
  47. Williamson, J.R.; Chang, K.; Frangos, M.; Hasan, K.S.; Ido, Y.; Kawamura, T.; Nyengaard, J.R.; Den Enden, M.; Kilo, C.; Tilton, R.G. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes, 1993, 42(6), 801-813. doi: 10.2337/diab.42.6.801 PMID: 8495803
  48. Cheng, X.; Ni, B.; Zhang, Z.; Liu, Q.; Wang, L.; Ding, Y.; Hu, Y. Polyol pathway mediates enhanced degradation of extracellular matrix via p38 MAPK activation in intervertebral disc of diabetic rats. Connect. Tissue Res., 2013, 54(2), 118-122. doi: 10.3109/03008207.2012.754886 PMID: 23215968
  49. Dunlop, M. Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney Int., 2000, 58, S3-S12. doi: 10.1046/j.1523-1755.2000.07702.x PMID: 10997684
  50. Niimi, N.; Yako, H.; Takaku, S.; Chung, S.K.; Sango, K. Aldose reductase and the polyol pathway in schwann cells: Old and new problems. Int. J. Mol. Sci., 2021, 22(3), 1031. doi: 10.3390/ijms22031031 PMID: 33494154
  51. Zill, H.; Bek, S.; Hofmann, T.; Huber, J.; Frank, O.; Lindenmeier, M.; Weigle, B.; Erbersdobler, H.F.; Scheidler, S.; Busch, A.E.; Faist, V. RAGE-mediated MAPK activation by food-derived AGE and non-AGE products. Biochem. Biophys. Res. Commun., 2003, 300(2), 311-315. doi: 10.1016/S0006-291X(02)02856-5 PMID: 12504085
  52. Hu, H.; Jiang, H.; Ren, H.; Hu, X.; Wang, X.; Han, C. AGEs and chronic subclinical inflammation in diabetes: Disorders of immune system. Diabetes Metab. Res. Rev., 2015, 31(2), 127-137. doi: 10.1002/dmrr.2560 PMID: 24846076
  53. Qiu, Y.; Tang, L. Roles of the NLRP3 inflammasome in the pathogenesis of diabetic nephropathy. Pharmacol. Res., 2016, 114, 251-264. doi: 10.1016/j.phrs.2016.11.004 PMID: 27826011
  54. Wang, J.; Shen, X.; Liu, J.; Chen, W.; Wu, F.; Wu, W.; Meng, Z.; Zhu, M.; Miao, C. High glucose mediates NLRP3 inflammasome activation via upregulation of ELF3 expression. Cell Death Dis., 2020, 11(5), 383. doi: 10.1038/s41419-020-2598-6 PMID: 32439949
  55. de Zoete, M.R.; Palm, N.W.; Zhu, S.; Flavell, R.A. Inflammasomes. Cold Spring Harb. Perspect. Biol., 2014, 6(12), a016287. doi: 10.1101/cshperspect.a016287 PMID: 25324215
  56. Müller, R.; Daniel, C.; Hugo, C.; Amann, K.; Mielenz, D.; Endlich, K.; Braun, T.; van der Veen, B.; Heeringa, P.; Schett, G.; Zwerina, J. The mitogen-activated protein kinase p38α regulates tubular damage in murine anti-glomerular basement membrane nephritis. PLoS One, 2013, 8(2), e56316. doi: 10.1371/journal.pone.0056316 PMID: 23441175
  57. Navarro-González, J.F.; Mora-Fernández, C. The role of inflammatory cytokines in diabetic nephropathy. J. Am. Soc. Nephrol., 2008, 19(3), 433-442. doi: 10.1681/ASN.2007091048 PMID: 18256353
  58. Okada, M.; Matsuzawa, A.; Yoshimura, A.; Ichijo, H. The lysosome rupture-activated TAK1-JNK pathway regulates NLRP3 inflammasome activation. J. Biol. Chem., 2014, 289(47), 32926-32936. doi: 10.1074/jbc.M114.579961 PMID: 25288801
  59. Yang, R.; Trevillyan, J.M. c-Jun N-terminal kinase pathways in diabetes. Int. J. Biochem. Cell Biol., 2008, 40(12), 2702-2706. doi: 10.1016/j.biocel.2008.06.012 PMID: 18678273
  60. Harijith, A.; Ebenezer, D.L.; Natarajan, V. Reactive oxygen species at the crossroads of inflammasome and inflammation. Front. Physiol., 2014, 5, 352. doi: 10.3389/fphys.2014.00352 PMID: 25324778
  61. Sun, X.; Jiao, X.; Ma, Y.; Liu, Y.; Zhang, L.; He, Y.; Chen, Y. Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome. Biochem. Biophys. Res. Commun., 2016, 481(1-2), 63-70. doi: 10.1016/j.bbrc.2016.11.017 PMID: 27833015
  62. Kolset, S.O.; Reinholt, F.P.; Jenssen, T. Diabetic nephropathy and extracellular matrix. J. Histochem. Cytochem., 2012, 60(12), 976-986. doi: 10.1369/0022155412465073 PMID: 23103723
  63. Moriya, T.; Groppoli, T.J.; Kim, Y.; Mauer, M. Quantitative immunoelectron microscopy of type VI collagen in glomeruli in type I diabetic patients. Kidney Int., 2001, 59(1), 317-323. doi: 10.1046/j.1523-1755.2001.00493.x PMID: 11135085
  64. Yard, B.A.; Kahlert, S.; Engelleiter, R.; Resch, S.; Waldherr, R.; Groffen, A.J.; van den Heuvel, L.P.W.J.; van der Born, J.; Berden, J.H.M.; Kröger, S.; Hafner, M.; van der Woude, F.J. Decreased glomerular expression of agrin in diabetic nephropathy and podocytes, cultured in high glucose medium. Nephron, Exp. Nephrol., 2001, 9(3), 214-222. doi: 10.1159/000052614 PMID: 11340306
  65. Holmquist, P.; Torffvit, O. Urinary transforming growth factor-β 1, collagen IV and the effect of insulin in children at diagnosis of diabetes mellitus. Scand. J. Urol. Nephrol., 2009, 43(2), 142-147. doi: 10.1080/00365590802502111 PMID: 18979373
  66. Stokes, M.B.; Holler, S.; Cui, Y.; Hudkins, K.L.; Eitner, F.; Fogo, A.; Alpers, C.E. Expression of decorin, biglycan, and collagen type I in human renal fibrosing disease. Kidney Int., 2000, 57(2), 487-498. doi: 10.1046/j.1523-1755.2000.00868.x PMID: 10652025
  67. Figarola, J.L.; Scott, S.; Loera, S.; Xi, B.; Synold, T.; Rahbar, S. Renoprotective and lipid-lowering effects of LR compounds, novel advanced glycation end product inhibitors, in streptozotocin-induced diabetic rats. Ann. N. Y. Acad. Sci., 2005, 1043(1), 767-776. doi: 10.1196/annals.1333.089 PMID: 16037304
  68. Dimas, G.G.; Didangelos, T.P.; Grekas, D.M. Matrix gelatinases in atherosclerosis and diabetic nephropathy: progress and challenges. Curr. Vasc. Pharmacol., 2017, 15(6), 557-565. PMID: 28155628
  69. Srivastava, S.P.; Koya, D.; Kanasaki, K. MicroRNAs in kidney fibrosis and diabetic nephropathy: Roles on EMT and EndMT. BioMed Res. Int., 2013, 2013, 1-10. doi: 10.1155/2013/125469 PMID: 24089659
  70. Zeisberg, M.; Bottiglio, C.; Kumar, N.; Maeshima, Y.; Strutz, F.; Müller, G.A.; Kalluri, R. Bone morphogenic protein-7 inhibits progression of chronic renal fibrosis associated with two genetic mouse models. Am. J. Physiol. Renal Physiol., 2003, 285(6), F1060-F1067. doi: 10.1152/ajprenal.00191.2002 PMID: 12915382
  71. Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest., 2009, 119(6), 1420-1428. doi: 10.1172/JCI39104 PMID: 19487818
  72. Tan, T.K.; Zheng, G.; Hsu, T.T.; Wang, Y.; Lee, V.W.S.; Tian, X.; Wang, Y.; Cao, Q.; Wang, Y.; Harris, D.C.H. Macrophage matrix metalloproteinase-9 mediates epithelial-mesenchymal transition in vitro in murine renal tubular cells. Am. J. Pathol., 2010, 176(3), 1256-1270. doi: 10.2353/ajpath.2010.090188 PMID: 20075196
  73. Jiang, Q.; Wang, Y.; Hao, Y.; Juan, L.; Teng, M.; Zhang, X.; Li, M.; Wang, G.; Liu, Y. miR2Disease: A manually curated database for microRNA deregulation in human disease. Nucleic Acids Res., 2009, 37(S1), D98-D104. doi: 10.1093/nar/gkn714 PMID: 18927107
  74. Bracken, C.P.; Gregory, P.A.; Kolesnikoff, N.; Bert, A.G.; Wang, J.; Shannon, M.F.; Goodall, G.J. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res., 2008, 68(19), 7846-7854. doi: 10.1158/0008-5472.CAN-08-1942 PMID: 18829540
  75. Pavenstädt, H.; Kriz, W.; Kretzler, M. Cell biology of the glomerular podocyte. Physiol. Rev., 2003, 83(1), 253-307. doi: 10.1152/physrev.00020.2002 PMID: 12506131
  76. Abboud, H.E. Mesangial cell biology. Exp. Cell Res., 2012, 318(9), 979-985. doi: 10.1016/j.yexcr.2012.02.025 PMID: 22414873
  77. Schöcklmann, H.O.; Lang, S.; Sterzel, R.B. Regulation of mesangial cell proliferation. Kidney Int., 1999, 56(4), 1199-1207. doi: 10.1046/j.1523-1755.1999.00710.x PMID: 10610410
  78. Simonson, M.S. Phenotypic transitions and fibrosis in diabetic nephropathy. Kidney Int., 2007, 71(9), 846-854. doi: 10.1038/sj.ki.5002180 PMID: 17342177
  79. Li, J.J.; Kwak, S.J.; Jung, D.S.; Kim, J.J.; Yoo, T.H.; Ryu, D.R.; Han, S.H.; Choi, H.Y.; Lee, J.E.; Moon, S.J.; Kim, D.K.; Han, D.S.; Kang, S.W. Podocyte biology in diabetic nephropathy. Kidney Int., 2007, 72(106), S36-S42. doi: 10.1038/sj.ki.5002384 PMID: 17653209
  80. Bai, Y.; Wang, L.; Li, Y.; Liu, S.; Li, J.; Wang, H.; Huang, H. High ambient glucose levels modulates the production of MMP-9 and alpha5(IV) collagen by cultured podocytes. Cell. Physiol. Biochem., 2006, 17(1-2), 57-68. doi: 10.1159/000091464 PMID: 16543722
  81. Xu, Z.G.; Yoo, T.H.; Ryu, D.R.; Park, H.C.; Ha, S.K.; Han, D.S.; Adler, S.G.; Natarajan, R.; Kang, S.W. Angiotensin II receptor blocker inhibits p27Kip1 expression in glucose-stimulated podocytes and in diabetic glomeruli. Kidney Int., 2005, 67(3), 944-952. doi: 10.1111/j.1523-1755.2005.00158.x PMID: 15698433
  82. Lee, E.Y.; Shim, M.S.; Kim, M.J.; Hong, S.Y.; Shin, Y.G.; Chung, C.H. Angiotensin II receptor blocker attenuates overexpression of vascular endothelial growth factor in diabetic podocytes. Exp. Mol. Med., 2004, 36(1), 65-70. doi: 10.1038/emm.2004.9 PMID: 15031673
  83. Tufro, A.; Veron, D. VEGF and podocytes in diabetic nephropathy. Semin. Nephrol., 2012, 32(4), 385-393. doi: 10.1016/j.semnephrol.2012.06.010 PMID: 22958493
  84. Veron, D.; Reidy, K.; Bertuccio, C.; Techman, J.; Villegas, G.; Jimenez, J.; Shen, W.; Kopp, J.; Thomas, D.; Tufro, A. Induction of podocyte VEGF-A overexpression in adult mice causes glomerular disease. Kidney Int., 2010, 77, 989-999. doi: 10.1038/ki.2010.64 PMID: 20375978
  85. Nijenhuis, T.; Sloan, A.J.; Hoenderop, J.G.J.; Flesche, J.; van Goor, H.; Kistler, A.D.; Bakker, M.; Bindels, R.J.M.; de Boer, R.A.; Möller, C.C.; Hamming, I.; Navis, G.; Wetzels, J.F.M.; Berden, J.H.M.; Reiser, J.; Faul, C.; van der Vlag, J. Angiotensin II contributes to podocyte injury by increasing TRPC6 expression via an NFAT-mediated positive feedback signaling pathway. Am. J. Pathol., 2011, 179(4), 1719-1732. doi: 10.1016/j.ajpath.2011.06.033 PMID: 21839714
  86. Lin, C.L.; Wang, J.Y.; Huang, Y.T.; Kuo, Y.H.; Surendran, K.; Wang, F.S. Wnt/beta-catenin signaling modulates survival of high glucose-stressed mesangial cells. J. Am. Soc. Nephrol., 2006, 17(10), 2812-2820. doi: 10.1681/ASN.2005121355 PMID: 16943306
  87. Lin, C.L.; Wang, J.Y.; Ko, J.Y.; Huang, Y.T.; Kuo, Y.H.; Wang, F.S. Dickkopf-1 promotes hyperglycemia-induced accumulation of mesangial matrix and renal dysfunction. J. Am. Soc. Nephrol., 2010, 21(1), 124-135. doi: 10.1681/ASN.2008101059 PMID: 20019166
  88. Tung, C.W.; Hsu, Y.C.; Shih, Y.H.; Chang, P.J.; Lin, C.L. Glomerular mesangial cell and podocyte injuries in diabetic nephropathy. Nephrology (Carlton), 2018, 23(S4), 32-37. doi: 10.1111/nep.13451 PMID: 30298646
  89. Lin, C.L.; Wang, J.Y.; Ko, J.Y.; Surendran, K.; Huang, Y.T.; Kuo, Y.H.; Wang, F.S. Superoxide destabilization of beta-catenin augments apoptosis of high-glucose-stressed mesangial cells. Endocrinology, 2008, 149(6), 2934-2942. doi: 10.1210/en.2007-1372 PMID: 18339714
  90. Wang, F.; Fisher, S.A.; Zhong, J.; Wu, Y.; Yang, P. Superoxide dismutase 1 in vivo ameliorates maternal diabetes mellitus-induced apoptosis and heart defects through restoration of impaired Wnt signaling. Circ. Cardiovasc. Genet., 2015, 8(5), 665-676. doi: 10.1161/CIRCGENETICS.115.001138 PMID: 26232087
  91. Lin, C.L.; Lee, P.H.; Hsu, Y.C.; Lei, C.C.; Ko, J.Y.; Chuang, P.C.; Huang, Y.T.; Wang, S.Y.; Wu, S.L.; Chen, Y.S.; Chiang, W.C.; Reiser, J.; Wang, F.S. MicroRNA-29a promotion of nephrin acetylation ameliorates hyperglycemia-induced podocyte dysfunction. J. Am. Soc. Nephrol., 2014, 25(8), 1698-1709. doi: 10.1681/ASN.2013050527 PMID: 24578127
  92. Li, X.; Chuang, P.Y.; D’Agati, V.D.; Dai, Y.; Yacoub, R.; Fu, J.; Xu, J.; Taku, O.; Premsrirut, P.K.; Holzman, L.B.; He, J.C. Nephrin preserves podocyte viability and glomerular structure and function in adult kidneys. J. Am. Soc. Nephrol., 2015, 26(10), 2361-2377. doi: 10.1681/ASN.2014040405 PMID: 25644109
  93. Niranjan, T.; Bielesz, B.; Gruenwald, A.; Ponda, M.P.; Kopp, J.B.; Thomas, D.B.; Susztak, K. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat. Med., 2008, 14(3), 290-298. doi: 10.1038/nm1731 PMID: 18311147
  94. Gruden, G.; Perin, P.; Camussi, G. Insight on the pathogenesis of diabetic nephropathy from the study of podocyte and mesangial cell biology. Curr. Diabetes Rev., 2005, 1(1), 27-40. doi: 10.2174/1573399052952622 PMID: 18220580
  95. Kitsiou, P.V.; Tzinia, A.K.; Stetler-Stevenson, W.G.; Michael, A.F.; Fan, W.W.; Zhou, B.; Tsilibary, E.C. Glucose-induced changes in integrins and matrix-related functions in cultured human glomerular epithelial cells. Am. J. Physiol. Renal Physiol., 2003, 284(4), F671-F679. doi: 10.1152/ajprenal.00266.2002 PMID: 12620921
  96. Endlich, N.; Sunohara, M.; Nietfeld, W.; Wolski, E.W.; Schiwek, D. KräNzlin, B.; Gretz, N.; Kriz, W.; Eickhoff, H.; Endlich, K. Analysis of differential gene expression in stretched podocytes: osteopontin enhances adaptation of podocytes to mechanical stress. FASEB J., 2002, 16(13), 1-24. doi: 10.1096/fj.02-0125fje PMID: 12354696
  97. Endlich, N.; Kress, K.R.; Reiser, J.; Uttenweiler, D.; Kriz, W.; Mundel, P.; Endlich, K. Podocytes respond to mechanical stress in vitro. J. Am. Soc. Nephrol., 2001, 12(3), 413-422. doi: 10.1681/ASN.V123413 PMID: 11181788
  98. Safavi, M.; Foroumadi, A.; Abdollahi, M. The importance of synthetic drugs for type 2 diabetes drug discovery. Expert Opin. Drug Discov., 2013, 8(11), 1339-1363. doi: 10.1517/17460441.2013.837883 PMID: 24050217
  99. Eggleton, J.S.; Jialal, I. Thiazolidinediones. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2021.
  100. Yki-Järvinen, H. Thiazolidinediones. N. Engl. J. Med., 2004, 351(11), 1106-1118. doi: 10.1056/NEJMra041001 PMID: 15356308
  101. Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia, 2017, 60(9), 1577-1585. doi: 10.1007/s00125-017-4342-z PMID: 28776086
  102. Hawley, S.A.; Ross, F.A.; Chevtzoff, C.; Green, K.A.; Evans, A.; Fogarty, S.; Towler, M.C.; Brown, L.J.; Ogunbayo, O.A.; Evans, A.M.; Hardie, D.G. Use of cells expressing γ subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab., 2010, 11(6), 554-565. doi: 10.1016/j.cmet.2010.04.001 PMID: 20519126
  103. Vincent, M.F.; Marangos, P.J.; Gruber, H.E.; van den Berghe, G. Inhibition by AICA riboside of gluconeogenesis in isolated rat hepatocytes. Diabetes, 1991, 40(10), 1259-1266. doi: 10.2337/diab.40.10.1259 PMID: 1657665
  104. Rendell, M. The role of sulphonylureas in the management of type 2 diabetes mellitus. Drugs, 2004, 64(12), 1339-1358. doi: 10.2165/00003495-200464120-00006 PMID: 15200348
  105. Groop, L.C.; Pelkonen, R.; Koskimies, S.; Bottazzo, G.F.; Doniach, D. Secondary failure to treatment with oral antidiabetic agents in non-insulin-dependent diabetes. Diabetes Care, 1986, 9(2), 129-133. doi: 10.2337/diacare.9.2.129 PMID: 3516607
  106. Yildiz, B.; Gürlek, A. Failure of sulfonylureas in type 2 diabetes. Horm. Metab. Res., 1999, 31(4), 293-294. doi: 10.1055/s-2007-978737 PMID: 10333089
  107. Guardado-Mendoza, R.; Prioletta, A.; Jiménez-Ceja, L.M.; Sosale, A.; Folli, F. State of the art paper The role of nateglinide and repaglinide, derivatives of meglitinide, in the treatment of type 2 diabetes mellitus. Arch. Med. Sci., 2013, 5(5), 936-943. doi: 10.5114/aoms.2013.34991 PMID: 24273582
  108. Hansen, A.M.K.; Christensen, I.T.; Hansen, J.B.; Carr, R.D.; Ashcroft, F.M.; Wahl, P. Differential interactions of nateglinide and repaglinide on the human β-cell sulphonylurea receptor 1. Diabetes, 2002, 51(9), 2789-2795. doi: 10.2337/diabetes.51.9.2789 PMID: 12196472
  109. Halas, C.J. Nateglinide. Am. J. Health Syst. Pharm., 2001, 58(13), 1200-1205. doi: 10.1093/ajhp/58.13.1200 PMID: 11449877
  110. Klag, M.J.; Whelton, P.K.; Randall, B.L.; Neaton, J.D.; Brancati, F.L.; Ford, C.E.; Shulman, N.B.; Stamler, J. Blood pressure and end-stage renal disease in men. N. Engl. J. Med., 1996, 334(1), 13-18. doi: 10.1056/NEJM199601043340103 PMID: 7494564
  111. Lee, G.S. Retarding the progression of diabetic nephropathy in type 2 diabetes mellitus: Focus on hypertension and proteinuria. Ann. Acad. Med. Singap., 2005, 34(1), 24-30. PMID: 15726216
  112. Yacoub, R.; Campbell, K.N. Inhibition of RAS in diabetic nephropathy. Int. J. Nephrol. Renovasc. Dis., 2015, 8, 29-40. PMID: 25926752
  113. Kshirsagar, A.V.; Joy, M.S.; Hogan, S.L.; Falk, R.J.; Colindres, R.E. Effect of ACE inhibitors in diabetic and nondiabetic chronic renal disease: A systematic overview of randomized placebo-controlled trials. Am. J. Kidney Dis., 2000, 35(4), 695-707. doi: 10.1016/S0272-6386(00)70018-7 PMID: 10739792
  114. Noel Van Buren, P.; Toto, R. Current update in the management of diabetic nephropathy. Curr. Diabetes Rev., 2013, 9(1), 62-77. doi: 10.2174/157339913804143207 PMID: 23167665
  115. Sharma, K.; Ix, J.H.; Mathew, A.V.; Cho, M.; Pflueger, A.; Dunn, S.R.; Francos, B.; Sharma, S.; Falkner, B.; McGowan, T.A.; Donohue, M. RamachandraRao, S.; Xu, R.; Fervenza, F.C.; Kopp, J.B. Pirfenidone for diabetic nephropathy. J. Am. Soc. Nephrol., 2011, 22(6), 1144-1151. doi: 10.1681/ASN.2010101049 PMID: 21511828
  116. Li, R.; Xing, J.; Mu, X.; Wang, H.; Zhang, L.; Zhao, Y.; Zhang, Y. Sulodexide therapy for the treatment of diabetic nephropathy, a meta-analysis and literature review. Drug Des. Devel. Ther., 2015, 9, 6275-6283. PMID: 26664049
  117. Soma, J.; Sugawara, T.; Huang, Y.D.; Nakajima, J.; Kawamura, M. Tranilast slows the progression of advanced diabetic nephropathy. Nephron J., 2002, 92(3), 693-698. doi: 10.1159/000064071 PMID: 12372957
  118. Tuttle, K.R.; Bakris, G.L.; Toto, R.D.; McGill, J.B.; Hu, K.; Anderson, P.W. The effect of ruboxistaurin on nephropathy in type 2 diabetes. Diabetes Care, 2005, 28(11), 2686-2690. doi: 10.2337/diacare.28.11.2686 PMID: 16249540
  119. Chen, J.L.T.; Francis, J. Pyridoxamine, advanced glycation inhibition, and diabetic nephropathy. J. Am. Soc. Nephrol., 2012, 23(1), 6-8. doi: 10.1681/ASN.2011111097 PMID: 22158434
  120. Kanda, H.; Yamawaki, K. Bardoxolone methyl: drug development for diabetic kidney disease. Clin. Exp. Nephrol., 2020, 24(10), 857-864. doi: 10.1007/s10157-020-01917-5 PMID: 32594372
  121. Herman-Edelstein, M.; Scherzer, P.; Tobar, A.; Levi, M.; Gafter, U. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J. Lipid Res., 2014, 55(3), 561-572. doi: 10.1194/jlr.P040501 PMID: 24371263
  122. Tsun, J.G.S.; Yung, S.; Chau, M.K.M.; Shiu, S.W.M.; Chan, T.M.; Tan, K.C.B. Cellular cholesterol transport proteins in diabetic nephropathy. PLoS One, 2014, 9(9), e105787. doi: 10.1371/journal.pone.0105787 PMID: 25181357
  123. Ruan, X.; Varghese, Z.; Fernando, R.; Moorhead, J.F. Cytokines regulation of low-density lipoprotein receptor gene transcription in human mesangial cells. Nephrol. Dial. Transplant., 1998, 13(6), 1391-1397. doi: 10.1093/ndt/13.6.1391 PMID: 9641167
  124. Ruan, X.Z.; Moorhead, J.F.; Fernando, R.; Wheeler, D.C.; Powis, S.H.; Varghese, Z. PPAR agonists protect mesangial cells from interleukin 1beta-induced intracellular lipid accumulation by activating the ABCA1 cholesterol efflux pathway. J. Am. Soc. Nephrol., 2003, 14(3), 593-600. doi: 10.1097/01.ASN.0000050414.52908.DA PMID: 12595494
  125. Ling, L.J. Calcium channel blockers. In: Emergency Medicine: A Comprehensive Study Guide; Tintinalli, J.E.; Ruiz, E.; Krome, R.L., Eds.; McGraw-Hill: New York, NY, 1996; pp. 803-805.
  126. Lip, G.Y.H.; Ferner, R.E. Poisoning with anti-hypertensive drugs: Calcium antagonists. J. Hum. Hypertens., 1995, 9(3), 155-161. PMID: 7783095
  127. Adams, B.D.; Browne, W.T. Amlodipine overdose causes prolonged calcium channel blocker toxicity. Am. J. Emerg. Med., 1998, 16(5), 527-528. doi: 10.1016/S0735-6757(98)90011-0 PMID: 9725975
  128. Eland, I.A.; Sundström, A.; Velo, G.P.; Andersen, M.; Sturkenboom, M.C.J.M.; Langman, M.J.S.; Stricker, B.H.C.H.; Wiholm, B.; Eland, I.A.; Sundström, A.; Velo, G.P.; Andersen, M.; Sturkenboom, M.C.J.M.; Langman, M.J.S.; Stricker, B.H.C.H.; Wiholm, B. Antihypertensive medication and the risk of acute pancreatitis: The European case-control study on drug-induced acute pancreatitis (EDIP). Scand. J. Gastroenterol., 2006, 41(12), 1484-1490. doi: 10.1080/00365520600761676 PMID: 17101581
  129. Serreau, R.; Luton, D.; Macher, M.A.; Delezoide, A.L.; Garel, C.; Jacqz-Aigrain, E. Developmental toxicity of the angiotensin II type 1 receptor antagonists during human pregnancy: A report of 10 cases. BJOG, 2005, 112(6), 710-712. doi: 10.1111/j.1471-0528.2004.00525.x PMID: 15924524
  130. Payen, V.; Chemin, A.; Jonville-Béra, A.P.; Saliba, E.; Cantagrel, S. Fetal toxicity of angiotensin-II receptor antagonists. J. Gynecol. Obstet. Biol. Reprod. (Paris), 2006, 35(7), 729-731. doi: 10.1016/S0368-2315(06)76471-7 PMID: 17088776
  131. Simonetti, G.D.; Baumann, T.; Pachlopnik, J.M.; von Vigier, R.O.; Bianchetti, M.G. Non-lethal fetal toxicity of the angiotensin receptor blocker candesartan. Pediatr. Nephrol., 2006, 21(9), 1329-1330. doi: 10.1007/s00467-006-0162-y PMID: 16807764
  132. Roger, N.; Popovic, I.; Madelenat, P.; Mahieu-Caputo, D. Fetal toxicity of angiotensin-II-receptor inhibitors. Case report. Gynécol. Obstét. Fertil., 2007, 35(6), 556-560. doi: 10.1016/j.gyobfe.2007.03.015 PMID: 17544313
  133. Wang, G.S.; Hoyte, C. Review of biguanide (metformin) toxicity. J. Intensive Care Med., 2019, 34(11-12), 863-876. doi: 10.1177/0885066618793385 PMID: 30126348
  134. Perrone, J.; Phillips, C.; Gaieski, D. Occult metformin toxicity in three patients with profound lactic acidosis. J. Emerg. Med., 2011, 40(3), 271-275. doi: 10.1016/j.jemermed.2007.11.055 PMID: 18571361
  135. Shadnia, S.; Barzi, F.; Askari, A.; Hassanian-Moghaddam, H.; Zamani, N.; Ebrahimian, K. Metformin toxicity: A report of 204 cases from Iran. Curr. Drug Saf., 2013, 8(4), 278-281. doi: 10.2174/1574210195346398863 PMID: 24070002
  136. Mallick, S. Metformin induced acute pancreatitis precipitated by renal failure. Postgrad. Med. J., 2004, 80(942), 239-240. doi: 10.1136/pgmj.2003.011957 PMID: 15082849
  137. Scheen, A.J. Thiazolidinediones and liver toxicity. Diabetes Metab., 2001, 27(3), 305-313. PMID: 11431595
  138. Famularo, G.; Gasbarrone, L.; Minisola, G. Pancreatitis during treatment with liraglutide. JOP, 2012, 13(5), 540-541. PMID: 22964963
  139. Maor, Y.; Ergaz, D.; Malnick, S.D.H.; Melzer, E.; Neuman, M.G. Liraglutide-induced hepatotoxicity. Biomedicines, 2021, 9(2), 106. doi: 10.3390/biomedicines9020106 PMID: 33498980
  140. Denker, P.S.; Dimarco, P.E. Exenatide (exendin-4)-induced pancreatitis: A case report. Diabetes Care, 2006, 29(2), 471. doi: 10.2337/diacare.29.02.06.dc05-2043 PMID: 16443920
  141. McGill, J.B.; King, G.L.; Berg, P.H.; Price, K.L.; Kles, K.A.; Bastyr, E.J.; Hyslop, D.L. Clinical safety of the selective PKC-β inhibitor, ruboxistaurin. Expert Opin. Drug Saf., 2006, 5(6), 835-845. doi: 10.1517/14740338.5.6.835 PMID: 17044810
  142. Waanders, F.; van Goor, H.; Navis, G. Adverse renal effects of the AGE inhibitor pyridoxamine in combination with ACEi in non-diabetic adriamycin-induced renal damage in rats. Kidney Blood Press. Res., 2008, 31(5), 350-359. doi: 10.1159/000173253 PMID: 19018148
  143. Dabeek, W.M.; Marra, M.V. Dietary quercetin and kaempferol: Bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients, 2019, 11(10), 2288. doi: 10.3390/nu11102288 PMID: 31557798
  144. Lu, N.T.; Crespi, C.M.; Liu, N.M.; Vu, J.Q.; Ahmadieh, Y.; Wu, S.; Lin, S.; McClune, A.; Durazo, F.; Saab, S.; Han, S.; Neiman, D.C.; Beaven, S.; French, S.W. A phase I dose escalation study demonstrates quercetin safety and explores potential for bioflavonoid antivirals in patients with chronic hepatitis C. Phytother. Res., 2016, 30(1), 160-168. doi: 10.1002/ptr.5518 PMID: 26621580
  145. Vivarelli, S.; Salemi, R.; Candido, S.; Falzone, L.; Santagati, M.; Stefani, S.; Torino, F.; Banna, G.L.; Tonini, G.; Libra, M. Gut microbiota and cancer: From pathogenesis to therapy. Cancers, 2019, 11(1), 38. doi: 10.3390/cancers11010038 PMID: 30609850
  146. Gubert, C.; Kong, G.; Renoir, T.; Hannan, A.J. Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases. Neurobiol. Dis., 2020, 134, 104621. doi: 10.1016/j.nbd.2019.104621 PMID: 31628992
  147. Fung, T.C.; Olson, C.A.; Hsiao, E.Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci., 2017, 20(2), 145-155. doi: 10.1038/nn.4476 PMID: 28092661
  148. Witkowski, M.; Weeks, T.L.; Hazen, S.L. Gut microbiota and cardiovascular disease. Circ. Res., 2020, 127(4), 553-570. doi: 10.1161/CIRCRESAHA.120.316242 PMID: 32762536
  149. Nagase, N.; Ikeda, Y.; Tsuji, A.; Kitagishi, Y.; Matsuda, S. Efficacy of probiotics on the modulation of gut microbiota in the treatment of diabetic nephropathy. World J. Diabetes, 2022, 13(3), 150-160. doi: 10.4239/wjd.v13.i3.150 PMID: 35432750
  150. Chen, W.; Zhang, M.; Guo, Y.; Wang, Z.; Liu, Q.; Yan, R.; Wang, Y.; Wu, Q.; Yuan, K.; Sun, W. The profile and function of gut microbiota in diabetic nephropathy. Diabetes Metab. Syndr. Obes., 2021, 14, 4283-4296. doi: 10.2147/DMSO.S320169 PMID: 34703261
  151. Zaky, A.; Glastras, S.J.; Wong, M.Y.W.; Pollock, C.A.; Saad, S. The role of the gut microbiome in diabetes and obesity-related kidney disease. Int. J. Mol. Sci., 2021, 22(17), 9641. doi: 10.3390/ijms22179641 PMID: 34502562
  152. Patcharatrakul, T.; Gonlachanvit, S. Chili peppers, curcumins, and prebiotics in gastrointestinal health and disease. Curr. Gastroenterol. Rep., 2016, 18(4), 19. doi: 10.1007/s11894-016-0494-0 PMID: 26973345
  153. Nissen, L.; Valerii, M.C.; Spisni, E.; Casciano, F.; Gianotti, A. multiunit in vitro Colon model for the evaluation of prebiotic potential of a fiber plus D- Limonene food supplement. Foods, 2021, 10(10), 2371. doi: 10.3390/foods10102371 PMID: 34681420
  154. Parkar, S.G.; Stevenson, D.E.; Skinner, M.A. The potential influence of fruit polyphenols on colonic microflora and human gut health. Int. J. Food Microbiol., 2008, 124(3), 295-298. doi: 10.1016/j.ijfoodmicro.2008.03.017 PMID: 18456359
  155. Zhang, Z.B.; Luo, D.D.; Xie, J.H.; Xian, Y.F.; Lai, Z.Q.; Liu, Y.H.; Liu, W.H.; Chen, J.N.; Lai, X.P.; Lin, Z.X.; Su, Z.R. Curcumin’s metabolites, tetrahydrocurcumin and octahydrocurcumin, possess superior anti-inflammatory effects in vivo through suppression of TAK1-NF-κB pathway. Front. Pharmacol., 2018, 9, 1181. doi: 10.3389/fphar.2018.01181 PMID: 30386242
  156. Jarret, R.L.; Barboza, G.E.; Costa Batista, F.R.; Berke, T.; Chou, Y.Y.; Hulse-Kemp, A.; Ochoa-Alejo, N.; Tripodi, P.; Veres, A.; Garcia, C.C.; Csillery, G.; Huang, Y.K.; Kiss, E.; Kovacs, Z.; Kondrak, M.; Arce-Rodriguez, M.L.; Scaldaferro, M.A.; Szoke, A. Capsicum - An abbreviated compendium. J. Am. Soc. Hortic. Sci., 2019, 144(1), 3-22. doi: 10.21273/JASHS04446-18
  157. Guala, G. Integrated Taxonomic Information System (ITIS). Available from: https://www.itis.gov/ (Accessed Oct-2022).
  158. Aranha, B.C.; Hoffmann, J.F.; Barbieri, R.L.; Rombaldi, C.V.; Chaves, F.C. Untargeted metabolomic analysis of Capsicum spp. by GC–MS. Phytochem. Anal., 2017, 28(5), 439-447. doi: 10.1002/pca.2692 PMID: 28497560
  159. Saito, A.; Yamamoto, M. Acute oral toxicity of capsaicin in mice and rats. J. Toxicol. Sci., 1996, 21(3), 195-200. doi: 10.2131/jts.21.3_195 PMID: 8887888
  160. Reyes-Escogido, M.; Gonzalez-Mondragon, E.G.; Vazquez-Tzompantzi, E. Chemical and pharmacological aspects of capsaicin. Molecules, 2011, 16(2), 1253-1270. doi: 10.3390/molecules16021253 PMID: 21278678
  161. Li, J.; Wang, D.H. Increased GFR and renal excretory function by activation of TRPV1 in the isolated perfused kidney. Pharmacol. Res., 2008, 57(3), 239-246. doi: 10.1016/j.phrs.2008.01.011 PMID: 18329285
  162. Suri, A.; Szallasi, A. The emerging role of TRPV1 in diabetes and obesity. Trends Pharmacol. Sci., 2008, 29(1), 29-36. doi: 10.1016/j.tips.2007.10.016 PMID: 18055025
  163. Caballero, J. A new era for the design of TRPV1 antagonists and agonists with the use of structural information and molecular docking of capsaicin-like compounds. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 2169-2178. doi: 10.1080/14756366.2022.2110089 PMID: 35975286
  164. Darré, L.; Domene, C. Binding of capsaicin to the TRPV1 ion channel. Mol. Pharm., 2015, 12(12), 4454-4465. doi: 10.1021/acs.molpharmaceut.5b00641 PMID: 26502196
  165. Backes, T.M.; Rössler, O.G.; Hui, X.; Grötzinger, C.; Lipp, P.; Thiel, G. Stimulation of TRPV1 channels activates the AP-1 transcription factor. Biochem. Pharmacol., 2018, 150, 160-169. doi: 10.1016/j.bcp.2018.02.008 PMID: 29452097
  166. Luo, Z.; Ma, L.; Zhao, Z.; He, H.; Yang, D.; Feng, X.; Ma, S.; Chen, X.; Zhu, T.; Cao, T.; Liu, D.; Nilius, B.; Huang, Y.; Yan, Z.; Zhu, Z. TRPV1 activation improves exercise endurance and energy metabolism through PGC-1α upregulation in mice. Cell Res., 2012, 22(3), 551-564. doi: 10.1038/cr.2011.205 PMID: 22184011
  167. Wei, X.; Wei, X.; Lu, Z.; Li, L.; Hu, Y.; Sun, F.; Jiang, Y.; Ma, H.; Zheng, H.; Yang, G.; Liu, D.; Gao, P.; Zhu, Z. Activation of TRPV1 channel antagonizes diabetic nephropathy through inhibiting endoplasmic reticulum-mitochondria contact in podocytes. Metabolism, 2020, 105, 154182. doi: 10.1016/j.metabol.2020.154182 PMID: 32061660
  168. Hazarika, T.K. Citrus genetic diversity of north-east India, their distribution, ecogeography and ecobiology. Genet. Resour. Crop Evol., 2012, 59(6), 1267-1280. doi: 10.1007/s10722-012-9846-2
  169. Sadka, A.; Shlizerman, L.; Kamara, I.; Blumwald, E. Primary metabolism in citrus fruit as affected by its unique structure. Front. Plant Sci., 2019, 10(10), 1167. doi: 10.3389/fpls.2019.01167 PMID: 31611894
  170. Dugo, G.; Di Giacomo, A. Eds.; Citrus: the genus citrus; CRC Press, 2002. doi: 10.1201/9780203216613
  171. Champagne, D.E.; Koul, O.; Isman, M.B.; Scudder, G.G.E.; Neil Towers, G.H. Biological activity of limonoids from the rutales. Phytochemistry, 1992, 31(2), 377-394. doi: 10.1016/0031-9422(92)90003-9
  172. Reinhard, H.; Sager, F.; Zoller, O. Citrus juice classification by SPME-GC-MS and electronic nose measurements. Lebensm. Wiss. Technol., 2008, 41(10), 1906-1912. doi: 10.1016/j.lwt.2007.11.012
  173. Brendel, R.; Schwolow, S.; Rohn, S.; Weller, P. Volatilomic profiling of citrus juices by dual-detection HS-GC-MS-IMS and machine learning - An alternative authentication approach. J. Agric. Food Chem., 2021, 69(5), 1727-1738. doi: 10.1021/acs.jafc.0c07447 PMID: 33527826
  174. Surendran, S.; Qassadi, F.; Surendran, G.; Lilley, D.; Heinrich, M. Myrcene - what are the potential health benefits of this flavouring and aroma agent? Front. Nutr., 2021, 8(699666), 699666. doi: 10.3389/fnut.2021.699666 PMID: 34350208
  175. Jiang, M.H.; Yang, L.; Zhu, L.; Piao, J.H.; Jiang, J.G. Comparative GC/MS analysis of essential oils extracted by 3 methods from the bud of Citrus aurantium L. var. amara Engl. J. Food Sci., 2011, 76(9), C1219-C1225. doi: 10.1111/j.1750-3841.2011.02421.x PMID: 22416680
  176. Smith, D.C.; Forland, S.; Bachanos, E.; Matejka, M.; Barrett, V. Qualitative analysis of citrus fruit extracts by GC/MS: An undergraduate experiment. Chem. Educ., 2001, 6(1), 28-31. doi: 10.1007/s00897000450a
  177. Benavente-García, O.; Castillo, J.; Marin, F.R.; Ortuño, A.; Del Río, J.A. Uses and properties of citrus flavonoids. J. Agric. Food Chem., 1997, 45(12), 4505-4515. doi: 10.1021/jf970373s PMID: 18593176
  178. Kurogi, Y. Mesangial cell proliferation inhibitors for the treatment of proliferative glomerular disease. Med. Res. Rev., 2003, 23(1), 15-31. doi: 10.1002/med.10028 PMID: 12424751
  179. Yan, N.; Wen, L.; Peng, R.; Li, H.; Liu, H.; Peng, H.; Sun, Y.; Wu, T.; Chen, L.; Duan, Q.; Sun, Y.; Zhou, Q.; Wei, L.; Zhang, Z. Naringenin ameliorated kidney injury through Let-7a/TGFBR1 signaling in diabetic nephropathy. J. Diabetes Res., 2016, 2016, 1-13. doi: 10.1155/2016/8738760 PMID: 27446963
  180. Ortiz-Andrade, R.R.; Sánchez-Salgado, J.C.; Navarrete-Vázquez, G.; Webster, S.P.; Binnie, M.; García-Jiménez, S.; León-Rivera, I.; Cigarroa-Vázquez, P.; Villalobos-Molina, R.; Estrada-Soto, S. Antidiabetic and toxicological evaluations of naringenin in normoglycaemic and NIDDM rat models and its implications on extra-pancreatic glucose regulation. Diabetes Obes. Metab., 2008, 10(11), 1097-1104. doi: 10.1111/j.1463-1326.2008.00869.x PMID: 18355329
  181. Bickers, D.; Calow, P.; Greim, H.; Hanifin, J.M.; Rogers, A.E.; Saurat, J.H.; Sipes, I.G.; Smith, R.L.; Tagami, H. A toxicologic and dermatologic assessment of linalool and related esters when used as fragrance ingredients. Food Chem. Toxicol., 2003, 41(7), 919-942. doi: 10.1016/S0278-6915(03)00016-4 PMID: 12804649
  182. Deepa, B.; Venkatraman, C. Effects of linalool on inflammation, matrix accumulation and podocyte loss in kidney of streptozotocin-induced diabetic rats. Toxicol. Mech. Methods, 2013, 23(4), 223-234. doi: 10.3109/15376516.2012.743638 PMID: 23193997
  183. Aaltonen, P.; Luimula, P.; Åström, E.; Palmen, T.; Grönholm, T.; Palojoki, E.; Jaakkola, I.; Ahola, H.; Tikkanen, I.; Holthöfer, H. Changes in the expression of nephrin gene and protein in experimental diabetic nephropathy. Lab. Invest., 2001, 81(9), 1185-1190. doi: 10.1038/labinvest.3780332 PMID: 11555666
  184. Deepa, B.; Anuradha, C.V. Linalool, a plant derived monoterpene alcohol, rescues kidney from diabetes-induced nephropathic changes via blood glucose reduction. Diabetol. Croat., 2011, 40(4), 121-138.
  185. Forbes, J.M.; Coughlan, M.T.; Cooper, M.E. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes, 2008, 57(6), 1446-1454. doi: 10.2337/db08-0057 PMID: 18511445
  186. Baud, L.; Ardaillou, R. Reactive oxygen species: Production and role in the kidney. Am. J. Physiol., 1986, 251(5 Pt 2), F765-F776. PMID: 3022602
  187. Sedeek, M.; Nasrallah, R.; Touyz, R.M.; Hébert, R.L. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J. Am. Soc. Nephrol., 2013, 24(10), 1512-1518. doi: 10.1681/ASN.2012111112 PMID: 23970124
  188. Yan, L. Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. Animal Model. Exp. Med., 2018, 1(1), 7-13. doi: 10.1002/ame2.12001 PMID: 29863179
  189. Van Nguyen, C. Toxicity of the AGEs generated from the Maillard reaction: On the relationship of food-AGEs and biological-AGEs. Mol. Nutr. Food Res., 2006, 50(12), 1140-1149. doi: 10.1002/mnfr.200600144 PMID: 17131455
  190. Makino, H.; Shikata, K.; Hironaka, K.; Kushiro, M.; Yamasaki, Y.; Sugimoto, H.; Ota, Z.; Araki, N.; Horiuchi, S. Ultrastructure of nonenzymatically glycated mesangial matrix in diabetic nephropathy. Kidney Int., 1995, 48(2), 517-526. doi: 10.1038/ki.1995.322 PMID: 7564121
  191. Kummer, R.; Fachini-Queiroz, F.C.; Estevão-Silva, C.F.; Grespan, R.; Silva, E.L.; Bersani-Amado, C.A.; Cuman, R.K. Evaluation of anti-inflammatory activity of Citrus latifolia Tanaka essential oil and limonene in experimental mouse models. Evid. based Complement. Altern. Med., 2013, 2013, 859083.
  192. Delort, E.; Jaquier, A.; Decorzant, E.; Chapuis, C.; Casilli, A.; Frérot, E. Comparative analysis of three Australian finger lime (Citrus australasica) cultivars: Identification of unique citrus chemotypes and new volatile molecules. Phytochemistry, 2015, 109, 111-124. doi: 10.1016/j.phytochem.2014.10.023 PMID: 25468539
  193. Joglekar, M.M.; Panaskar, S.N.; Chougale, A.D.; Kulkarni, M.J.; Arvindekar, A.U. A novel mechanism for antiglycative action of limonene through stabilization of protein conformation. Mol. Biosyst., 2013, 9(10), 2463-2472. doi: 10.1039/c3mb00020f PMID: 23872839
  194. Chaturvedi, S.K.; Ahmad, E.; Khan, J.M.; Alam, P.; Ishtikhar, M.; Khan, R.H. Elucidating the interaction of limonene with bovine serum albumin: a multi-technique approach. Mol. Biosyst., 2015, 11(1), 307-316. doi: 10.1039/C4MB00548A PMID: 25382435
  195. Panaskar, S.N.; Joglekar, M.M.; Taklikar, S.S.; Haldavnekar, V.S.; Arvindekar, A.U. Aegle marmelos Correa leaf extract prevents secondary complications in streptozotocin-induced diabetic rats and demonstration of limonene as a potent antiglycating agent. J. Pharm. Pharmacol., 2013, 65(6), 884-894. doi: 10.1111/jphp.12044 PMID: 23647682
  196. Yoon, W.J.; Lee, N.H.; Hyun, C.G. Limonene suppresses lipopolysaccharide-induced production of nitric oxide, prostaglandin E2, and pro-inflammatory cytokines in RAW 264.7 macrophages. J. Oleo Sci., 2010, 59(8), 415-421. doi: 10.5650/jos.59.415 PMID: 20625233
  197. Iwanage, Y. Studies on d-limonene, as gallstone solubilizer. II. Acute and subacute toxicities. Oyo Yakuri, 1975, 9, 387-401.
  198. Kumar, J.; Verma, V.; Goyal, A.; Shahi, A.K.; Sparoo, R.; Sangwan, R.S.; Qazi, G.N. Genetic diversity analysis in Cymbopogon species using DNA markers. Plant Omics, 2009, 2(1), 20.
  199. Ganjewala, D. Cymbopogon essential oils: Chemical compositions and bioactivities. Int. J. Essent. Oil Res, 2009, 3(2-3), 56-65.
  200. Ilayperuma, I. Effects of intraperitoneal administration of Citral on male reproductive organs in the rat. Galen Med. J., 2009, 13(1), 29-32. doi: 10.4038/gmj.v13i1.891
  201. Babukumar, S.; Vinothkumar, V.; Sankaranarayanan, C.; Srinivasan, S. Geraniol, a natural monoterpene, ameliorates hyperglycemia by attenuating the key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Pharm. Biol., 2017, 55(1), 1442-1449. doi: 10.1080/13880209.2017.1301494 PMID: 28330423
  202. Kpoviessi, S.; Bero, J.; Agbani, P.; Gbaguidi, F.; Kpadonou-Kpoviessi, B.; Sinsin, B.; Accrombessi, G.; Frédérich, M.; Moudachirou, M.; Quetin-Leclercq, J. Chemical composition, cytotoxicity and in vitro antitrypanosomal and antiplasmodial activity of the essential oils of four Cymbopogon species from Benin. J. Ethnopharmacol., 2014, 151(1), 652-659. doi: 10.1016/j.jep.2013.11.027 PMID: 24269775
  203. Robbins, S.R.J. Selected markets for the essential oils of lemongrass, citronella and eucalyptus. Tropical Products Institute Report, 1983, 17, 13.
  204. Mishra, C.; Khalid, M.A.; Tripathi, D.; Mahdi, A.A. Comparative anti-diabetic study of three phytochemicals on high-fat diet and streptozotocin-induced diabetic dyslipidemic rats. Int. J. Biomed. Adv. Res., 2018, 9(8), 8.
  205. Katsukawa, M.; Nakata, R.; Takizawa, Y.; Hori, K.; Takahashi, S.; Inoue, H. Citral, a component of lemongrass oil, activates PPARα and γ and suppresses COX-2 expression. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2010, 1801(11), 1214-1220. doi: 10.1016/j.bbalip.2010.07.004 PMID: 20656057
  206. Sforcin, J.M.; Amaral, J.T.; Fernandes, A., Jr; Sousa, J.P.B.; Bastos, J.K. Lemongrass effects on IL-1β and IL-6 production by macrophages. Nat. Prod. Res., 2009, 23(12), 1151-1159. doi: 10.1080/14786410902800681 PMID: 19662581
  207. Zarandi, M.H.; Sharifiyazdi, H.; Nazifi, S.; Ghaemi, M.; Bakhtyari, M.K. Effects of citral on serum inflammatory factors and liver gene expression of IL-6 and TNF-alpha in experimental diabetes. Comp. Clin. Pathol., 2021, 30(3), 351-361. doi: 10.1007/s00580-021-03205-4
  208. Lee, H.J.; Jeong, H.S.; Kim, D.J.; Noh, Y.H.; Yuk, D.Y.; Hong, J.T. Inhibitory effect of citral on NO production by suppression of iNOS expression and NF-κB activation in RAW264.7 cells. Arch. Pharm. Res., 2008, 31(3), 342-349. doi: 10.1007/s12272-001-1162-0 PMID: 18409048
  209. El-Said, Y.A.M.; Sallam, N.A.A.; Ain-Shoka, A.A.M.; Abdel-Latif, H.A.T. Geraniol ameliorates diabetic nephropathy via interference with miRNA-21/PTEN/Akt/mTORC1 pathway in rats. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(12), 2325-2337. doi: 10.1007/s00210-020-01944-9 PMID: 32666288
  210. Shah, G.; Shri, R.; Panchal, V.; Sharma, N.; Singh, B.; Mann, A.S. Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (Lemon grass). J. Adv. Pharm. Technol. Res., 2011, 2(1), 3-8. doi: 10.4103/2231-4040.79796 PMID: 22171285
  211. Rauter, A.P.; Lopes, R.G.; Martins, A. CGlycosylflavonoids: Identification, bioactivity and synthesis. Nat. Prod. Commun., 2007, 2(11), 1934578X0700201125.
  212. Figueirinha, A.; Paranhos, A.; Pérez-Alonso, J.J.; Santos-Buelga, C.; Batista, M.T. Cymbopogon citratus leaves: Characterization of flavonoids by HPLC–PDA–ESI/MS/MS and an approach to their potential as a source of bioactive polyphenols. Food Chem., 2008, 110(3), 718-728. doi: 10.1016/j.foodchem.2008.02.045
  213. Fonseca-Silva, F.; Inacio, J.D.F.; Canto-Cavalheiro, M.M.; Menna-Barreto, R.F.S.; Almeida-Amaral, E.E. Oral efficacy of apigenin against cutaneous leishmaniasis: Involvement of reactive oxygen species and autophagy as a mechanism of action. PLoS Negl. Trop. Dis., 2016, 10(2), e0004442. doi: 10.1371/journal.pntd.0004442 PMID: 26862901
  214. Malik, S.; Suchal, K.; Khan, S.I.; Bhatia, J.; Kishore, K.; Dinda, A.K.; Arya, D.S. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways. Am. J. Physiol. Renal Physiol., 2017, 313(2), F414-F422. doi: 10.1152/ajprenal.00393.2016 PMID: 28566504
  215. Xu, Y.; Zhang, J.; Fan, L.; He, X. miR-423-5p suppresses high-glucose-induced podocyte injury by targeting Nox4. Biochem. Biophys. Res. Commun., 2018, 505(2), 339-345. doi: 10.1016/j.bbrc.2018.09.067 PMID: 30245133
  216. Hou, Y.; Zhang, Y.; Lin, S.; Yu, Y.; Yang, L.; Li, L.; Wang, W. Protective mechanism of apigenin in diabetic nephropathy is related to its regulation of miR-423-5P-USF2 axis. Am. J. Transl. Res., 2021, 13(4), 2006-2020. PMID: 34017372
  217. Hossain, C.M.; Ghosh, M.K.; Satapathy, B.S.; Dey, N.S.; Mukherjee, B. Apigenin causes biochemical modulation, GLUT4 and Cd38 alterations to improve diabetes and to protect damages of some vital organs in experimental diabetes. Am. J. Pharmacol. Toxicol., 2014, 9(1), 39-52. doi: 10.3844/ajptsp.2014.39.52
  218. DeRango-Adem, E.F.; Blay, J. Does oral apigenin have real potential for a therapeutic effect in the context of human gastrointestinal and other cancers? Front. Pharmacol., 2021, 12, 681477. doi: 10.3389/fphar.2021.681477 PMID: 34084146
  219. Mukherjee, B.; Banerjee, S.; Mondal, L.; Chakraborty, S.; Chanda, D.; Perera, J.A. Bioactive flavonoid apigenin and its nanoformulations: a promising hope for diabetes and cancer. In: Nanomedicine for Bioactives; Springer: Singapore, 2020; pp. 367-382. doi: 10.1007/978-981-15-1664-1_13
  220. Chakrovorty, A.; Bhattacharjee, B.; Dey, R.; Samadder, A.; Nandi, S. Graphene: the magic carbon derived biological weapon for human welfare. Int. Acad. Publ. House, 2021, 25, 9-17. doi: 10.52756/ijerr.2021.v25.002
  221. Syamkumar, S.; Sasikumar, B. Molecular marker based genetic diversity analysis of curcuma species from India. Sci. Hortic., 2007, 112(2), 235-241. doi: 10.1016/j.scienta.2006.12.021
  222. Samadder, A.; Khuda-Bukhsh, A.R. Nanotechnological approaches in diabetes treatment: A new horizon. World J. Transl. Med., 2014, 3(2), 84-95. doi: 10.5528/wjtm.v3.i2.84
  223. Chen, L.; Liu, T.; Wang, Q.; Liu, J. Anti-inflammatory effect of combined tetramethylpyrazine, resveratrol and curcumin in vivo. BMC Complement. Altern. Med., 2017, 17(1), 233. doi: 10.1186/s12906-017-1739-7 PMID: 28449676
  224. Widyananda, M.H.; Ansori, A.N.; Kharisma, V.D.; Rizky, W.C.; Dings, T.G.; Rebezov, M.; Maksimiuk, N.; Denisenko, A.; Nugraha, A.P. Investigating the potential of curcumin, demethoxycurcumin and bisdemethoxycurcumin as wild-type and mutant her2 inhibitors against various cancer types using bioinformatics analysis. Biochem. Cell. Arch., 2021, 21(2), 3335-3343.
  225. Zhang, D.W.; Fu, M.; Gao, S.H.; Liu, J.L. Curcumin and diabetes: A systematic review. Evid.-. Based Complementary Altern.Med, 2013, 2013, 636053.
  226. Chuengsamarn, S.; Rattanamongkolgul, S.; Luechapudiporn, R.; Phisalaphong, C.; Jirawatnotai, S. Curcumin extract for prevention of type 2 diabetes. Diabetes Care, 2012, 35(11), 2121-2127. doi: 10.2337/dc12-0116 PMID: 22773702
  227. Bisht, S.; Feldmann, G.; Soni, S.; Ravi, R.; Karikar, C.; Maitra, A.; Maitra, A. Polymeric nanoparticle-encapsulated curcumin ("nanocurcumin"): A novel strategy for human cancer therapy. J. Nanobiotechnology, 2007, 5(1), 3. doi: 10.1186/1477-3155-5-3 PMID: 17439648
  228. Chakrovorty, A.; Bhattacharjee, B.; Saxena, A.; Samadder, A.; Nandi, S. Current naturopathy to combat Alzheimer’s disease. Curr. Neuropharmacol., 2022, 20, 808-841. doi: 10.2174/1570159X20666220927121022 PMID: 36173068
  229. Tabrizi, R.; Vakili, S.; Akbari, M.; Mirhosseini, N.; Lankarani, K.B.; Rahimi, M.; Mobini, M.; Jafarnejad, S.; Vahedpoor, Z.; Asemi, Z. The effects of curcumin-containing supplements on biomarkers of inflammation and oxidative stress: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res., 2019, 33(2), 253-262. doi: 10.1002/ptr.6226 PMID: 30402990
  230. He, Y.; Yue, Y.; Zheng, X.; Zhang, K.; Chen, S.; Du, Z. Curcumin, inflammation, and chronic diseases: How are they linked? Molecules, 2015, 20(5), 9183-9213. doi: 10.3390/molecules20059183 PMID: 26007179
  231. Motterlini, R.; Foresti, R.; Bassi, R.; Green, C.J. Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic. Biol. Med., 2000, 28(8), 1303-1312. doi: 10.1016/S0891-5849(00)00294-X PMID: 10889462
  232. Karlowee, H.; Gumay, A.R. Turmeric as a preventive agent of oxidative stress and diabetic nephropathy in alloxan induced wistar rats. Pak. J. Med. Health Sci., 2019, 13(4), 1208-1213.
  233. Nowotny, K.; Jung, T.; Höhn, A.; Weber, D.; Grune, T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules, 2015, 5(1), 194-222. doi: 10.3390/biom5010194 PMID: 25786107
  234. Soetikno, V.; Watanabe, K.; Sari, F.R.; Harima, M.; Thandavarayan, R.A.; Veeraveedu, P.T.; Arozal, W.; Sukumaran, V.; Lakshmanan, A.P.; Arumugam, S.; Suzuki, K. Curcumin attenuates diabetic nephropathy by inhibiting PKC-α and PKC-β1 activity in streptozotocin-induced type I diabetic rats. Mol. Nutr. Food Res., 2011, 55(11), 1655-1665. doi: 10.1002/mnfr.201100080 PMID: 22045654
  235. Riser, B.L.; Denichilo, M.; Cortes, P.; Baker, C.; Grondin, J.M.; Yee, J.; Narins, R.G. Regulation of connective tissue growth factor activity in cultured rat mesangial cells and its expression in experimental diabetic glomerulosclerosis. J. Am. Soc. Nephrol., 2000, 11(1), 25-38. doi: 10.1681/ASN.V11125 PMID: 10616837
  236. Huang, J.; Huang, K.; Lan, T.; Xie, X.; Shen, X.; Liu, P.; Huang, H. Curcumin ameliorates diabetic nephropathy by inhibiting the activation of the SphK1-S1P signaling pathway. Mol. Cell. Endocrinol., 2013, 365(2), 231-240. doi: 10.1016/j.mce.2012.10.024 PMID: 23127801
  237. Yuan, F.; Kolb, R.; Pandey, G.; Li, W.; Sun, L.; Liu, F.; Sutterwala, F.S.; Liu, Y.; Zhang, W. Involvement of the NLRC4-inflammasome in diabetic nephropathy. PLoS One, 2016, 11(10), e0164135. doi: 10.1371/journal.pone.0164135 PMID: 27706238
  238. Lu, M.; Yin, N.; Liu, W.; Cui, X.; Chen, S.; Wang, E. Curcumin ameliorates diabetic nephropathy by suppressing NLRP3 inflammasome signaling. BioMed Res. Int., 2017, 2017, 1-10. doi: 10.1155/2017/1516985 PMID: 28194406
  239. Zhang, J.; Li, Q.; Zhang, X.; Chen, Y.; Lu, Y.; Wang, X.; Zhang, L.; Wang, T. Bisdemethoxycurcumin alleviates dextran sodium sulfate-induced colitis via inhibiting NLRP3 inflammasome activation and modulating the gut microbiota in mice. Antioxidants, 2022, 11(10), 1994. doi: 10.3390/antiox11101994 PMID: 36290717
  240. Tang, J.; Tan, X.; Huang, X.; Zhang, J.; Chen, L.; Li, A.; Wang, D. Dual targeting of autophagy and NF-κB pathway by PPARγ contributes to the inhibitory effect of demethoxycurcumin on NLRP3 inflammasome priming. Curr. Mol. Pharmacol., 2021, 14(5), 914-921. doi: 10.2174/1874467214666210301121020 PMID: 33645492
  241. Sun, L.N.; Yang, Z.Y.; Lv, S.S.; Liu, X.C.; Guan, G.J.; Liu, G. Curcumin prevents diabetic nephropathy against inflammatory response via reversing caveolin-1 Tyr14 phosphorylation influenced TLR4 activation. Int. Immunopharmacol., 2014, 23(1), 236-246. doi: 10.1016/j.intimp.2014.08.023 PMID: 25196431
  242. ALTamimi, J.Z.; AlFaris, N.A.; AL-Farga, A.M.; Alshammari, G.M.; BinMowyna, M.N.; Yahya, M.A. Curcumin reverses diabetic nephropathy in streptozotocin-induced diabetes in rats by inhibition of PKCβ/p66Shc axis and activation of FOXO-3a. J. Nutr. Biochem., 2021, 87, 108515. doi: 10.1016/j.jnutbio.2020.108515 PMID: 33017608
  243. Meshkibaf, M.H.; Maleknia, M.; Noroozi, S. Effect of curcumin on gene expression and protein level of methionine sulfoxide reductase A (MSRA), SOD, CAT and GPx in Freund’s adjuvant inflammation-induced male rats. J. Inflamm. Res., 2019, 12, 241-249. doi: 10.2147/JIR.S212577 PMID: 31564949
  244. Nishinaka, T.; Ichijo, Y.; Ito, M.; Kimura, M.; Katsuyama, M.; Iwata, K.; Miura, T.; Terada, T.; Yabe-Nishimura, C. Curcumin activates human glutathione S-transferase P1 expression through antioxidant response element. Toxicol. Lett., 2007, 170(3), 238-247. doi: 10.1016/j.toxlet.2007.03.011 PMID: 17449203
  245. Kim, B.H.; Lee, E.S.; Choi, R.; Nawaboot, J.; Lee, M.Y.; Lee, E.Y.; Kim, H.S.; Chung, C.H. Protective effects of curcumin on renal oxidative stress and lipid metabolism in a rat model of type 2 diabetic nephropathy. Yonsei Med. J., 2016, 57(3), 664-673. doi: 10.3349/ymj.2016.57.3.664 PMID: 26996567
  246. Tu, Q.; Li, Y.; Jin, J.; Jiang, X.; Ren, Y.; He, Q. Curcumin alleviates diabetic nephropathy via inhibiting podocyte mesenchymal transdifferentiation and inducing autophagy in rats and MPC5 cells. Pharm. Biol., 2019, 57(1), 778-786. doi: 10.1080/13880209.2019.1688843 PMID: 31741405
  247. Zhang, M.; Lu, P.; Zhao, F.; Sun, X.; Ma, W.; Tang, J.; Zhang, C.; Ji, H.; Wang, X. Uncovering the molecular mechanisms of Curcumae rhizoma against myocardial fibrosis using network pharmacology and experimental validation. J. Ethnopharmacol., 2023, 300, 115751. doi: 10.1016/j.jep.2022.115751 PMID: 36162550
  248. de Oliveira Filho, J.G.; de Almeida, M.J.; Sousa, T.L.; dos Santos, D.C.; Egea, M.B. Bioactive Compounds of Turmeric (Curcuma longa L.). In: Bioactive Compounds in Underutilized Vegetables and Legumes. Reference Series in Phytochemistry; Murthy, H.N.; Paek, K.Y., Eds.; Springer: Cham, 2021. doi: 10.1007/978-3-030-57415-4_37
  249. Ye, M.; Shang, Z-P.; Xu, L-L.; Lu, Y-Y.; Guan, M.; Li, D-Y.; Le, Z-Y.; Bai, Z-L.; Qiao, X. Advances in chemical constituents and quality control of turmeric. World J. Tradit. Chin. Med., 2019, 5(2), 116. doi: 10.4103/wjtcm.wjtcm_12_19
  250. Dong, Y.; Yin, S.; Song, X.; Huo, Y.; Fan, L.; Ye, M.; Hu, H. Involvement of ROS-p38-H2AX axis in novel curcumin analogues-induced apoptosis in breast cancer cells. Mol. Carcinog., 2016, 55(4), 323-334. doi: 10.1002/mc.22280 PMID: 25647442
  251. Sueth-Santiago, V.; Moraes, J.B.B.; Sobral Alves, E.S.; Vannier-Santos, M.A.; Freire-de-Lima, C.G.; Castro, R.N.; Mendes-Silva, G.P.; Del Cistia, C.N.; Magalhães, L.G.; Andricopulo, A.D.; Sant’Anna, C.M.R.; Decoté-Ricardo, D.; Freire de Lima, M.E. The effectiveness of natural diarylheptanoids against trypanosoma cruzi: Cytotoxicity, ultrastructural alterations and molecular modeling studies. PLoS One, 2016, 11(9), e0162926. doi: 10.1371/journal.pone.0162926 PMID: 27658305
  252. Li, Y.; Toscano, M.; Mazzone, G.; Russo, N. Antioxidant properties and free radical scavenging mechanisms of cyclocurcumin. New J. Chem., 2018, 42(15), 12698-12705. doi: 10.1039/C8NJ01819G
  253. Fu, M.; Chen, L.; Zhang, L.; Yu, X.; Yang, Q. Cyclocurcumin, a curcumin derivative, exhibits immune-modulating ability and is a potential compound for the treatment of rheumatoid arthritis as predicted by the MM-PBSA method. Int. J. Mol. Med., 2017, 39(5), 1164-1172. doi: 10.3892/ijmm.2017.2926 PMID: 28339004
  254. Zhou, C.X.; Zhang, L.S.; Chen, F.F.; Wu, H.S.; Mo, J.X.; Gan, L.S. Terpenoids from Curcuma wenyujin increased glucose consumption on HepG2 cells. Fitoterapia, 2017, 121, 141-145. doi: 10.1016/j.fitote.2017.06.011 PMID: 28625730
  255. Das, J.M.; Sarma, B.; Nath, N.; Borthakur, M.K. Sustainable prospective of some selected species from moraceae and araceae family of Northeast India: A review. Plant Sci. Today, 2022, 9(2), 312-321. doi: 10.14719/pst.1427
  256. Yende, S.; Harle, U.; Rajgure, D.; Tuse, T.; Vyawahare, N. Pharmacological profile of Acorus calamus: an overview. Phcog Rev., 2008, 2(4), 23.
  257. Sharma, V.; Sharma, R.; Gautam, D.; Kuca, K.; Nepovimova, E.; Martins, N. Role of Vacha (Acorus calamus Linn.) in neurological and metabolic disorders: evidence from ethnopharmacology, phytochemistry, pharmacology and clinical study. J. Clin. Med., 2020, 9(4), 1176. doi: 10.3390/jcm9041176 PMID: 32325895
  258. Zhao, Z.F.; Zhou, L.L.; Chen, X.; Cheng, Y.X.; Hou, F.F.; Nie, J. Acortatarin A inhibits high glucose-induced extracellular matrix production in mesangial cells. Chin. Med. J., 2013, 126(7), 1230-1235. PMID: 23557549
  259. Samadder, A.; Dey, S.; Sow, P.; Das, R.; Nandi, S.; Das, J.; Bhattacharjee, B.; Chakrovorty, A.; Biswas, M.; Guptaroy, P. Phyto-chlorophyllin prevents food additive induced genotoxicity and mitochondrial dysfunction via cytochrome c mediated pathway in mice model. Comb. Chem. High Throughput Screen., 2021, 24(10), 1618-1627. doi: 10.2174/1386207323666201230093510 PMID: 33380297
  260. Das, J.; Samadder, A.; Mondal, J.; Abraham, S.K.; Khuda-Bukhsh, A.R. Nano-encapsulated chlorophyllin significantly delays progression of lung cancer both in in vitro and in vivo models through activation of mitochondrial signaling cascades and drug-DNA interaction. Environ. Toxicol. Pharmacol., 2016, 46, 147-157. doi: 10.1016/j.etap.2016.07.006 PMID: 27458703
  261. Fahey, J.W.; Stephenson, K.K.; Dinkova-Kostova, A.T.; Egner, P.A.; Kensler, T.W.; Talalay, P. Chlorophyll, chlorophyllin and related tetrapyrroles are significant inducers of mammalian phase 2 cytoprotective genes. Carcinogenesis, 2005, 26(7), 1247-1255. doi: 10.1093/carcin/bgi068 PMID: 15774490
  262. Abouzaid, O. Ameliorating role of chlorophyllin on oxidative stress induced by pirimiphos methyl in erythrocytes and brain of rats. Benha Vet. Med. J., 2013, 24(1), 141-150.
  263. Suryavanshi, S.V.; Gharpure, M.; Kulkarni, Y.A. Sodium copper chlorophyllin attenuates adenine-induced chronic kidney disease via suppression of TGF-beta and inflammatory cytokines. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(11), 2029-2041. doi: 10.1007/s00210-020-01912-3 PMID: 32500189
  264. Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5, e47. doi: 10.1017/jns.2016.41 PMID: 28620474
  265. Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as anticancer agents. Nutrients, 2020, 12(2), 457. doi: 10.3390/nu12020457 PMID: 32059369
  266. Hu, Q.; Qu, C.; Xiao, X.; Zhang, W.; Jiang, Y.; Wu, Z.; Song, D.; Peng, X.; Ma, X.; Zhao, Y. Flavonoids on diabetic nephropathy: Advances and therapeutic opportunities. Chin. Med., 2021, 16(1), 74. doi: 10.1186/s13020-021-00485-4 PMID: 34364389
  267. Yao, L.H.; Jiang, Y.M.; Shi, J.; Tomás-Barberán, F.A.; Datta, N.; Singanusong, R.; Chen, S.S. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr., 2004, 59(3), 113-122. doi: 10.1007/s11130-004-0049-7 PMID: 15678717
  268. Amri, J.; Alaee, M.; Babaei, R.; Salemi, Z.; Meshkani, R.; Ghazavi, A.; Akbari, A.; Salehi, M. Biochanin-A has antidiabetic, antihyperlipidemic, antioxidant, and protective effects on diabetic nephropathy via suppression of TGF-β1 and PAR-2 genes expression in kidney tissues of STZ-induced diabetic rats. Biotechnol. Appl. Biochem., 2022, 69(5), 2112-2121. doi: 10.1002/bab.2272 PMID: 34652037
  269. Ramada, M.M.; Ali, M.A.; Albohy, A.; Zada, S.K.; Tolba, M.F.; Abu-ELElla, D. Molecular modeling studies on biochanin-a as a potential dual inhibitor for VEGFR-2 and Cyclin D1-CDK-4 complex. Arch. Pharm. Sci. Ain Shams Univ, 2021, 5(1), 16-32.
  270. Sun, M.Y.; Ye, Y.; Xiao, L.; Rahman, K.; Xiad, W.; Zhang, H. Daidzein: A review of pharmacological effects. Afr. J. Tradit. Complement. Altern. Med., 2016, 13(3), 117-132. doi: 10.21010/ajtcam.v13i3.15
  271. Laddha, A.P.; Kulkarni, Y.A. Daidzein attenuates kidney damage in diabetic rats. FASEB J., 2020, 34(S1), 1. doi: 10.1096/fasebj.2020.34.s1.05292
  272. Laddha, A.P.; Murugesan, S.; Kulkarni, Y.A. In-vivo and in-silico toxicity studies of daidzein: an isoflavone from soy. Drug Chem. Toxicol., 2022, 45(3), 1408-1416. doi: 10.1080/01480545.2020.1833906 PMID: 33059469
  273. Katyal, T.; Garg, A.; Budhiraja, R. Combination of daidzein, hemin and bms182874 halts the progression of diabetes-induced experimental nephropathy. Endocr. Metab. Immune Disord. Drug Targets, 2013, 13(2), 152-162. doi: 10.2174/1871530311313020003 PMID: 23701217
  274. Qian, Y.; Guan, T.; Huang, M.; Cao, L.; Li, Y.; Cheng, H.; Jin, H.; Yu, D. Neuroprotection by the soy isoflavone, genistein, via inhibition of mitochondria-dependent apoptosis pathways and reactive oxygen induced-NF-κB activation in a cerebral ischemia mouse model. Neurochem. Int., 2012, 60(8), 759-767. doi: 10.1016/j.neuint.2012.03.011 PMID: 22490611
  275. Elmarakby, A.A.; Ibrahim, A.S.; Faulkner, J.; Mozaffari, M.S.; Liou, G.I.; Abdelsayed, R. Tyrosine kinase inhibitor, genistein, reduces renal inflammation and injury in streptozotocin-induced diabetic mice. Vascul. Pharmacol., 2011, 55(5-6), 149-156. doi: 10.1016/j.vph.2011.07.007 PMID: 21807121
  276. Kim, M.J.; Lim, Y. Protective effect of short-term genistein supplementation on the early stage in diabetes-induced renal damage. Mediators Inflamm., 2013, 2013, 1-14. doi: 10.1155/2013/510212 PMID: 23737649
  277. Wang, Y.; Li, Y.; Zhang, T.; Chi, Y.; Liu, M.; Liu, Y. Genistein and myd88 activate autophagy in high glucose-induced renal podocytes in vitro. Med. Sci. Monit., 2018, 24, 4823-4831. doi: 10.12659/MSM.910868 PMID: 29999001
  278. Xiong, C.; Wu, Q.; Fang, M.; Li, H.; Chen, B.; Chi, T. Protective effects of luteolin on nephrotoxicity induced by long-term hyperglycaemia in rats. Int. J. Med. Res., 2020, 202048(4), 0300060520903642.
  279. Zhang, M.; He, L.; Liu, J.; Zhou, L. Luteolin attenuates diabetic nephropathy through suppressing inflammatory response and oxidative stress by inhibiting STAT3 pathway. Exp. Clin. Endocrinol. Diabetes, 2021, 129(10), 729-739. doi: 10.1055/a-0998-7985 PMID: 31896157
  280. Asuzu, I.U.; Asuzu, I.U. Luteolin isolate from the methanol extract identified as the single-carbon compound responsible for broad antiulcer activities of Cassia singueana Leaves. IOSR J. Pharm., 2014, 4(10), 17-23. doi: 10.9790/3013-04010017023
  281. Das, S.; Das, J.; Samadder, A.; Paul, A.; Khuda-Bukhsh, A.R. Strategic formulation of apigenin-loaded PLGA nanoparticles for intracellular trafficking, DNA targeting and improved therapeutic effects in skin melanoma in vitro. Toxicol. Lett., 2013, 223(2), 124-138. doi: 10.1016/j.toxlet.2013.09.012 PMID: 24070738
  282. Das, S.; Das, J.; Paul, A.; Samadder, A.; Khuda-Bukhsh, A.R. Apigenin, a bioactive flavonoid from Lycopodium clavatum, stimulates nucleotide excision repair genes to protect skin keratinocytes from ultraviolet B-induced reactive oxygen species and DNA damage. J. Acupunct. Meridian Stud., 2013, 6(5), 252-262. doi: 10.1016/j.jams.2013.07.002 PMID: 24139463
  283. Das, S.; Das, J.; Samadder, A.; Paul, A.; Khuda-Bukhsh, A.R. Efficacy of PLGA-loaded apigenin nanoparticles in Benzoapyrene and ultraviolet-B induced skin cancer of mice: Mitochondria mediated apoptotic signalling cascades. Food Chem. Toxicol., 2013, 62, 670-680. doi: 10.1016/j.fct.2013.09.037 PMID: 24120900
  284. Harishkumar, R.; Reddy, L.P.K.; Karadkar, S.H.; Murad, M.A.; Karthik, S.S.; Manigandan, S.; Selvaraj, C.I.; Christopher, J.G. Toxicity and selective biochemical assessment of quercetin, gallic acid, and curcumin in zebrafish. Biol. Pharm. Bull., 2019, 42(12), 1969-1976. doi: 10.1248/bpb.b19-00296 PMID: 31787712
  285. Mu, M.; An, P.; Wu, Q.; Shen, X.; Shao, D.; Wang, H.; Zhang, Y.; Zhang, S.; Yao, H.; Min, J.; Wang, F. The dietary flavonoid myricetin regulates iron homeostasis by suppressing hepcidin expression. J. Nutr. Biochem., 2016, 30, 53-61. doi: 10.1016/j.jnutbio.2015.10.015 PMID: 27012621
  286. Bigoniya, P.; Singh, C.S.; Shrivastava, B. In vivo and in vitro hepatoprotective potential of kaempferol, a flavone glycoside from Capparis spinosa. Int. J. Pharm. Biol. Sci., 2013, 3(4), 139-152.
  287. Samadder, A.; Tarafdar, D.; Das, R.; Khuda-Bukhsh, A.R.; Abraham, S.K. Efficacy of nanoencapsulated pelargonidin in ameliorating pesticide toxicity in fish and L6 cells: Modulation of oxidative stress and signalling cascade. Sci. Total Environ., 2019, 671, 466-473. doi: 10.1016/j.scitotenv.2019.03.381 PMID: 31331442
  288. Dey, R.; Nandi, S.; Samadder, A. "Pelargonidin mediated selective activation of p53 and parp proteins in preventing food additive induced genotoxicity: an in vivo coupled in silico molecular docking study". Eur. J. Pharm. Sci., 2021, 156, 105586. doi: 10.1016/j.ejps.2020.105586 PMID: 33039567
  289. Samadder, A.; Tarafdar, D.; Abraham, S.; Ghosh, K.; Khuda-Bukhsh, A. Nano-pelargonidin protects hyperglycemic-induced L6 cells against mitochondrial dysfunction. Planta Med., 2017, 83(5), 468-475. doi: 10.1055/s-0043-100017 PMID: 28073120
  290. Samadder, A.; Abraham, S.K.; Khuda-Bukhsh, A.R. Nanopharmaceutical approach using pelargonidin towards enhancement of efficacy for prevention of alloxan-induced DNA damage in L6 cells via activation of PARP and p53. Environ. Toxicol. Pharmacol., 2016, 43, 27-37. doi: 10.1016/j.etap.2016.02.010 PMID: 26943895
  291. Lee, I.C.; Bae, J.S. Pelargonidin protects against renal injury in a mouse model of sepsis. J. Med. Food, 2019, 22(1), 57-61. doi: 10.1089/jmf.2018.4230 PMID: 30160593
  292. Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Chemistry, pharmacology and health benefits of anthocyanins. Phytother. Res., 2016, 30(8), 1265-1286. doi: 10.1002/ptr.5642 PMID: 27221033
  293. Francomano, F. Caruso, A.; Barbarossa, A.; Fazio, A.; La Torre, C.; Ceramella, J.; Mallamaci, R.; Saturnino, C.; Iacopetta, D.; Sinicropi, M.S. β-Caryophyllene: A sesquiterpene with countless biological properties. Appl. Sci. (Basel), 2019, 9(24), 5420. doi: 10.3390/app9245420
  294. Hashiesh, H.M.; Meeran, M.F.N.; Sharma, C.; Sadek, B.; Kaabi, J.A.; Ojha, S.K. Therapeutic potential of β-caryophyllene: A dietary cannabinoid in diabetes and associated complications. Nutrients, 2020, 12(10), 2963. doi: 10.3390/nu12102963 PMID: 32998300
  295. Abbas, M.A. Taha, M.O.; Zihlif, M.A.; Disi, A.M. β-Caryophyllene causes regression of endometrial implants in a rat model of endometriosis without affecting fertility. Eur. J. Pharmacol., 2013, 702(1-3), 12-19. doi: 10.1016/j.ejphar.2013.01.011 PMID: 23353590
  296. Horváth, B. Mukhopadhyay, P.; Kechrid, M.; Patel, V.; Tanchian, G.; Wink, D.A.; Gertsch, J.; Pacher, P. β-Caryophyllene ameliorates cisplatin-induced nephrotoxicity in a cannabinoid 2 receptor-dependent manner. Free Radic. Biol. Med., 2012, 52(8), 1325-1333. doi: 10.1016/j.freeradbiomed.2012.01.014 PMID: 22326488
  297. Li, H. Wang, D.; Chen, Y.; Yang, M. β-Caryophyllene inhibits high glucose-induced oxidative stress, inflammation and extracellular matrix accumulation in mesangial cells. Int. Immunopharmacol., 2020, 84, 106556. doi: 10.1016/j.intimp.2020.106556 PMID: 32416450
  298. Rajab, B.S.; Albukhari, T.A.; Khan, A.A.; Refaat, B.; Almehmadi, S.J.; Nasreldin, N.; Elshopakey, G.E.; El-Boshy, M. Antioxidative and anti-inflammatory protective effects of β-caryophyllene against amikacin-induced nephrotoxicity in rat by regulating the Nrf2/AMPK/AKT and NF-κB/TGF-β/KIM-1 molecular pathways. Oxid. Med. Cell. Longev., 2022, 2022, 1-12. doi: 10.1155/2022/4212331 PMID: 36062191
  299. Lo, J.Y.; Kamarudin, M.N.A.; Hamdi, O.A.A.; Awang, K.; Kadir, H.A. Curcumenol isolated from Curcuma zedoaria suppresses Akt-mediated NF-κB activation and p38 MAPK signaling pathway in LPS-stimulated BV-2 microglial cells. Food Funct., 2015, 6(11), 3550-3559. doi: 10.1039/C5FO00607D PMID: 26301513
  300. Yoshioka, T.; Fujii, E.; Endo, M.; Wada, K.; Tokunaga, Y.; Shiba, N.; Hohsho, H.; Shibuya, H.; Muraki, T. Antiinflammatory potency of dehydrocurdione, a zedoary-derived sesquiterpene. Inflamm. Res., 1998, 47(12), 476-481. doi: 10.1007/s000110050361 PMID: 9892041
  301. Ohnishi, M.; Urasaki, T.; Egusa, K.; Kunobu, C.; Harada, T.; Shinkado, R.; Nishi, H.; Maehara, S.; Kitamura, C.; Hata, T.; Ohashi, K.; Shibuya, H.; Inoue, A. Curcuma sp.-derived dehydrocurdione induces heme oxygenase-1 through a Michael reaction between its α, β-unsaturated carbonyl and Keap1. Phytother. Res., 2018, 32(5), 892-897. doi: 10.1002/ptr.6028 PMID: 29356228
  302. Cui, H.; Zhang, B.; Li, G.; Li, L.; Chen, H.; Qi, J.; Liu, W.; Chen, J.; Wang, P.; Lei, H. Identification of a quality marker of vinegar-Processed Curcuma zedoaria on oxidative liver injury. Molecules, 2019, 24(11), 2073. doi: 10.3390/molecules24112073 PMID: 31151312
  303. Wang, G.G.; Lu, X.H.; Li, W.; Zhao, X.; Zhang, C. Protective effects of luteolin on diabetic nephropathy in STZ-induced diabetic rats. Evid.-based Complement. Altern. Med., 2011, 2011, 323-171.
  304. Yu, Q.; Zhang, M.; Qian, L.; Wen, D.; Wu, G. Luteolin attenuates high glucose-induced podocyte injury via suppressing NLRP3 inflammasome pathway. Life Sci., 2019, 225, 1-7. doi: 10.1016/j.lfs.2019.03.073 PMID: 30935950
  305. Iskender, H.; Dokumacioglu, E.; Sen, T.M.; Ince, I.; Kanbay, Y.; Saral, S. The effect of hesperidin and quercetin on oxidative stress, NF-κB and SIRT1 levels in a STZ-induced experimental diabetes model. Biomed. Pharmacother., 2017, 90, 500-508. doi: 10.1016/j.biopha.2017.03.102 PMID: 28395272
  306. Elbe, H.; Vardi, N.; Esrefoglu, M.; Ates, B.; Yologlu, S.; Taskapan, C. Amelioration of streptozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats. Hum. Exp. Toxicol., 2015, 34(1), 100-113. doi: 10.1177/0960327114531995 PMID: 24812155
  307. Wang, C.; Pan, Y.; Zhang, Q.Y.; Wang, F.M.; Kong, L.D. Quercetin and allopurinol ameliorate kidney injury in STZ-treated rats with regulation of renal NLRP3 inflammasome activation and lipid accumulation. PLoS One, 2012, 7(6), e38285. doi: 10.1371/journal.pone.0038285 PMID: 22701621
  308. Hu, Q.H.; Wang, C.; Li, J.M.; Zhang, D.M.; Kong, L.D. Allopurinol, rutin, and quercetin attenuate hyperuricemia and renal dysfunction in rats induced by fructose intake: renal organic ion transporter involvement. Am. J. Physiol. Renal Physiol., 2009, 297(4), F1080-F1091. doi: 10.1152/ajprenal.90767.2008 PMID: 19605544
  309. Kandasamy, N.; Ashokkumar, N. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats. Toxicol. Appl. Pharmacol., 2014, 279(2), 173-185. doi: 10.1016/j.taap.2014.05.014 PMID: 24923654
  310. Kandasamy, N.; Ashokkumar, N. Renoprotective effect of myricetin restrains dyslipidemia and renal mesangial cell proliferation by the suppression of sterol regulatory element binding proteins in an experimental model of diabetic nephropathy. Eur. J. Pharmacol., 2014, 743, 53-62. doi: 10.1016/j.ejphar.2014.09.014 PMID: 25240712
  311. Luo, W.; Chen, X.; Ye, L.; Chen, X.; Jia, W.; Zhao, Y.; Samorodov, A.V.; Zhang, Y.; Hu, X.; Zhuang, F.; Qian, J.; Zheng, C.; Liang, G.; Wang, Y. Kaempferol attenuates streptozotocin-induced diabetic nephropathy by downregulating TRAF6 expression: The role of TRAF6 in diabetic nephropathy. J. Ethnopharmacol., 2021, 268, 113553. doi: 10.1016/j.jep.2020.113553 PMID: 33152432
  312. Ozcan, F.; Ozmen, A.; Akkaya, B.; Aliciguzel, Y.; Aslan, M. Beneficial effect of myricetin on renal functions in streptozotocin-induced diabetes. Clin. Exp. Med., 2012, 12(4), 265-272. doi: 10.1007/s10238-011-0167-0 PMID: 22083509
  313. Yang, L.; Liao, M. Influence of myrcene on inflammation, matrix accumulation in the kidney tissues of streptozotocin-induced diabetic rat. Saudi J. Biol. Sci., 2021, 28(10), 5555-5560. doi: 10.1016/j.sjbs.2020.11.090 PMID: 34588865
  314. Zhongliu, Y. Cancer Review; Yu, R., Ed.; Shanghai Science/Technology Publisher, Peop. Rep: China, 1994.
  315. Senthil Kumar, K.J.; Gokila Vani, M.; Wang, C.S.; Chen, C.C.; Chen, Y.C.; Lu, L.P.; Huang, C.H.; Lai, C.S.; Wang, S.Y. Geranium and lemon essential oils and their active compounds downregulate angiotensin-converting enzyme 2 (ACE2), a SARS-CoV-2 spike receptor-binding domain, in epithelial cells. Plants, 2020, 9(6), 770. doi: 10.3390/plants9060770 PMID: 32575476
  316. Kim, H.R.; Kim, W.K.; Ha, A.W. Effects of phytochemicals on blood pressure and neuroprotection mediated via brain renin-angiotensin system. Nutrients, 2019, 11(11), 2761. doi: 10.3390/nu11112761 PMID: 31739443
  317. Jones, H.S.; Gordon, A.; Magwenzi, S.G.; Naseem, K.; Atkin, S.L.; Courts, F.L. The dietary flavonol quercetin ameliorates angiotensin II-induced redox signaling imbalance in a human umbilical vein endothelial cell model of endothelial dysfunction via ablation of p47 phox expression. Mol. Nutr. Food Res., 2016, 60(4), 787-797. doi: 10.1002/mnfr.201500751 PMID: 26778209
  318. Luo, J.; Zhang, C.; Liu, Q.; Ou, S.; Zhang, L.; Peng, X. Combinative effect of sardine peptides and quercetin alleviates hypertension through inhibition of angiotensin I converting enzyme activity and inflammation. Food Res. Int., 2017, 100(Pt 1), 579-585. doi: 10.1016/j.foodres.2017.07.019 PMID: 28873724
  319. Guo, X.; Chen, M.; Zeng, H.; Liu, P.; Zhu, X.; Zhou, F.; Liu, J.; Zhang, J.; Dong, Z.; Tang, Y.; Gao, C.; Yao, P. Quercetin attenuates ethanol-induced iron uptake and myocardial injury by regulating the angiotensin II-L-type calcium channel. Mol. Nutr. Food Res., 2018, 62(5), 1700772. doi: 10.1002/mnfr.201700772 PMID: 29266790
  320. Suchal, K.; Malik, S.; Khan, S.; Malhotra, R.; Goyal, S.; Bhatia, J.; Ojha, S.; Arya, D. Molecular pathways involved in the amelioration of myocardial injury in diabetic rats by kaempferol. Int. J. Mol. Sci., 2017, 18(5), 1001. doi: 10.3390/ijms18051001 PMID: 28505121

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024