Current Computational Methods for Protein-peptide Complex Structure Prediction


Cite item

Full Text

Abstract

Peptide-mediated protein-protein interactions (PPIs) play an important role in various biological processes. The development of peptide-based drugs to modulate PPIs has attracted increasing attention due to the advantages of high specificity and low toxicity. In the development of peptide-based drugs, one of the most important steps is to determine the interaction details between the peptide and the target protein. In addition to experimental methods, recently developed computational methods provide a cost-effective way for studying protein-peptide interactions. In this article, we carefully reviewed recently developed protein-peptide docking methods, which were classified into three groups: template-based docking, template-free docking, and hybrid method. Then, we presented available benchmarking sets and evaluation metrics for assessing protein-peptide docking performance. Furthermore, we discussed the use of molecular dynamics simulations, as well as deep learning approaches in protein-peptide complex prediction.

About the authors

Chao Yang

Department of Chemistry, New York University

Author for correspondence.
Email: info@benthamscience.net

Xianjin Xu

Dalton Cardiovascular Research Center,, University of Missouri

Email: info@benthamscience.net

Changcheng Xiang

School of Computer Science and Technology, Aba Teachers University

Email: info@benthamscience.net

References

  1. Wells, J.A.; McClendon, C.L. Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature, 2007, 450(7172), 1001-1009. doi: 10.1038/nature06526 PMID: 18075579
  2. Stelzl, U.; Worm, U.; Lalowski, M.; Haenig, C.; Brembeck, F.H.; Goehler, H.; Stroedicke, M.; Zenkner, M.; Schoenherr, A.; Koeppen, S.; Timm, J.; Mintzlaff, S.; Abraham, C.; Bock, N.; Kietzmann, S.; Goedde, A.; Toksöz, E.; Droege, A.; Krobitsch, S.; Korn, B.; Birchmeier, W.; Lehrach, H.; Wanker, E.E. A human protein-protein interaction network: A resource for annotating the proteome. Cell, 2005, 122(6), 957-968. doi: 10.1016/j.cell.2005.08.029 PMID: 16169070
  3. Rual, J.F.; Venkatesan, K.; Hao, T.; Hirozane-Kishikawa, T.; Dricot, A.; Li, N.; Berriz, G.F.; Gibbons, F.D.; Dreze, M.; Ayivi-Guedehoussou, N.; Klitgord, N.; Simon, C.; Boxem, M.; Milstein, S.; Rosenberg, J.; Goldberg, D.S.; Zhang, L.V.; Wong, S.L.; Franklin, G.; Li, S.; Albala, J.S.; Lim, J.; Fraughton, C.; Llamosas, E.; Cevik, S.; Bex, C.; Lamesch, P.; Sikorski, R.S.; Vandenhaute, J.; Zoghbi, H.Y.; Smolyar, A.; Bosak, S.; Sequerra, R.; Doucette-Stamm, L.; Cusick, M.E.; Hill, D.E.; Roth, F.P.; Vidal, M. Towards a proteome-scale map of the human protein–protein interaction network. Nature, 2005, 437(7062), 1173-1178. doi: 10.1038/nature04209 PMID: 16189514
  4. Arkin, M.R.; Whitty, A. The road less traveled: Modulating signal transduction enzymes by inhibiting their protein–protein interactions. Curr. Opin. Chem. Biol., 2009, 13(3), 284-290. doi: 10.1016/j.cbpa.2009.05.125 PMID: 19553156
  5. Nero, T.L.; Morton, C.J.; Holien, J.K.; Wielens, J.; Parker, M.W. Oncogenic protein interfaces: Small molecules, big challenges. Nat. Rev. Cancer, 2014, 14(4), 248-262. doi: 10.1038/nrc3690 PMID: 24622521
  6. Ideker, T.; Sharan, R. Protein networks in disease. Genome Res., 2008, 18(4), 644-652. doi: 10.1101/gr.071852.107 PMID: 18381899
  7. Petsalaki, E.; Russell, R.B. Peptide-mediated interactions in biological systems: New discoveries and applications. Curr. Opin. Biotechnol., 2008, 19(4), 344-350. doi: 10.1016/j.copbio.2008.06.004 PMID: 18602004
  8. Hershberger, S.; Lee, S.G.; Chmielewski, J. Scaffolds for blocking protein-protein interactions. Curr. Top. Med. Chem., 2007, 7(10), 928-942. doi: 10.2174/156802607780906726 PMID: 17508924
  9. Zhou, P.; Wang, C.; Ren, Y.; Yang, C.; Tian, F. Computational peptidology: A new and promising approach to therapeutic peptide design. Curr. Med. Chem., 2013, 20(15), 1985-1996. doi: 10.2174/0929867311320150005 PMID: 23317161
  10. Eichler, J. Peptides as protein binding site mimetics. Curr. Opin. Chem. Biol., 2008, 12(6), 707-713. doi: 10.1016/j.cbpa.2008.09.023 PMID: 18935974
  11. London, N.; Raveh, B.; Movshovitz-Attias, D.; Schueler-Furman, O. Can self-inhibitory peptides be derived from the interfaces of globular protein-protein interactions? Proteins, 2010, 78(15), 3140-3149. doi: 10.1002/prot.22785 PMID: 20607702
  12. Bruzzoni-Giovanelli, H.; Alezra, V.; Wolff, N.; Dong, C.Z.; Tuffery, P.; Rebollo, A. Interfering peptides targeting protein–protein interactions: The next generation of drugs? Drug Discov. Today, 2018, 23(2), 272-285. doi: 10.1016/j.drudis.2017.10.016 PMID: 29097277
  13. Dagliyan, O.; Proctor, E.A.; D’Auria, K.M.; Ding, F.; Dokholyan, N.V. Structural and dynamic determinants of protein-peptide recognition. Structure, 2011, 19(12), 1837-1845. doi: 10.1016/j.str.2011.09.014 PMID: 22153506
  14. Wójcik, P.; Berlicki, Ł. Peptide-based inhibitors of protein–protein interactions. Bioorg. Med. Chem. Lett., 2016, 26(3), 707-713. doi: 10.1016/j.bmcl.2015.12.084 PMID: 26764190
  15. Nevola, L.; Giralt, E. Modulating protein–protein interactions: The potential of peptides. Chem. Commun., 2015, 51(16), 3302-3315. doi: 10.1039/C4CC08565E PMID: 25578807
  16. Cunningham, A.D.; Qvit, N.; Mochly-Rosen, D. Peptides and peptidomimetics as regulators of protein–protein interactions. Curr. Opin. Struct. Biol., 2017, 44, 59-66. doi: 10.1016/j.sbi.2016.12.009 PMID: 28063303
  17. Wang, X.; Ni, D.; Liu, Y.; Lu, S. Rational design of peptide-based inhibitors disrupting protein-protein interactions. Front Chem., 2021, 9, 682675. doi: 10.3389/fchem.2021.682675 PMID: 34017824
  18. Corbi-Verge, C.; Kim, P.M. Motif mediated protein-protein interactions as drug targets. Cell Commun. Signal., 2016, 14(1), 8. doi: 10.1186/s12964-016-0131-4 PMID: 26936767
  19. Sun, H.; Stuckey, J.A.; Nikolovska-Coleska, Z.; Qin, D.; Meagher, J.L.; Qiu, S.; Lu, J.; Yang, C.Y.; Saito, N.G.; Wang, S. Structure-based design, synthesis, evaluation, and crystallographic studies of conformationally constrained Smac mimetics as inhibitors of the X-linked inhibitor of apoptosis protein (XIAP). J. Med. Chem., 2008, 51(22), 7169-7180. doi: 10.1021/jm8006849 PMID: 18954041
  20. Stewart-Ornstein, J.; Iwamoto, Y.; Miller, M.A.; Prytyskach, M.A.; Ferretti, S.; Holzer, P.; Kallen, J.; Furet, P.; Jambhekar, A.; Forrester, W.C.; Weissleder, R.; Lahav, G. p53 dynamics vary between tissues and are linked with radiation sensitivity. Nat. Commun., 2021, 12(1), 898. doi: 10.1038/s41467-021-21145-z PMID: 33563973
  21. Furet, P.; Bordas, V.; Le Douget, M.; Salem, B.; Mesrouze, Y.; Imbach-Weese, P.; Sellner, H.; Voegtle, M.; Soldermann, N.; Chapeau, E.; Wartmann, M.; Scheufler, C.; Fernandez, C.; Kallen, J.; Guagnano, V.; Chène, P.; Schmelzle, T. The first class of small molecules potently disrupting the YAP-TEAD interaction by direct competition. ChemMedChem, 2022, 17(19), e202200303. doi: 10.1002/cmdc.202200303 PMID: 35950546
  22. Ciemny, M.; Kurcinski, M.; Kamel, K.; Kolinski, A.; Alam, N.; Schueler-Furman, O.; Kmiecik, S. Protein–peptide docking: Opportunities and challenges. Drug Discov. Today, 2018, 23(8), 1530-1537. doi: 10.1016/j.drudis.2018.05.006 PMID: 29733895
  23. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461. PMID: 19499576
  24. Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved protein-ligand docking using GOLD. Proteins, 2003, 52(4), 609-623. doi: 10.1002/prot.10465 PMID: 12910460
  25. Jain, A.N. Surflex-Dock 2.1: Robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J. Comput. Aided Mol. Des., 2007, 21(5), 281-306. doi: 10.1007/s10822-007-9114-2 PMID: 17387436
  26. Su, M.; Yang, Q.; Du, Y.; Feng, G.; Liu, Z.; Li, Y.; Wang, R. Comparative assessment of scoring functions: The CASF-2016 update. J. Chem. Inf. Model., 2019, 59(2), 895-913. doi: 10.1021/acs.jcim.8b00545 PMID: 30481020
  27. Hauser, A.S.; Windshügel, B. LEADS-PEP: A benchmark data set for assessment of peptide docking performance. J. Chem. Inf. Model., 2016, 56(1), 188-200. doi: 10.1021/acs.jcim.5b00234 PMID: 26651532
  28. Alam, N.; Goldstein, O.; Xia, B.; Porter, K.A.; Kozakov, D.; Schueler-Furman, O. High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock. PLOS Comput. Biol., 2017, 13(12), e1005905. doi: 10.1371/journal.pcbi.1005905 PMID: 29281622
  29. Xu, X.; Zou, X. Predicting protein–peptide complex structures by accounting for peptide flexibility and the physicochemical environment. J. Chem. Inf. Model., 2022, 62(1), 27-39. doi: 10.1021/acs.jcim.1c00836 PMID: 34931833
  30. Trellet, M.; Melquiond, A.S.J.; Bonvin, A.M.J.J. A unified conformational selection and induced fit approach to protein-peptide docking. PLoS One, 2013, 8(3), e58769. doi: 10.1371/journal.pone.0058769 PMID: 23516555
  31. Geng, C.; Narasimhan, S.; Rodrigues, J.P.; Bonvin, A.M. Information-driven, ensemble flexible peptide docking using HADDOCK. Methods. Mol. Biol., 2017, 109-138.
  32. Trellet, M.; Melquiond, A.S.; Bonvin, A.M. Information- driven modeling of protein-peptide complexes. In: Methods. Mol. Biol; , 2015; pp. 221-239.
  33. de Vries, S.J.; Rey, J.; Schindler, C.E.M.; Zacharias, M.; Tuffery, P. The pepATTRACT web server for blind, large-scale peptide–protein docking. Nucleic Acids Res., 2017, 45(W1), W361-W364. doi: 10.1093/nar/gkx335 PMID: 28460116
  34. Khramushin, A.; Ben-Aharon, Z.; Tsaban, T.; Varga, J.K.; Avraham, O.; Schueler-Furman, O. Matching protein surface structural patches for high-resolution blind peptide docking. Proc. Natl. Acad. Sci., 2022, 119(18), e2121153119. doi: 10.1073/pnas.2121153119 PMID: 35482919
  35. Chen, J.N.; Jiang, F.; Wu, Y.D. Accurate prediction for protein–peptide binding based on high-temperature molecular dynamics simulations. J. Chem. Theory Comput., 2022, 18(10), 6386-6395. doi: 10.1021/acs.jctc.2c00743 PMID: 36149394
  36. Tsaban, T.; Varga, J.K.; Avraham, O.; Ben-Aharon, Z.; Khramushin, A.; Schueler-Furman, O. Harnessing protein folding neural networks for peptide–protein docking. Nat. Commun., 2022, 13(1), 176. doi: 10.1038/s41467-021-27838-9 PMID: 35013344
  37. Evans, R.; O’Neill, M.; Pritzel, A.; Antropova, N.; Senior, A.; Green, T.; Žídek, A.; Bates, R.; Blackwell, S.; Yim, J. Protein complex prediction with AlphaFold-Multimer. BioRxiv, 2021, 2021.2010.
  38. Shanker, S.; Sanner, M.F. Predicting protein–peptide interactions: Benchmarking deep learning techniques and a comparison with focused docking. J. Chem. Inf. Model., 2023, 63(10), 3158-3170. doi: 10.1021/acs.jcim.3c00602 PMID: 37167566
  39. Santos, K.B.; Guedes, I.A.; Karl, A.L.M.; Dardenne, L.E. Highly flexible ligand docking: Benchmarking of the DockThor program on the LEADS-PEP protein–peptide data set. J. Chem. Inf. Model., 2020, 60(2), 667-683. doi: 10.1021/acs.jcim.9b00905 PMID: 31922754
  40. Vanhee, P.; van der Sloot, A.M.; Verschueren, E.; Serrano, L.; Rousseau, F.; Schymkowitz, J. Computational design of peptide ligands. Trends Biotechnol., 2011, 29(5), 231-239. doi: 10.1016/j.tibtech.2011.01.004 PMID: 21316780
  41. Stein, A.; Pache, R.A.; Bernadó, P.; Pons, M.; Aloy, P. Dynamic interactions of proteins in complex networks: A more structured view. FEBS J., 2009, 276(19), 5390-5405. doi: 10.1111/j.1742-4658.2009.07251.x PMID: 19712106
  42. Lee, H.; Heo, L.; Lee, M.S.; Seok, C. GalaxyPepDock: A protein–peptide docking tool based on interaction similarity and energy optimization. Nucleic Acids Res., 2015, 43(W1), W431-W435. doi: 10.1093/nar/gkv495 PMID: 25969449
  43. Johansson-Åkhe, I.; Mirabello, C.; Wallner, B. InterPep2: Global peptide–protein docking using interaction surface templates. Bioinformatics, 2020, 36(8), 2458-2465. doi: 10.1093/bioinformatics/btaa005 PMID: 31917413
  44. London, N.; Raveh, B.; Cohen, E.; Fathi, G.; Schueler-Furman, O. Rosetta flexpepdock web server-high resolution modeling of peptide–protein interactions. Nucleic Acids Res., 2011, 39(Web Server issue)(2), W249-W253. doi: 10.1093/nar/gkr431 PMID: 21622962
  45. Raveh, B.; London, N.; Zimmerman, L.; Schueler-Furman, O. Rosetta FlexPepDock ab-initio: Simultaneous folding, docking and refinement of peptides onto their receptors. PLoS One, 2011, 6(4), e18934. doi: 10.1371/journal.pone.0018934 PMID: 21572516
  46. Donsky, E.; Wolfson, H.J. PepCrawler: A fast RRT-based algorithm for high-resolution refinement and binding affinity estimation of peptide inhibitors. Bioinformatics, 2011, 27(20), 2836-2842. doi: 10.1093/bioinformatics/btr498 PMID: 21880702
  47. Zhang, Y.; Sanner, M.F. AutoDock CrankPep: Combining folding and docking to predict protein–peptide complexes. Bioinformatics, 2019, 35(24), 5121-5127. doi: 10.1093/bioinformatics/btz459 PMID: 31161213
  48. Yan, C.; Xu, X.; Zou, X. Fully blind docking at the atomic level for protein-peptide complex structure prediction. Structure, 2016, 24(10), 1842-1853. doi: 10.1016/j.str.2016.07.021 PMID: 27642160
  49. Xu, X.; Yan, C.; Zou, X. MDockPeP: An ab-initio protein–peptide docking server. J. Comput. Chem., 2018, 39(28), 2409-2413. doi: 10.1002/jcc.25555 PMID: 30368849
  50. Zhou, P.; Li, B.; Yan, Y.; Jin, B.; Wang, L.; Huang, S.Y. Hierarchical flexible peptide docking by conformer generation and ensemble docking of peptides. J. Chem. Inf. Model., 2018, 58(6), 1292-1302. doi: 10.1021/acs.jcim.8b00142 PMID: 29738247
  51. Zhou, P.; Jin, B.; Li, H.; Huang, S.Y. HPEPDOCK: A web server for blind peptide–protein docking based on a hierarchical algorithm. Nucleic Acids Res., 2018, 46(W1), W443-W450. doi: 10.1093/nar/gky357 PMID: 29746661
  52. Yan, Y.; Zhang, D.; Huang, S.Y. Efficient conformational ensemble generation of protein-bound peptides. J. Cheminform., 2017, 9(1), 59. doi: 10.1186/s13321-017-0246-7 PMID: 29168051
  53. Kurcinski, M.; Jamroz, M.; Blaszczyk, M.; Kolinski, A.; Kmiecik, S. CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Res., 2015, 43(W1), W419-W424. doi: 10.1093/nar/gkv456 PMID: 25943545
  54. Blaszczyk, M.; Kurcinski, M.; Kouza, M.; Wieteska, L.; Debinski, A.; Kolinski, A.; Kmiecik, S. Modeling of protein–peptide interactions using the CABS-dock web server for binding site search and flexible docking. Methods, 2016, 93, 72-83. doi: 10.1016/j.ymeth.2015.07.004 PMID: 26165956
  55. Das, A.A.; Sharma, O.P.; Kumar, M.S.; Krishna, R.; Mathur, P.P. PepBind: A comprehensive database and computational tool for analysis of protein-peptide interactions. Genomics Proteomics Bioinformatics, 2013, 11(4), 241-246. doi: 10.1016/j.gpb.2013.03.002 PMID: 23896518
  56. Zhang, Y.; Skolnick, J. Scoring function for automated assessment of protein structure template quality. Proteins, 2004, 57(4), 702-710. doi: 10.1002/prot.20264 PMID: 15476259
  57. Trabuco, L.G.; Lise, S.; Petsalaki, E.; Russell, R.B. PepSite: Prediction of peptide-binding sites from protein surfaces. Nucleic Acids Res., 2012, 40(W1), W423-W427. doi: 10.1093/nar/gks398 PMID: 22600738
  58. Yan, C.; Zou, X. Predicting peptide binding sites on protein surfaces by clustering chemical interactions. J. Comput. Chem., 2015, 36(1), 49-61. doi: 10.1002/jcc.23771 PMID: 25363279
  59. Gainza, P.; Sverrisson, F.; Monti, F.; Rodolà, E.; Boscaini, D.; Bronstein, M.M.; Correia, B.E. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat. Methods, 2020, 17(2), 184-192. doi: 10.1038/s41592-019-0666-6 PMID: 31819266
  60. Rooklin, D.; Wang, C.; Katigbak, J.; Arora, P.S.; Zhang, Y. AlphaSpace: Fragment-centric topographical mapping to target protein–protein interaction interfaces. J. Chem. Inf. Model., 2015, 55(8), 1585-1599. doi: 10.1021/acs.jcim.5b00103 PMID: 26225450
  61. Gront, D.; Kulp, D.W.; Vernon, R.M.; Strauss, C.E.M.; Baker, D. Generalized fragment picking in Rosetta: Design, protocols and applications. PLoS One, 2011, 6(8), e23294. doi: 10.1371/journal.pone.0023294 PMID: 21887241
  62. Andrusier, N.; Nussinov, R.; Wolfson, H.J. FireDock: Fast interaction refinement in molecular docking. Proteins, 2007, 69(1), 139-159. doi: 10.1002/prot.21495 PMID: 17598144
  63. Pierce, B.G.; Wiehe, K.; Hwang, H.; Kim, B.H.; Vreven, T.; Weng, Z. ZDOCK server: Interactive docking prediction of protein–protein complexes and symmetric multimers. Bioinformatics, 2014, 30(12), 1771-1773. doi: 10.1093/bioinformatics/btu097 PMID: 24532726
  64. Garzon, J.I.; Lopéz-Blanco, J.R.; Pons, C.; Kovacs, J.; Abagyan, R.; Fernandez-Recio, J.; Chacon, P. FRODOCK: A new approach for fast rotational protein–protein docking. Bioinformatics, 2009, 25(19), 2544-2551. doi: 10.1093/bioinformatics/btp447 PMID: 19620099
  65. Weng, G.; Wang, E.; Wang, Z.; Liu, H.; Zhu, F.; Li, D.; Hou, T. HawkDock: A web server to predict and analyze the protein–protein complex based on computational docking and MM/GBSA. Nucleic Acids Res., 2019, 47(W1), W322-W330. doi: 10.1093/nar/gkz397 PMID: 31106357
  66. Weng, G.; Gao, J.; Wang, Z.; Wang, E.; Hu, X.; Yao, X.; Cao, D.; Hou, T. Comprehensive evaluation of fourteen docking programs on protein–peptide complexes. J. Chem. Theory Comput., 2020, 16(6), 3959-3969. doi: 10.1021/acs.jctc.9b01208 PMID: 32324992
  67. McGuffin, L.J.; Bryson, K.; Jones, D.T. The PSIPRED protein structure prediction server. Bioinformatics, 2000, 16(4), 404-405. doi: 10.1093/bioinformatics/16.4.404 PMID: 10869041
  68. Kozakov, D.; Brenke, R.; Comeau, S.R.; Vajda, S. PIPER: An FFT-based protein docking program with pairwise potentials. Proteins, 2006, 65(2), 392-406. doi: 10.1002/prot.21117 PMID: 16933295
  69. Schindler, C.E.M.; de Vries, S.J.; Zacharias, M. iATTRACT: Simultaneous global and local interface optimization for protein-protein docking refinement. Proteins, 2015, 83(2), 248-258. doi: 10.1002/prot.24728 PMID: 25402278
  70. Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem., 2005, 26(16), 1668-1688. doi: 10.1002/jcc.20290 PMID: 16200636
  71. Webb, B.; Sali, A. Comparative protein structure modeling using modeller. Curr. Protoc. Bioinformatics., 2016, 54(1), 5.6. 1-5.6.
  72. Huang, S.Y.; Zou, X. An iterative knowledge-based scoring function for protein-protein recognition. Proteins, 2008, 72(2), 557-579. doi: 10.1002/prot.21949 PMID: 18247354
  73. Chaudhury, S.; Lyskov, S.; Gray, J.J. PyRosetta: A script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics, 2010, 26(5), 689-691. doi: 10.1093/bioinformatics/btq007 PMID: 20061306
  74. Zhou, J.; Grigoryan, G. Rapid search for tertiary fragments reveals protein sequence-structure relationships. Protein Sci., 2015, 24(4), 508-524. doi: 10.1002/pro.2610 PMID: 25420575
  75. Kuhlman, B.; Dantas, G.; Ireton, G.C.; Varani, G.; Stoddard, B.L.; Baker, D. Design of a novel globular protein fold with atomic-level accuracy. Science, 2003, 302(5649), 1364-1368. doi: 10.1126/science.1089427 PMID: 14631033
  76. London, N.; Movshovitz-Attias, D.; Schueler-Furman, O. The structural basis of peptide-protein binding strategies. Structure, 2010, 18(2), 188-199. doi: 10.1016/j.str.2009.11.012 PMID: 20159464
  77. Xu, X.; Zou, X. PepPro: A nonredundant structure data set for benchmarking peptide–protein computational docking. J. Comput. Chem., 2020, 41(4), 362-369. doi: 10.1002/jcc.26114 PMID: 31793016
  78. Wen, Z.; He, J.; Tao, H.; Huang, S.Y. PepBDB: A comprehensive structural database of biological peptide–protein interactions. Bioinformatics, 2019, 35(1), 175-177. doi: 10.1093/bioinformatics/bty579 PMID: 29982280
  79. Martins, P.M.; Santos, L.H.; Mariano, D.; Queiroz, F.C.; Bastos, L.L.; Gomes, I.S.; Fischer, P.H.C.; Rocha, R.E.O.; Silveira, S.A.; de Lima, L.H.F.; de Magalhães, M.T.Q.; Oliveira, M.G.A.; de Melo-Minardi, R.C. Propedia: A database for protein–peptide identification based on a hybrid clustering algorithm. BMC Bioinformatics, 2021, 22(1), 1-20. doi: 10.1186/s12859-020-03881-z PMID: 33388027
  80. Orengo, C.A.; Michie, A.D.; Jones, S.; Jones, D.T.; Swindells, M.B.; Thornton, J.M. CATH: A hierarchic classification of protein domain structures. Structure, 1997, 5(8), 1093-1109. doi: 10.1016/S0969-2126(97)00260-8 PMID: 9309224
  81. Liu, Z.; Su, M.; Han, L.; Liu, J.; Yang, Q.; Li, Y.; Wang, R. Forging the basis for developing protein–ligand interaction scoring functions. Acc. Chem. Res., 2017, 50(2), 302-309. doi: 10.1021/acs.accounts.6b00491 PMID: 28182403
  82. Burley, S.K.; Berman, H.M.; Kleywegt, G.J.; Markley, J.L.; Nakamura, H.; Velankar, S. Protein Data Bank (PDB): The single global macromolecular structure archive. Prot. Crystall. Meth. Prot., 2017, 627-641.
  83. Lei, Y.; Li, S.; Liu, Z.; Wan, F.; Tian, T.; Li, S.; Zhao, D.; Zeng, J. A deep-learning framework for multi-level peptide–protein interaction prediction. Nat. Commun., 2021, 12(1), 5465. doi: 10.1038/s41467-021-25772-4 PMID: 34526500
  84. Fukunaga, I.; Sawada, R.; Shibata, T.; Kaitoh, K.; Sakai, Y.; Yamanishi, Y. Prediction of the health effects of food peptides and elucidation of the mode-of-action using multi-task graph convolutional neural network. Mol. Inform., 2020, 39(1-2), 1900134. doi: 10.1002/minf.201900134 PMID: 31778042
  85. Cock, P.J.A.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; de Hoon, M.J.L. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics, 2009, 25(11), 1422-1423. doi: 10.1093/bioinformatics/btp163 PMID: 19304878
  86. Méndez, R.; Leplae, R.; De Maria, L.; Wodak, S.J. Assessment of blind predictions of protein-protein interactions: Current status of docking methods. Proteins, 2003, 52(1), 51-67. doi: 10.1002/prot.10393 PMID: 12784368
  87. Basu, S.; Wallner, B.; Dock, Q. A quality measure for protein-protein docking models. PLoS One, 2016, 11(8), e0161879. doi: 10.1371/journal.pone.0161879 PMID: 27560519
  88. Lensink, M.F.; Nadzirin, N.; Velankar, S.; Wodak, S.J. Modeling protein-protein, protein-peptide, and protein-oligosaccharide complexes: CAPRI 7th edition. Proteins: Struct. Funct. Bioinform., 2020, 88(8), 916-938.
  89. Lensink, M.F.; Wodak, S.J. Docking, scoring, and affinity prediction in CAPRI. Proteins, 2013, 81(12), 2082-2095. doi: 10.1002/prot.24428 PMID: 24115211
  90. Janin, J.; Henrick, K.; Moult, J.; Eyck, L.T.; Sternberg, M.J.E.; Vajda, S.; Vakser, I.; Wodak, S.J. CAPRI: A critical assessment of predicted interactions. Proteins, 2003, 52(1), 2-9. doi: 10.1002/prot.10381 PMID: 12784359
  91. Janin, J. Assessing predictions of protein-protein interaction: The CAPRI experiment. Protein Sci., 2005, 14(2), 278-283. doi: 10.1110/ps.041081905 PMID: 15659362
  92. Piana, S.; Klepeis, J.L.; Shaw, D.E. Assessing the accuracy of physical models used in protein-folding simulations: Quantitative evidence from long molecular dynamics simulations. Curr. Opin. Struct. Biol., 2014, 24, 98-105. doi: 10.1016/j.sbi.2013.12.006 PMID: 24463371
  93. Li, W.; Wang, W.; Takada, S. Energy landscape views for interplays among folding, binding, and allostery of calmodulin domains. Proc. Natl. Acad. Sci., 2014, 111(29), 10550-10555. doi: 10.1073/pnas.1402768111 PMID: 25002491
  94. Chen, H.F.; Luo, R. Binding induced folding in p53-MDM2 complex. J. Am. Chem. Soc., 2007, 129(10), 2930-2937. doi: 10.1021/ja0678774 PMID: 17302414
  95. Yang, C.; Zhang, S.; Bai, Z.; Hou, S.; Wu, D.; Huang, J.; Zhou, P. A two-step binding mechanism for the self-binding peptide recognition of target domains. Mol. Biosyst., 2016, 12(4), 1201-1213. doi: 10.1039/C5MB00800J PMID: 26854254
  96. Ahmad, M.; Gu, W.; Helms, V. Mechanism of fast peptide recognition by SH3 domains. Angew. Chem. Int. Ed., 2008, 47(40), 7626-7630. doi: 10.1002/anie.200801856 PMID: 18752238
  97. Zou, R.; Zhou, Y.; Wang, Y.; Kuang, G.; Ågren, H.; Wu, J.; Tu, Y. Free energy profile and kinetics of coupled folding and binding of the intrinsically disordered protein p53 with MDM2. J. Chem. Inf. Model., 2020, 60(3), 1551-1558. doi: 10.1021/acs.jcim.9b00920 PMID: 32053358
  98. Kmiecik, S.; Gront, D.; Kolinski, M.; Wieteska, L.; Dawid, A.E.; Kolinski, A. Coarse-grained protein models and their applications. Chem. Rev., 2016, 116(14), 7898-7936. doi: 10.1021/acs.chemrev.6b00163 PMID: 27333362
  99. Stone, J.E.; Phillips, J.C.; Freddolino, P.L.; Hardy, D.J.; Trabuco, L.G.; Schulten, K. Accelerating molecular modeling applications with graphics processors. J. Comput. Chem., 2007, 28(16), 2618-2640. doi: 10.1002/jcc.20829 PMID: 17894371
  100. Anderson, J.A.; Lorenz, C.D.; Travesset, A. General purpose molecular dynamics simulations fully implemented on graphics processing units. J. Comput. Phys., 2008, 227(10), 5342-5359. doi: 10.1016/j.jcp.2008.01.047
  101. Jones, D.; Allen, J.E.; Yang, Y.; Drew Bennett, W.F.; Gokhale, M.; Moshiri, N.; Rosing, T.S. Accelerators for classical molecular dynamics simulations of biomolecules. J. Chem. Theory Comput., 2022, 18(7), 4047-4069. doi: 10.1021/acs.jctc.1c01214 PMID: 35710099
  102. Kutzner, C.; Páll, S.; Fechner, M.; Esztermann, A.; de Groot, B.L.; Grubmüller, H. Best bang for your buck: GPU nodes for gromacs biomolecular simulations. Wiley Online Library, 2015.
  103. Kohnke, B.; Kutzner, C.; Grubmüller, H. A GPU-accelerated fast multipole method for GROMACS: Performance and accuracy. J. Chem. Theory Comput., 2020, 16(11), 6938-6949. doi: 10.1021/acs.jctc.0c00744 PMID: 33084336
  104. Kutzner, C.; Kniep, C.; Cherian, A.; Nordstrom, L.; Grubmüller, H.; de Groot, B.L.; Gapsys, V. GROMACS in the cloud: A global supercomputer to speed up alchemical drug design. J. Chem. Inf. Model., 2022, 62(7), 1691-1711. doi: 10.1021/acs.jcim.2c00044 PMID: 35353508
  105. Salomon-Ferrer, R.; Case, D.A.; Walker, R.C. An overview of the Amber biomolecular simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2013, 3(2), 198-210. doi: 10.1002/wcms.1121
  106. Salomon-Ferrer, R.; Götz, A.W.; Poole, D.; Le Grand, S.; Walker, R.C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J. Chem. Theory Comput., 2013, 9(9), 3878-3888. doi: 10.1021/ct400314y PMID: 26592383
  107. Götz, A.W.; Williamson, M.J.; Xu, D.; Poole, D.; Le Grand, S.; Walker, R.C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. J. Chem. Theory Comput., 2012, 8(5), 1542-1555. doi: 10.1021/ct200909j PMID: 22582031
  108. Phillips, J.C.; Hardy, D.J.; Maia, J.D.C.; Stone, J.E.; Ribeiro, J.V.; Bernardi, R.C.; Buch, R.; Fiorin, G.; Hénin, J.; Jiang, W.; McGreevy, R.; Melo, M.C.R.; Radak, B.K.; Skeel, R.D.; Singharoy, A.; Wang, Y.; Roux, B.; Aksimentiev, A.; Luthey-Schulten, Z.; Kalé, L.V.; Schulten, K.; Chipot, C.; Tajkhorshid, E. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys., 2020, 153(4), 044130. doi: 10.1063/5.0014475 PMID: 32752662
  109. Eastman, P.; Pande, V.; Open, M.M. A hardware-independent framework for molecular simulations. Comput. Sci. Eng., 2010, 12(4), 34-39. doi: 10.1109/MCSE.2010.27 PMID: 26146490
  110. Eastman, P.; Swails, J.; Chodera, J.D.; McGibbon, R.T.; Zhao, Y.; Beauchamp, K.A.; Wang, L.P.; Simmonett, A.C.; Harrigan, M.P.; Stern, C.D.; Wiewiora, R.P.; Brooks, B.R.; Pande, V.S. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLOS Comput. Biol., 2017, 13(7), e1005659. doi: 10.1371/journal.pcbi.1005659 PMID: 28746339
  111. Bernardi, R.C.; Melo, M.C.R.; Schulten, K. Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochim. Biophys. Acta, Gen. Subj., 2015, 1850(5), 872-877. doi: 10.1016/j.bbagen.2014.10.019 PMID: 25450171
  112. Laio, A.; Parrinello, M. Escaping free-energy minima. Proc. Natl. Acad. Sci., 2002, 99(20), 12562-12566. doi: 10.1073/pnas.202427399 PMID: 12271136
  113. Barducci, A.; Bonomi, M.; Parrinello, M. Metadynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1(5), 826-843. doi: 10.1002/wcms.31
  114. Clayton, J.; Baweja, L.; Wereszczynski, J. In Computational Peptide Science: Methods and protocols; Springer, 2022, pp. 151-167. doi: 10.1007/978-1-0716-1855-4_8
  115. Buchete, N.V.; Hummer, G. Peptide folding kinetics from replica exchange molecular dynamics. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2008, 77(3), 030902. doi: 10.1103/PhysRevE.77.030902 PMID: 18517321
  116. Sugita, Y.; Okamoto, Y. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett., 1999, 314(1-2), 141-151. doi: 10.1016/S0009-2614(99)01123-9
  117. Torrie, G.M.; Valleau, J.P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J. Comput. Phys., 1977, 23(2), 187-199. doi: 10.1016/0021-9991(77)90121-8
  118. Maragliano, L.; Vanden-Eijnden, E. A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations. Chem. Phys. Lett., 2006, 426(1-3), 168-175. doi: 10.1016/j.cplett.2006.05.062
  119. Miao, Y.; Feher, V.A.; McCammon, J.A. Gaussian accelerated molecular dynamics: Unconstrained enhanced sampling and free energy calculation. J. Chem. Theory Comput., 2015, 11(8), 3584-3595. doi: 10.1021/acs.jctc.5b00436 PMID: 26300708
  120. Miao, Y. McCammon, J.A. Annual reports in computational chemistry; Elsevier, 2017, 13, pp. 231-278.
  121. Wang, J.; Miao, Y. Peptide gaussian accelerated molecular dynamics (Pep-GaMD): Enhanced sampling and free energy and kinetics calculations of peptide binding. J. Chem. Phys., 2020, 153(15), 154109. doi: 10.1063/5.0021399 PMID: 33092378
  122. Kang, W.; Jiang, F.; Wu, Y.D. Universal implementation of a residue-specific force field based on CMAP potentials and free energy decomposition. J. Chem. Theory Comput., 2018, 14(8), 4474-4486. doi: 10.1021/acs.jctc.8b00285 PMID: 29906395
  123. Tang, C.; Iwahara, J.; Clore, G.M. Visualization of transient encounter complexes in protein–protein association. Nature, 2006, 444(7117), 383-386. doi: 10.1038/nature05201 PMID: 17051159
  124. Rajamani, D.; Thiel, S.; Vajda, S.; Camacho, C.J. Anchor residues in protein–protein interactions. Proc. Natl. Acad. Sci., 2004, 101(31), 11287-11292. doi: 10.1073/pnas.0401942101 PMID: 15269345
  125. Kim, Y.C.; Tang, C.; Clore, G.M.; Hummer, G. Replica exchange simulations of transient encounter complexes in protein–protein association. Proc. Natl. Acad. Sci., 2008, 105(35), 12855-12860. doi: 10.1073/pnas.0802460105 PMID: 18728193
  126. Pan, A.C.; Jacobson, D.; Yatsenko, K.; Sritharan, D.; Weinreich, T.M.; Shaw, D.E. Atomic-level characterization of protein–protein association. Proc. Natl. Acad. Sci., 2019, 116(10), 4244-4249. doi: 10.1073/pnas.1815431116 PMID: 30760596
  127. Beuming, T.; Farid, R.; Sherman, W. High-energy water sites determine peptide binding affinity and specificity of PDZ domains. Protein Sci., 2009, 18(8), 1609-1619. doi: 10.1002/pro.177 PMID: 19569188
  128. Ylilauri, M.; Pentikäinen, O.T. MMGBSA as a tool to understand the binding affinities of filamin-peptide interactions. J. Chem. Inf. Model., 2013, 53(10), 2626-2633. doi: 10.1021/ci4002475 PMID: 23988151
  129. Kötter, A.; Mootz, H.D.; Heuer, A. Standard binding free energy of a SIM–SUMO complex. J. Chem. Theory Comput., 2019, 15(11), 6403-6410. doi: 10.1021/acs.jctc.9b00428 PMID: 31525924
  130. ElSawy, K.M.; Lane, D.P.; Verma, C.S.; Caves, L.S.D. Recognition dynamics of p53 and MDM2: Implications for peptide design. J. Phys. Chem. B, 2016, 120(2), 320-328. doi: 10.1021/acs.jpcb.5b11162 PMID: 26701330
  131. Ayaz, P.; Lyczek, A.; Paung, Y.; Mingione, V.R.; Iacob, R.E.; de Waal, P.W.; Engen, J.R.; Seeliger, M.A.; Shan, Y.; Shaw, D.E. Structural mechanism of a drug-binding process involving a large conformational change of the protein target. Nat. Commun., 2023, 14(1), 1885. doi: 10.1038/s41467-023-36956-5 PMID: 37019905
  132. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873), 583-589. doi: 10.1038/s41586-021-03819-2 PMID: 34265844
  133. Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; Millán, C.; Park, H.; Adams, C.; Glassman, C.R.; DeGiovanni, A.; Pereira, J.H.; Rodrigues, A.V.; van Dijk, A.A.; Ebrecht, A.C.; Opperman, D.J.; Sagmeister, T.; Buhlheller, C.; Pavkov-Keller, T.; Rathinaswamy, M.K.; Dalwadi, U.; Yip, C.K.; Burke, J.E.; Garcia, K.C.; Grishin, N.V.; Adams, P.D.; Read, R.J.; Baker, D. Accurate prediction of protein structures and interactions using a three-track neural network. Science, 2021, 373(6557), 871-876. doi: 10.1126/science.abj8754 PMID: 34282049
  134. Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; dos Santos Costa, A.; Fazel-Zarandi, M.; Sercu, T.; Candido, S. Language models of protein sequences at the scale of evolution enable accurate structure prediction. BioRxiv, 2022.
  135. Baek, M.; Baker, D. Deep learning and protein structure modeling. Nat. Methods, 2022, 19(1), 13-14. doi: 10.1038/s41592-021-01360-8 PMID: 35017724
  136. Zhou, X.; Zheng, W.; Li, Y.; Pearce, R.; Zhang, C.; Bell, E.W.; Zhang, G.; Zhang, Y. I-TASSER-MTD: A deep- learning-based platform for multi-domain protein structure and function prediction. Nat. Protoc., 2022, 17(10), 2326-2353. doi: 10.1038/s41596-022-00728-0 PMID: 35931779
  137. Wang, J.; Lisanza, S.; Juergens, D.; Tischer, D.; Watson, J.L.; Castro, K.M.; Ragotte, R.; Saragovi, A.; Milles, L.F.; Baek, M.; Anishchenko, I.; Yang, W.; Hicks, D.R.; Expòsit, M.; Schlichthaerle, T.; Chun, J.H.; Dauparas, J.; Bennett, N.; Wicky, B.I.M.; Muenks, A.; DiMaio, F.; Correia, B.; Ovchinnikov, S.; Baker, D. Scaffolding protein functional sites using deep learning. Science, 2022, 377(6604), 387-394. doi: 10.1126/science.abn2100 PMID: 35862514
  138. Zeng, X.; Zhu, S.; Lu, W.; Liu, Z.; Huang, J.; Zhou, Y.; Fang, J.; Huang, Y.; Guo, H.; Li, L.; Trapp, B.D.; Nussinov, R.; Eng, C.; Loscalzo, J.; Cheng, F. Target identification among known drugs by deep learning from heterogeneous networks. Chem. Sci., 2020, 11(7), 1775-1797. doi: 10.1039/C9SC04336E PMID: 34123272
  139. Sapoval, N.; Aghazadeh, A.; Nute, M.G.; Antunes, D.A.; Balaji, A.; Baraniuk, R.; Barberan, C.J.; Dannenfelser, R.; Dun, C.; Edrisi, M.; Elworth, R.A.L.; Kille, B.; Kyrillidis, A.; Nakhleh, L.; Wolfe, C.R.; Yan, Z.; Yao, V.; Treangen, T.J. Current progress and open challenges for applying deep learning across the biosciences. Nat. Commun., 2022, 13(1), 1728. doi: 10.1038/s41467-022-29268-7 PMID: 35365602
  140. Unsal, S.; Atas, H.; Albayrak, M.; Turhan, K.; Acar, A.C.; Doğan, T. Learning functional properties of proteins with language models. Nat. Mach. Intell., 2022, 4(3), 227-245. doi: 10.1038/s42256-022-00457-9
  141. Brandes, N.; Ofer, D.; Peleg, Y.; Rappoport, N.; Linial, M. ProteinBERT: A universal deep-learning model of protein sequence and function. Bioinformatics, 2022, 38(8), 2102-2110. doi: 10.1093/bioinformatics/btac020 PMID: 35020807
  142. Kryshtafovych, A.; Schwede, T.; Topf, M.; Fidelis, K.; Moult, J. Critical assessment of methods of protein structure prediction (CASP)-Round XIV. Proteins, 2021, 89(12), 1607-1617. doi: 10.1002/prot.26237 PMID: 34533838
  143. Bennett, N.R.; Coventry, B.; Goreshnik, I.; Huang, B.; Allen, A.; Vafeados, D.; Peng, Y.P.; Dauparas, J.; Baek, M.; Stewart, L.; DiMaio, F.; De Munck, S.; Savvides, S.N.; Baker, D. Improving de novo protein binder design with deep learning. Nat. Commun., 2023, 14(1), 2625. doi: 10.1038/s41467-023-38328-5 PMID: 37149653
  144. Torres, S.V.; Leung, P.J.; Lutz, I.D.; Venkatesh, P.; Watson, J.L.; Hink, F.; Huynh, H-H.; Yeh, A.H-W.; Juergens, D.; Bennett, N.R. De novo design of high-affinity protein binders to bioactive helical peptides. Biorxiv, 2022, 519862.
  145. Johansson-Åkhe, I.; Wallner, B. Improving peptide-protein docking with AlphaFold-Multimer using forced sampling. Front. Bioinform., 2022, 2, 959160. doi: 10.3389/fbinf.2022.959160 PMID: 36304330
  146. Gainza, P.; Wehrle, S.; Van Hall-Beauvais, A.; Marchand, A.; Scheck, A.; Harteveld, Z.; Buckley, S.; Ni, D.; Tan, S.; Sverrisson, F.; Goverde, C.; Turelli, P.; Raclot, C.; Teslenko, A.; Pacesa, M.; Rosset, S.; Georgeon, S.; Marsden, J.; Petruzzella, A.; Liu, K.; Xu, Z.; Chai, Y.; Han, P.; Gao, G.F.; Oricchio, E.; Fierz, B.; Trono, D.; Stahlberg, H.; Bronstein, M.; Correia, B.E. De novo design of protein interactions with learned surface fingerprints. Nature, 2023, 617(7959), 176-184. doi: 10.1038/s41586-023-05993-x PMID: 37100904
  147. Jiang, Y.; Wang, R.; Feng, J.; Jin, J.; Liang, S.; Li, Z.; Yu, Y.; Ma, A.; Su, R.; Zou, Q.; Ma, Q.; Wei, L. Explainable deep hypergraph learning modeling the peptide secondary structure prediction. Adv. Sci., 2023, 10(11), 2206151. doi: 10.1002/advs.202206151 PMID: 36794291
  148. Cao, X.; He, W.; Chen, Z.; Li, Y.; Wang, K.; Zhang, H.; Wei, L.; Cui, L.; Su, R.; Wei, L. PSSP-MVIRT: Peptide secondary structure prediction based on a multi-view deep learning architecture. Brief. Bioinform., 2021, 22(6), bbab203. doi: 10.1093/bib/bbab203 PMID: 34117740
  149. Yu, H.; Zhou, P.; Deng, M.; Shang, Z. Indirect readout in protein-peptide recognition: A different story from classical biomolecular recognition. J. Chem. Inf. Model., 2014, 54(7), 2022-2032. doi: 10.1021/ci5000246 PMID: 24999015

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers