Current Development of Data Resources and Bioinformatics Tools for Anticoronavirus Peptide


Cite item

Full Text

Abstract

Background:Since December 2019, the emergence of severe acute respiratory syndrome coronavirus 2, which gave rise to coronavirus disease 2019 (COVID-19), has considerably impacted global health. The identification of effective anticoronavirus peptides (ACVPs) and the establishment of robust data storage methods are critical in the fight against COVID-19. Traditional wet-lab peptide discovery approaches are timeconsuming and labor-intensive. With advancements in computer technology and bioinformatics, machine learning has gained prominence in the extraction of functional peptides from extensive datasets.

Methods:In this study, we comprehensively review data resources and predictors related to ACVPs published over the past two decades. In addition, we analyze the influence of various factors on model performance.

Results:We have reviewed nine ACVP-containing databases, which integrate detailed information on protein fragments effective against coronaviruses, providing crucial references for the development of antiviral drugs and vaccines. Additionally, we have assessed 15 peptide predictors for antiviral or specifically anticoronavirus activity. These predictors employ computational models to swiftly screen potential antiviral candidates, offering an efficient pathway for drug development.

Conclusion:Our study provides conclusive results and insights into the performance of different computational methods, and sheds light on the future trajectory of bioinformatics tools for ACVPs. This work offers a representative overview of contributions to the field, with an emphasis on the crucial role of ACVPs in combating COVID-19.

About the authors

Bowen Li

Medical College, Guizhou University

Email: info@benthamscience.net

Min Li

Medical College, Guizhou University

Email: info@benthamscience.net

Chunying Lu

Medical College, Guizhou University

Email: info@benthamscience.net

Yifei Wu

Medical College, Guizhou University

Email: info@benthamscience.net

Heng Chen

Medical College, Guizhou University

Author for correspondence.
Email: info@benthamscience.net

Bifang He

Medical College, Guizhou University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Chakkour, M.; Salami, A.; Olleik, D.; Kamal, I.; Noureddine, F.Y.; Roz, A.E.; Ghssein, G. Risk markers of COVID-19, a study from South-Lebanon. COVID, 2022, 2(7), 867-876. doi: 10.3390/covid2070063
  2. Liu, Y.C.; Kuo, R.L.; Shih, S.R. COVID-19: The first documented coronavirus pandemic in history. Biomed. J., 2020, 43(4), 328-333. doi: 10.1016/j.bj.2020.04.007 PMID: 32387617
  3. Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol., 2020, 20(6), 363-374. doi: 10.1038/s41577-020-0311-8 PMID: 32346093
  4. Peiris, J.S.M.; Lai, S.T.; Poon, L.L.M.; Guan, Y.; Yam, L.Y.C.; Lim, W.; Nicholls, J.; Yee, W.K.S.; Yan, W.W.; Cheung, M.T.; Cheng, V.C.C.; Chan, K.H.; Tsang, D.N.C.; Yung, R.W.H.; Ng, T.K.; Yuen, K.Y. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet, 2003, 361(9366), 1319-1325. doi: 10.1016/S0140-6736(03)13077-2 PMID: 12711465
  5. Zumla, A.; Hui, D.S.; Perlman, S. Middle East respiratory syndrome. Lancet, 2015, 386(9997), 995-1007. doi: 10.1016/S0140-6736(15)60454-8 PMID: 26049252
  6. Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273. doi: 10.1038/s41586-020-2012-7 PMID: 32015507
  7. Yu, K.; Zhang, Q.; Liu, Z.; Du, Y.; Gao, X.; Zhao, Q.; Cheng, H.; Li, X.; Liu, Z.X. Deep learning based prediction of reversible HAT/HDAC-specific lysine acetylation. Brief. Bioinform., 2020, 21(5), 1798-1805. doi: 10.1093/bib/bbz107 PMID: 32978618
  8. Noureddine, F.Y.; Chakkour, M.; El Roz, A.; Reda, J.; Al Sahily, R.; Assi, A.; Joma, M.; Salami, H.; Hashem, S.J.; Harb, B.; Salami, A.; Ghssein, G. The Emergence of SARS-CoV-2 variant(s) and its impact on the prevalence of COVID-19 cases in the Nabatieh region, Lebanon. Med. Sci., 2021, 9(2), 40. doi: 10.3390/medsci9020040 PMID: 34199617
  9. Shah, M.; Woo, H.G. Molecular perspectives of SARS-CoV-2: Pathology, immune evasion, and therapeutic interventions. Mol. Cells, 2021, 44(6), 408-421. doi: 10.14348/molcells.2021.0026 PMID: 34059561
  10. Sinatti, G.; Santini, S.J.; Tarantino, G.; Picchi, G.; Cosimini, B.; Ranfone, F.; Casano, N.; Zingaropoli, M.A.; Iapadre, N.; Bianconi, S.; Armiento, A.; Carducci, P.; Ciardi, M.R.; Mastroianni, C.M.; Grimaldi, A.; Balsano, C. PaO2/FiO2 ratio forecasts COVID-19 patients’ outcome regardless of age: A cross-sectional, monocentric study. Intern. Emerg. Med., 2022, 17(3), 665-673. doi: 10.1007/s11739-021-02840-7 PMID: 34637082
  11. Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; Bailey, R.; Swanson, K.A.; Roychoudhury, S.; Koury, K.; Li, P.; Kalina, W.V.; Cooper, D.; Frenck, R.W., Jr; Hammitt, L.L.; Türeci, Ö.; Nell, H.; Schaefer, A.; Ünal, S.; Tresnan, D.B.; Mather, S.; Dormitzer, P.R.; Şahin, U.; Jansen, K.U.; Gruber, W.C.; Group, C.C.T. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med., 2020, 383(27), 2603-2615. doi: 10.1056/NEJMoa2034577 PMID: 33301246
  12. Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; McGettigan, J.; Khetan, S.; Segall, N.; Solis, J.; Brosz, A.; Fierro, C.; Schwartz, H.; Neuzil, K.; Corey, L.; Gilbert, P.; Janes, H.; Follmann, D.; Marovich, M.; Mascola, J.; Polakowski, L.; Ledgerwood, J.; Graham, B.S.; Bennett, H.; Pajon, R.; Knightly, C.; Leav, B.; Deng, W.; Zhou, H.; Han, S.; Ivarsson, M.; Miller, J.; Zaks, T.; Group, C.S. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med., 2021, 384(5), 403-416. doi: 10.1056/NEJMoa2035389 PMID: 33378609
  13. Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; Bibi, S.; Briner, C.; Cicconi, P.; Collins, A.M.; Colin-Jones, R.; Cutland, C.L.; Darton, T.C.; Dheda, K.; Duncan, C.J.A.; Emary, K.R.W.; Ewer, K.J.; Fairlie, L.; Faust, S.N.; Feng, S.; Ferreira, D.M.; Finn, A.; Goodman, A.L.; Green, C.M.; Green, C.A.; Heath, P.T.; Hill, C.; Hill, H.; Hirsch, I.; Hodgson, S.H.C.; Izu, A.; Jackson, S.; Jenkin, D.; Joe, C.C.D.; Kerridge, S.; Koen, A.; Kwatra, G.; Lazarus, R.; Lawrie, A.M.; Lelliott, A.; Libri, V.; Lillie, P.J.; Mallory, R.; Mendes, A.V.A.; Milan, E.P.; Minassian, A.M.; McGregor, A.; Morrison, H.; Mujadidi, Y.F.; Nana, A.; O’Reilly, P.J.; Padayachee, S.D.; Pittella, A.; Plested, E.; Pollock, K.M.; Ramasamy, M.N.; Rhead, S.; Schwarzbold, A.V.; Singh, N.; Smith, A.; Song, R.; Snape, M.D.; Sprinz, E.; Sutherland, R.K.; Tarrant, R.; Thomson, E.C.; Török, M.E.; Toshner, M.; Turner, D.P.J.; Vekemans, J.; Villafana, T.L.; Watson, M.E.E.; Williams, C.J.; Douglas, A.D.; Hill, A.V.S.; Lambe, T.; Gilbert, S.C.; Pollard, A.J.; Aban, M.; Abayomi, F.; Abeyskera, K.; Aboagye, J.; Adam, M.; Adams, K.; Adamson, J.; Adelaja, Y.A.; Adewetan, G.; Adlou, S.; Ahmed, K.; Akhalwaya, Y.; Akhalwaya, S.; Alcock, A.; Ali, A.; Allen, E.R.; Allen, L.; Almeida, T.C.D.S.C.; Alves, M.P.S.; Amorim, F.; Andritsou, F.; Anslow, R.; Appleby, M.; Arbe-Barnes, E.H.; Ariaans, M.P.; Arns, B.; Arruda, L.; Azi, P.; Azi, L.; Babbage, G.; Bailey, C.; Baker, K.F.; Baker, M.; Baker, N.; Baker, P.; Baldwin, L.; Baleanu, I.; Bandeira, D.; Bara, A.; Barbosa, M.A.S.; Barker, D.; Barlow, G.D.; Barnes, E.; Barr, A.S.; Barrett, J.R.; Barrett, J.; Bates, L.; Batten, A.; Beadon, K.; Beales, E.; Beckley, R.; Belij-Rammerstorfer, S.; Bell, J.; Bellamy, D.; Bellei, N.; Belton, S.; Berg, A.; Bermejo, L.; Berrie, E.; Berry, L.; Berzenyi, D.; Beveridge, A.; Bewley, K.R.; Bexhell, H.; Bhikha, S.; Bhorat, A.E.; Bhorat, Z.E.; Bijker, E.; Birch, G.; Birch, S.; Bird, A.; Bird, O.; Bisnauthsing, K.; Bittaye, M.; Blackstone, K.; Blackwell, L.; Bletchly, H.; Blundell, C.L.; Blundell, S.R.; Bodalia, P.; Boettger, B.C.; Bolam, E.; Boland, E.; Bormans, D.; Borthwick, N.; Bowring, F.; Boyd, A.; Bradley, P.; Brenner, T.; Brown, P.; Brown, C.; Brown-O’Sullivan, C.; Bruce, S.; Brunt, E.; Buchan, R.; Budd, W.; Bulbulia, Y.A.; Bull, M.; Burbage, J.; Burhan, H.; Burn, A.; Buttigieg, K.R.; Byard, N.; Cabera Puig, I.; Calderon, G.; Calvert, A.; Camara, S.; Cao, M.; Cappuccini, F.; Cardoso, J.R.; Carr, M.; Carroll, M.W.; Carson-Stevens, A.; Carvalho, Y.M.; Carvalho, J.A.M.; Casey, H.R.; Cashen, P.; Castro, T.; Castro, L.C.; Cathie, K.; Cavey, A.; Cerbino-Neto, J.; Chadwick, J.; Chapman, D.; Charlton, S.; Chelysheva, I.; Chester, O.; Chita, S.; Cho, J-S.; Cifuentes, L.; Clark, E.; Clark, M.; Clarke, A.; Clutterbuck, E.A.; Collins, S.L.K.; Conlon, C.P.; Connarty, S.; Coombes, N.; Cooper, C.; Cooper, R.; Cornelissen, L.; Corrah, T.; Cosgrove, C.; Cox, T.; Crocker, W.E.M.; Crosbie, S.; Cullen, L.; Cullen, D.; Cunha, D.R.M.F.; Cunningham, C.; Cuthbertson, F.C.; Da Guarda, S.N.F.; da Silva, L.P.; Damratoski, B.E.; Danos, Z.; Dantas, M.T.D.C.; Darroch, P.; Datoo, M.S.; Datta, C.; Davids, M.; Davies, S.L.; Davies, H.; Davis, E.; Davis, J.; Davis, J.; De Nobrega, M.M.D.; De Oliveira Kalid, L.M.; Dearlove, D.; Demissie, T.; Desai, A.; Di Marco, S.; Di Maso, C.; Dinelli, M.I.S.; Dinesh, T.; Docksey, C.; Dold, C.; Dong, T.; Donnellan, F.R.; Dos Santos, T.; dos Santos, T.G.; Dos Santos, E.P.; Douglas, N.; Downing, C.; Drake, J.; Drake-Brockman, R.; Driver, K.; Drury, R.; Dunachie, S.J.; Durham, B.S.; Dutra, L.; Easom, N.J.W.; van Eck, S.; Edwards, M.; Edwards, N.J.; El Muhanna, O.M.; Elias, S.C.; Elmore, M.; English, M.; Esmail, A.; Essack, Y.M.; Farmer, E.; Farooq, M.; Farrar, M.; Farrugia, L.; Faulkner, B.; Fedosyuk, S.; Felle, S.; Feng, S.; Ferreira Da Silva, C.; Field, S.; Fisher, R.; Flaxman, A.; Fletcher, J.; Fofie, H.; Fok, H.; Ford, K.J.; Fowler, J.; Fraiman, P.H.A.; Francis, E.; Franco, M.M.; Frater, J.; Freire, M.S.M.; Fry, S.H.; Fudge, S.; Furze, J.; Fuskova, M.; Galian-Rubio, P.; Galiza, E.; Garlant, H.; Gavrila, M.; Geddes, A.; Gibbons, K.A.; Gilbride, C.; Gill, H.; Glynn, S.; Godwin, K.; Gokani, K.; Goldoni, U.C.; Goncalves, M.; Gonzalez, I.G.S.; Goodwin, J.; Goondiwala, A.; Gordon-Quayle, K.; Gorini, G.; Grab, J.; Gracie, L.; Greenland, M.; Greenwood, N.; Greffrath, J.; Groenewald, M.M.; Grossi, L.; Gupta, G.; Hackett, M.; Hallis, B.; Hamaluba, M.; Hamilton, E.; Hamlyn, J.; Hammersley, D.; Hanrath, A.T.; Hanumunthadu, B.; Harris, S.A.; Harris, C.; Harris, T.; Harrison, T.D.; Harrison, D.; Hart, T.C.; Hartnell, B.; Hassan, S.; Haughney, J.; Hawkins, S.; Hay, J.; Head, I.; Henry, J.; Hermosin Herrera, M.; Hettle, D.B.; Hill, J.; Hodges, G.; Horne, E.; Hou, M.M.; Houlihan, C.; Howe, E.; Howell, N.; Humphreys, J.; Humphries, H.E.; Hurley, K.; Huson, C.; Hyder-Wright, A.; Hyams, C.; Ikram, S.; Ishwarbhai, A.; Ivan, M.; Iveson, P.; Iyer, V.; Jackson, F.; De Jager, J.; Jaumdally, S.; Jeffers, H.; Jesudason, N.; Jones, B.; Jones, K.; Jones, E.; Jones, C.; Jorge, M.R.; Jose, A.; Joshi, A.; Júnior, E.A.M.S.; Kadziola, J.; Kailath, R.; Kana, F.; Karampatsas, K.; Kasanyinga, M.; Keen, J.; Kelly, E.J.; Kelly, D.M.; Kelly, D.; Kelly, S.; Kerr, D.; Kfouri, R.Á.; Khan, L.; Khozoee, B.; Kidd, S.; Killen, A.; Kinch, J.; Kinch, P.; King, L.D.W.; King, T.B.; Kingham, L.; Klenerman, P.; Knapper, F.; Knight, J.C.; Knott, D.; Koleva, S.; Lang, M.; Lang, G.; Larkworthy, C.W.; Larwood, J.P.J.; Law, R.; Lazarus, E.M.; Leach, A.; Lees, E.A.; Lemm, N-M.; Lessa, A.; Leung, S.; Li, Y.; Lias, A.M.; Liatsikos, K.; Linder, A.; Lipworth, S.; Liu, S.; Liu, X.; Lloyd, A.; Lloyd, S.; Loew, L.; Lopez Ramon, R.; Lora, L.; Lowthorpe, V.; Luz, K.; MacDonald, J.C.; MacGregor, G.; Madhavan, M.; Mainwaring, D.O.; Makambwa, E.; Makinson, R.; Malahleha, M.; Malamatsho, R.; Mallett, G.; Mansatta, K.; Maoko, T.; Mapetla, K.; Marchevsky, N.G.; Marinou, S.; Marlow, E.; Marques, G.N.; Marriott, P.; Marshall, R.P.; Marshall, J.L.; Martins, F.J.; Masenya, M.; Masilela, M.; Masters, S.K.; Mathew, M.; Matlebjane, H.; Matshidiso, K.; Mazur, O.; Mazzella, A.; McCaughan, H.; McEwan, J.; McGlashan, J.; McInroy, L.; McIntyre, Z.; McLenaghan, D.; McRobert, N.; McSwiggan, S.; Megson, C.; Mehdipour, S.; Meijs, W.; Mendonça, R.N.Á.; Mentzer, A.J.; Mirtorabi, N.; Mitton, C.; Mnyakeni, S.; Moghaddas, F.; Molapo, K.; Moloi, M.; Moore, M.; Moraes-Pinto, M.I.; Moran, M.; Morey, E.; Morgans, R.; Morris, S.; Morris, S.; Morris, H.C.; Morselli, F.; Morshead, G.; Morter, R.; Mottal, L.; Moultrie, A.; Moya, N.; Mpelembue, M.; Msomi, S.; Mugodi, Y.; Mukhopadhyay, E.; Muller, J.; Munro, A.; Munro, C.; Murphy, S.; Mweu, P.; Myasaki, C.H.; Naik, G.; Naker, K.; Nastouli, E.; Nazir, A.; Ndlovu, B.; Neffa, F.; Njenga, C.; Noal, H.; Noé, A.; Novaes, G.; Nugent, F.L.; Nunes, G.; O’Brien, K.; O’Connor, D.; Odam, M.; Oelofse, S.; Oguti, B.; Olchawski, V.; Oldfield, N.J.; Oliveira, M.G.; Oliveira, C.; Oosthuizen, A.; O’Reilly, P.; Osborne, P.; Owen, D.R.J.; Owen, L.; Owens, D.; Owino, N.; Pacurar, M.; Paiva, B.V.B.; Palhares, E.M.F.; Palmer, S.; Parkinson, S.; Parracho, H.M.R.T.; Parsons, K.; Patel, D.; Patel, B.; Patel, F.; Patel, K.; Patrick-Smith, M.; Payne, R.O.; Peng, Y.; Penn, E.J.; Pennington, A.; Peralta Alvarez, M.P.; Perring, J.; Perry, N.; Perumal, R.; Petkar, S.; Philip, T.; Phillips, D.J.; Phillips, J.; Phohu, M.K.; Pickup, L.; Pieterse, S.; Piper, J.; Pipini, D.; Plank, M.; Du Plessis, J.; Pollard, S.; Pooley, J.; Pooran, A.; Poulton, I.; Powers, C.; Presa, F.B.; Price, D.A.; Price, V.; Primeira, M.; Proud, P.C.; Provstgaard-Morys, S.; Pueschel, S.; Pulido, D.; Quaid, S.; Rabara, R.; Radford, A.; Radia, K.; Rajapaska, D.; Rajeswaran, T.; Ramos, A.S.F.; Ramos Lopez, F.; Rampling, T.; Rand, J.; Ratcliffe, H.; Rawlinson, T.; Rea, D.; Rees, B.; Reiné, J.; Resuello-Dauti, M.; Reyes Pabon, E.; Ribiero, C.M.; Ricamara, M.; Richter, A.; Ritchie, N.; Ritchie, A.J.; Robbins, A.J.; Roberts, H.; Robinson, R.E.; Robinson, H.; Rocchetti, T.T.; Rocha, B.P.; Roche, S.; Rollier, C.; Rose, L.; Ross Russell, A.L.; Rossouw, L.; Royal, S.; Rudiansyah, I.; Ruiz, S.; Saich, S.; Sala, C.; Sale, J.; Salman, A.M.; Salvador, N.; Salvador, S.; Sampaio, M.; Samson, A.D.; Sanchez-Gonzalez, A.; Sanders, H.; Sanders, K.; Santos, E.; Santos Guerra, M.F.S.; Satti, I.; Saunders, J.E.; Saunders, C.; Sayed, A.; Schim van der Loeff, I.; Schmid, A.B.; Schofield, E.; Screaton, G.; Seddiqi, S.; Segireddy, R.R.; Senger, R.; Serrano, S.; Shah, R.; Shaik, I.; Sharpe, H.E.; Sharrocks, K.; Shaw, R.; Shea, A.; Shepherd, A.; Shepherd, J.G.; Shiham, F.; Sidhom, E.; Silk, S.E.; da Silva Moraes, A.C.; Silva-Junior, G.; Silva-Reyes, L.; Silveira, A.D.; Silveira, M.B.V.; Sinha, J.; Skelly, D.T.; Smith, D.C.; Smith, N.; Smith, H.E.; Smith, D.J.; Smith, C.C.; Soares, A.; Soares, T.; Solórzano, C.; Sorio, G.L.; Sorley, K.; Sosa-Rodriguez, T.; Souza, C.M.C.D.L.; Souza, B.S.D.F.; Souza, A.R.; Spencer, A.J.; Spina, F.; Spoors, L.; Stafford, L.; Stamford, I.; Starinskij, I.; Stein, R.; Steven, J.; Stockdale, L.; Stockwell, L.V.; Strickland, L.H.; Stuart, A.C.; Sturdy, A.; Sutton, N.; Szigeti, A.; Tahiri-Alaoui, A.; Tanner, R.; Taoushanis, C.; Tarr, A.W.; Taylor, K.; Taylor, U.; Taylor, I.J.; Taylor, J.; te Water Naude, R.; Themistocleous, Y.; Themistocleous, A.; Thomas, M.; Thomas, K.; Thomas, T.M.; Thombrayil, A.; Thompson, F.; Thompson, A.; Thompson, K.; Thompson, A.; Thomson, J.; Thornton-Jones, V.; Tighe, P.J.; Tinoco, L.A.; Tiongson, G.; Tladinyane, B.; Tomasicchio, M.; Tomic, A.; Tonks, S.; Towner, J.; Tran, N.; Tree, J.; Trillana, G.; Trinham, C.; Trivett, R.; Truby, A.; Tsheko, B.L.; Turabi, A.; Turner, R.; Turner, C.; Ulaszewska, M.; Underwood, B.R.; Varughese, R.; Verbart, D.; Verheul, M.; Vichos, I.; Vieira, T.; Waddington, C.S.; Walker, L.; Wallis, E.; Wand, M.; Warbick, D.; Wardell, T.; Warimwe, G.; Warren, S.C.; Watkins, B.; Watson, E.; Webb, S.; Webb-Bridges, A.; Webster, A.; Welch, J.; Wells, J.; West, A.; White, C.; White, R.; Williams, P.; Williams, R.L.; Winslow, R.; Woodyer, M.; Worth, A.T.; Wright, D.; Wroblewska, M.; Yao, A.; Zimmer, R.; Zizi, D.; Zuidewind, P. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet, 2021, 397(10269), 99-111. doi: 10.1016/S0140-6736(20)32661-1 PMID: 33306989
  14. Sadoff, J.; Gray, G.; Vandebosch, A.; Cárdenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Fennema, H.; Spiessens, B.; Offergeld, K.; Scheper, G.; Taylor, K.L.; Robb, M.L.; Treanor, J.; Barouch, D.H.; Stoddard, J.; Ryser, M.F.; Marovich, M.A.; Neuzil, K.M.; Corey, L.; Cauwenberghs, N.; Tanner, T.; Hardt, K.; Ruiz-Guiñazú, J.; Le Gars, M.; Schuitemaker, H.; Van Hoof, J.; Struyf, F.; Douoguih, M.; Group, E.S. Safety and efficacy of single-dose Ad26.COV2.S vaccine against COVID-19. N. Engl. J. Med., 2021, 384(23), 2187-2201. doi: 10.1056/NEJMoa2101544 PMID: 33882225
  15. Barouch, D.H.; Stephenson, K.E.; Sadoff, J.; Yu, J.; Chang, A.; Gebre, M.; McMahan, K.; Liu, J.; Chandrashekar, A.; Patel, S.; Le Gars, M.; de Groot, A.M.; Heerwegh, D.; Struyf, F.; Douoguih, M.; van Hoof, J.; Schuitemaker, H. Durable humoral and cellular immune responses 8 months after Ad26.COV2.S vaccination. N. Engl. J. Med., 2021, 385(10), 951-953. doi: 10.1056/NEJMc2108829 PMID: 34260834
  16. Tannock, G.A.; Kim, H.; Xue, L. Why are vaccines against many human viral diseases still unavailable; an historic perspective? J. Med. Virol., 2020, 92(2), 129-138. doi: 10.1002/jmv.25593 PMID: 31502669
  17. Marqus, S.; Pirogova, E.; Piva, T.J. Evaluation of the use of therapeutic peptides for cancer treatment. J. Biomed. Sci., 2017, 24(1), 21. doi: 10.1186/s12929-017-0328-x PMID: 28320393
  18. Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des., 2013, 81(1), 136-147. doi: 10.1111/cbdd.12055 PMID: 23253135
  19. Zhang, Q.; Chen, X.; Li, B.; Lu, C.; Yang, S.; Long, J.; Chen, H.; Huang, J.; He, B. A database of anti-coronavirus peptides. Sci. Data, 2022, 9(1), 294. doi: 10.1038/s41597-022-01394-3 PMID: 35697698
  20. Wang, Z.; Wang, G. APD: The antimicrobial peptide database. Nucleic Acids Res., 2004, 32(90001), 590D-592. doi: 10.1093/nar/gkh025 PMID: 14681488
  21. Wang, G.; Li, X.; Wang, Z. APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res., 2009, 37(Database issue), D933-D937. doi: 10.1093/nar/gkn823 PMID: 18957441
  22. Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res., 2016, 44(D1), D1087-D1093. doi: 10.1093/nar/gkv1278 PMID: 26602694
  23. Thomas, S.; Karnik, S.; Barai, R.S.; Jayaraman, V.K.; Idicula-Thomas, S. CAMP: A useful resource for research on antimicrobial peptides. Nucleic Acids Res., 2010, 38(Database issue), D774-D780. doi: 10.1093/nar/gkp1021 PMID: 19923233
  24. Waghu, F.H.; Gopi, L.; Barai, R.S.; Ramteke, P.; Nizami, B.; Idicula-Thomas, S. CAMP: Collection of sequences and structures of antimicrobial peptides. Nucleic Acids Res., 2014, 42(D1), D1154-D1158. doi: 10.1093/nar/gkt1157 PMID: 24265220
  25. Waghu, F.H.; Barai, R.S.; Gurung, P.; Idicula-Thomas, S. CAMPR3: A database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res., 2016, 44(D1), D1094-D1097. doi: 10.1093/nar/gkv1051 PMID: 26467475
  26. Gawde, U.; Chakraborty, S.; Waghu, F.H.; Barai, R.S.; Khanderkar, A.; Indraguru, R.; Shirsat, T.; Idicula-Thomas, S. CAMPR4: A database of natural and synthetic antimicrobial peptides. Nucleic Acids Res., 2023, 51(D1), D377-D383. doi: 10.1093/nar/gkac933 PMID: 36370097
  27. Thakur, N.; Qureshi, A.; Kumar, M. AVPpred: Collection and prediction of highly effective antiviral peptides. Nucleic Acids Res., 2012, 40, W199-W204. doi: 10.1093/nar/gks450 PMID: 22638580
  28. Zhao, X.; Wu, H.; Lu, H.; Li, G.; Huang, Q. LAMP: A database linking antimicrobial peptides. PLoS One, 2013, 8(6), e66557. doi: 10.1371/journal.pone.0066557 PMID: 23825543
  29. Gogoladze, G.; Grigolava, M.; Vishnepolsky, B.; Chubinidze, M.; Duroux, P.; Lefranc, M.P.; Pirtskhalava, M. DBAASP: Database of antimicrobial activity and structure of peptides. FEMS Microbiol. Lett., 2014, 357(1), 63-68. doi: 10.1111/1574-6968.12489 PMID: 24888447
  30. Pirtskhalava, M.; Gabrielian, A.; Cruz, P.; Griggs, H.L.; Squires, R.B.; Hurt, D.E.; Grigolava, M.; Chubinidze, M.; Gogoladze, G.; Vishnepolsky, B.; Alekseev, V.; Rosenthal, A.; Tartakovsky, M. DBAASP v.2: An enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res., 2016, 44(D1), D1104-D1112. doi: 10.1093/nar/gkv1174 PMID: 26578581
  31. Pirtskhalava, M.; Amstrong, A.A.; Grigolava, M.; Chubinidze, M.; Alimbarashvili, E.; Vishnepolsky, B.; Gabrielian, A.; Rosenthal, A.; Hurt, D.E.; Tartakovsky, M. DBAASP v3: Database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Res., 2021, 49(D1), D288-D297. doi: 10.1093/nar/gkaa991 PMID: 33151284
  32. Qureshi, A.; Thakur, N.; Tandon, H.; Kumar, M. AVPdb: A database of experimentally validated antiviral peptides targeting medically important viruses. Nucleic Acids Res., 2014, 42(D1), D1147-D1153. doi: 10.1093/nar/gkt1191 PMID: 24285301
  33. Fan, L.; Sun, J.; Zhou, M.; Zhou, J.; Lao, X.; Zheng, H.; Xu, H. DRAMP: A comprehensive data repository of antimicrobial peptides. Sci. Rep., 2016, 6(1), 24482. doi: 10.1038/srep24482 PMID: 27075512
  34. Kang, X.; Dong, F.; Shi, C.; Liu, S.; Sun, J.; Chen, J.; Li, H.; Xu, H.; Lao, X.; Zheng, H. DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci. Data, 2019, 6(1), 148. doi: 10.1038/s41597-019-0154-y PMID: 31409791
  35. Shi, G.; Kang, X.; Dong, F.; Liu, Y.; Zhu, N.; Hu, Y.; Xu, H.; Lao, X.; Zheng, H. DRAMP 3.0: An enhanced comprehensive data repository of antimicrobial peptides. Nucleic Acids Res., 2022, 50(D1), D488-D496. doi: 10.1093/nar/gkab651 PMID: 34390348
  36. Jhong, J.H.; Chi, Y.H.; Li, W.C.; Lin, T.H.; Huang, K.Y.; Lee, T.Y. dbAMP: An integrated resource for exploring antimicrobial peptides with functional activities and physicochemical properties on transcriptome and proteome data. Nucleic Acids Res., 2019, 47(D1), D285-D297. doi: 10.1093/nar/gky1030 PMID: 30380085
  37. Jhong, J.H.; Yao, L.; Pang, Y.; Li, Z.; Chung, C.R.; Wang, R.; Li, S.; Li, W.; Luo, M.; Ma, R.; Huang, Y.; Zhu, X.; Zhang, J.; Feng, H.; Cheng, Q.; Wang, C.; Xi, K.; Wu, L.C.; Chang, T.H.; Horng, J.T.; Zhu, L.; Chiang, Y.C.; Wang, Z.; Lee, T.Y. dbAMP 2.0: Updated resource for antimicrobial peptides with an enhanced scanning method for genomic and proteomic data. Nucleic Acids Res., 2022, 50(D1), D460-D470. doi: 10.1093/nar/gkab1080 PMID: 34850155
  38. Timmons, P.B.; Hewage, C.M. ENNAVIA is a novel method which employs neural networks for antiviral and anti-coronavirus activity prediction for therapeutic peptides. Brief. Bioinform., 2021, 22(6), bbab258. doi: 10.1093/bib/bbab258 PMID: 34297817
  39. Kurata, H.; Tsukiyama, S.; Manavalan, B. iACVP: Markedly enhanced identification of anti-coronavirus peptides using a dataset-specific word2vec model. Brief. Bioinform., 2022, 23(4), bbac265. doi: 10.1093/bib/bbac265 PMID: 35772910
  40. Chang, K.Y.; Yang, J.R. Analysis and prediction of highly effective antiviral peptides based on random forests. PLoS One, 2013, 8(8), e70166. doi: 10.1371/journal.pone.0070166 PMID: 23940542
  41. Beltrán Lissabet, J.F.; Belén, L.H.; Farias, J.G. AntiVPP 1.0: A portable tool for prediction of antiviral peptides. Comput. Biol. Med., 2019, 107, 127-130. doi: 10.1016/j.compbiomed.2019.02.011 PMID: 30802694
  42. Schaduangrat, N.; Nantasenamat, C.; Prachayasittikul, V.; Shoombuatong, W. Meta-iAVP: A sequence-based meta-predictor for improving the prediction of antiviral peptides using effective feature representation. Int. J. Mol. Sci., 2019, 20(22), 5743. doi: 10.3390/ijms20225743 PMID: 31731751
  43. Wei, L.; Zhou, C.; Su, R.; Zou, Q. PEPred-Suite: Improved and robust prediction of therapeutic peptides using adaptive feature representation learning. Bioinformatics, 2019, 35(21), 4272-4280. doi: 10.1093/bioinformatics/btz246 PMID: 30994882
  44. Chowdhury, A.S.; Reehl, S.M.; Kehn-Hall, K.; Bishop, B.; Webb-Robertson, B.J.M. Better understanding and prediction of antiviral peptides through primary and secondary structure feature importance. Sci. Rep., 2020, 10(1), 19260. doi: 10.1038/s41598-020-76161-8 PMID: 33159146
  45. Li, J.; Pu, Y.; Tang, J.; Zou, Q.; Guo, F. DeepAVP: A dual-channel deep neural network for identifying variable-length antiviral peptides. IEEE J. Biomed. Health Inform., 2020, 24(10), 3012-3019. doi: 10.1109/JBHI.2020.2977091 PMID: 32142462
  46. Zhang, Y.P.; Zou, Q. PPTPP: A novel therapeutic peptide prediction method using physicochemical property encoding and adaptive feature representation learning. Bioinformatics, 2020, 36(13), 3982-3987. doi: 10.1093/bioinformatics/btaa275 PMID: 32348463
  47. Cortes, C.; Vapnik, V.; Vapnik, V.; Llorens, C.; Vapnik, V.N.; Cortes, C. Support-vector networks. Mach. Learn., 1995, 20(3), 273-297. doi: 10.1007/BF00994018
  48. Breiman, L. Random forests. Mach. Learn., 2001, 45(1), 5-32. doi: 10.1023/A:1010933404324
  49. Zare, M.; Mohabatkar, H.; Faramarzi, F.; Beigi, M.M.; Behbahani, M.J.T.O.B.J. Using chou’s pseudo amino acid composition and machine learningmethod to predict the antiviral peptides. Open Bioinform.atics J., 2015, 9, 13-19.
  50. Freund, Y. A short introduction to boosting. J. Japanese Soci. Artif. Intell., 1999, 14(5), 771-780.
  51. Graves, A.; Schmidhuber, J. IEEE International Joint Conference on Neural Networks., 2005.
  52. Lecun, Y.; Bottou, L.J.P.o.t.I. Gradient-based learning applied to document recognition. Proc. IEEE, 1998, 86(11), 2278-2324. doi: 10.1109/5.726791
  53. Pang, Y.; Wang, Z.; Jhong, J.H.; Lee, T.Y. Identifying anti-coronavirus peptides by incorporating different negative datasets and imbalanced learning strategies. Brief. Bioinform., 2021, 22(2), 1085-1095. doi: 10.1093/bib/bbaa423 PMID: 33497434
  54. Tyagi, A.; Tuknait, A.; Anand, P.; Gupta, S.; Sharma, M.; Mathur, D.; Joshi, A.; Singh, S.; Gautam, A.; Raghava, G.P.S.; Cancer, P.P.D. CancerPPD: A database of anticancer peptides and proteins. Nucleic Acids Res., 2015, 43(D1), D837-D843. doi: 10.1093/nar/gku892 PMID: 25270878
  55. Agrawal, P.; Bhalla, S.; Chaudhary, K.; Kumar, R.; Sharma, M.; Raghava, G.P.S. In silico approach for prediction of antifungal peptides. Front. Microbiol., 2018, 9, 323. doi: 10.3389/fmicb.2018.00323 PMID: 29535692
  56. Kaushik, A.C.; Mehmood, A.; Selvaraj, G.; Dai, X.; Pan, Y.; Wei, D.Q. CoronaPep: An anti-coronavirus peptide generation tool. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2021, 18(4), 1299-1304. doi: 10.1109/TCBB.2021.3064630 PMID: 33687847
  57. Pang, Y.; Yao, L.; Jhong, J.H.; Wang, Z.; Lee, T.Y. AVPIden: A new scheme for identification and functional prediction of antiviral peptides based on machine learning approaches. Brief. Bioinform., 2021, 22(6), bbab263. doi: 10.1093/bib/bbab263 PMID: 34279599
  58. Qureshi, A.; Thakur, N.; Kumar, M. HIPdb: A database of experimentally validated HIV inhibiting peptides. PLoS One, 2013, 8(1), e54908. doi: 10.1371/journal.pone.0054908 PMID: 23359817
  59. Mcculloch, W.S.; Pitts, W.H. A logical calculus of ideas immanent in nervous activity. Bull. Math. Biophy., 1942, 5, 115-133. PMID: 2185863
  60. Manavalan, B.; Basith, S.; Lee, G. Comparative analysis of machine learning-based approaches for identifying therapeutic peptides targeting SARS-CoV-2. Brief. Bioinform., 2022, 23(1), bbab412. doi: 10.1093/bib/bbab412 PMID: 34595489
  61. Sharma, R.; Shrivastava, S.; Singh, S.K.; Kumar, A.; Singh, A.K.; Saxena, S. Deep-AVPpred: Artificial intelligence driven discovery of peptide drugs for viral infections. IEEE J. Biomed. Health Inform., 2022, 26(10), 5067-5074. doi: 10.1109/JBHI.2021.3130825 PMID: 34822333
  62. Singh, S.; Chaudhary, K.; Dhanda, S.K.; Bhalla, S.; Usmani, S.S.; Gautam, A.; Tuknait, A.; Agrawal, P.; Mathur, D.; Raghava, G.P.S. SATPdb: A database of structurally annotated therapeutic peptides. Nucleic Acids Res., 2016, 44(D1), D1119-D1126. doi: 10.1093/nar/gkv1114 PMID: 26527728
  63. Aguilera-Mendoza, L.; Marrero-Ponce, Y.; Beltran, J.A.; Tellez Ibarra, R.; Guillen-Ramirez, H.A.; Brizuela, C.A. Graph-based data integration from bioactive peptide databases of pharmaceutical interest: Toward an organized collection enabling visual network analysis. Bioinformatics, 2019, 35(22), 4739-4747. doi: 10.1093/bioinformatics/btz260 PMID: 30994884
  64. Sharma, R.; Shrivastava, S.; Kumar Singh, S.; Kumar, A.; Saxena, S.; Kumar Singh, R. Deep-ABPpred: Identifying antibacterial peptides in protein sequences using bidirectional LSTM with word2vec. Brief. Bioinform., 2021, 22(5), bbab065. doi: 10.1093/bib/bbab065 PMID: 33784381
  65. Sharma, R.; Shrivastava, S.; Kumar Singh, S.; Kumar, A.; Saxena, S.; Kumar Singh, R. AniAMPpred: Artificial intelligence guided discovery of novel antimicrobial peptides in animal kingdom. Brief. Bioinform., 2021, 22(6), bbab242. doi: 10.1093/bib/bbab242 PMID: 34259329
  66. Sharma, R.; Shrivastava, S.; Kumar Singh, S.; Kumar, A.; Saxena, S.; Kumar Singh, R. Deep-AFPpred: Identifying novel antifungal peptides using pretrained embeddings from seq2vec with 1DCNN-BiLSTM. Brief. Bioinform., 2022, 23(1), bbab422. doi: 10.1093/bib/bbab422 PMID: 34670278
  67. Singh, V.; Shrivastava, S.; Kumar Singh, S.; Kumar, A.; Saxena, S. StaBle-ABPpred: A stacked ensemble predictor based on biLSTM and attention mechanism for accelerated discovery of antibacterial peptides. Brief. Bioinform., 2022, 23(1), bbab439. doi: 10.1093/bib/bbab439 PMID: 34750606
  68. Mclachlan, G.J. Discriminant Analysis and Statistical Pattern Recognition; Wiley, 2004. doi: 10.1002/0471725293
  69. Li, W.; Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 2006, 22(13), 1658-1659. doi: 10.1093/bioinformatics/btl158 PMID: 16731699
  70. Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics, 2012, 28(23), 3150-3152. doi: 10.1093/bioinformatics/bts565 PMID: 23060610
  71. Huang, Y.; Niu, B.; Gao, Y.; Fu, L.; Li, W.; Suite, C.D-H.I.T. CD-HIT Suite: A web server for clustering and comparing biological sequences. Bioinformatics, 2010, 26(5), 680-682. doi: 10.1093/bioinformatics/btq003 PMID: 20053844
  72. Lin, S.X.; Lapointe, J. Theoretical and experimental biology in one-A symposium in honour of Professor Kuo-Chen Chou’s 50th anniversary and Professor Richard Giegé’s 40th anniversary of their scientific careers. J. Biomed. Sci. Eng., 2013, 6(4), 435-442. doi: 10.4236/jbise.2013.64054
  73. Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Sys. Sci., 1997, 55(1), 119-139.
  74. Ramesh, V.; Parkavi, P.; Yasodha, P. Performance analysis of data mining techniques for placement chance prediction. Int. J. Sci. Eng. Res., 2011, 2(8), 2229-5518.
  75. Sakamoto, T.; Uehara, K. Induction of N-level decision trees. Transac. Inform. Proc. Soc. Japan, 1997, 38, 419-428.
  76. Ali, S.; Smith, K.A. On learning algorithm selection for classification. Appl. Soft Comput., 2006, 6(2), 119-138. doi: 10.1016/j.asoc.2004.12.002
  77. Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Strltist., 1992, 46(3), 1-12.
  78. Xiao, N.; Cao, D.S.; Zhu, M.F.; Xu, Q.S. protr/ProtrWeb: R package and web server for generating various numerical representation schemes of protein sequences. Bioinformatics, 2015, 31(11), 1857-1859. doi: 10.1093/bioinformatics/btv042 PMID: 25619996
  79. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat., 2001, 29(5), 29. doi: 10.1214/aos/1013203451
  80. Ettayapuram Ramaprasad, A.S.; Singh, S.; Gajendra P S, R.; Venkatesan, S. AntiAngioPred: A server for prediction of anti-angiogenic peptides. PLoS One, 2015, 10(9), e0136990. doi: 10.1371/journal.pone.0136990 PMID: 26335203
  81. Lata, S.; Sharma, B.K.; Raghava, G.P.S. Analysis and prediction of antibacterial peptides. BMC Bioinformatics, 2007, 8(1), 263. doi: 10.1186/1471-2105-8-263 PMID: 17645800
  82. Wei, L.; Zhou, C.; Chen, H.; Song, J.; Su, R. ACPred-FL: A sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides. Bioinformatics, 2018, 34(23), 4007-4016. doi: 10.1093/bioinformatics/bty451 PMID: 29868903
  83. Manavalan, B.; Shin, T.H.; Kim, M.O.; Lee, G. AIPpred: Sequence-based prediction of anti-inflammatory peptides using random forest. Front. Pharmacol., 2018, 9, 276. doi: 10.3389/fphar.2018.00276 PMID: 29636690
  84. Wei, L.; Xing, P.; Su, R.; Shi, G.; Ma, Z.S.; Zou, Q. CPPred-RF: A sequence-based predictor for identifying cell-penetrating peptides and their uptake efficiency. J. Proteome Res., 2017, 16(5), 2044-2053. doi: 10.1021/acs.jproteome.7b00019 PMID: 28436664
  85. Rajput, A.; Gupta, A.K.; Kumar, M. Prediction and analysis of quorum sensing peptides based on sequence features. PLoS One, 2015, 10(3), e0120066. doi: 10.1371/journal.pone.0120066 PMID: 25781990
  86. Li, N.; Kang, J.; Jiang, L.; He, B.; Lin, H.; Huang, J. PSBinder: A web service for predicting polystyrene surface-binding peptides. BioMed Res. Int., 2017, 2017, 1-5. doi: 10.1155/2017/5761517 PMID: 29445741
  87. Hanchuan Peng; Fuhui Long; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27(8), 1226-1238. doi: 10.1109/TPAMI.2005.159 PMID: 16119262
  88. McGraw, R.; Zhang, R. Multivariate analysis of homogeneous nucleation rate measurements. Nucleation in the p-toluic acid/sulfuric acid/water system. J. Chem. Phys., 2008, 128(6), 064508. doi: 10.1063/1.2830030 PMID: 18282057
  89. Wei, L.; Xing, P.; Shi, G.; Ji, Z.; Zou, Q. Fast prediction of protein methylation sites using a sequence-based feature selection technique. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2019, 16(4), 1264-1273. doi: 10.1109/TCBB.2017.2670558 PMID: 28222000
  90. Rao, B.; Zhou, C.; Zhang, G.; Su, R.; Wei, L. ACPred-Fuse: Fusing multi-view information improves the prediction of anticancer peptides. Brief. Bioinform., 2020, 21(5), 1846-1855. doi: 10.1093/bib/bbz088 PMID: 31729528
  91. Zou, Q.; Zeng, J.; Cao, L.; Ji, R. A novel features ranking metric with application to scalable visual and bioinformatics data classification. Neurocomputing, 2016, 173, 346-354. doi: 10.1016/j.neucom.2014.12.123
  92. Lata, S.; Mishra, N.K.; Raghava, G.P. AntiBP2: Improved version of antibacterial peptide prediction. BMC Bioinforma., 2010, 11(S1), S19. doi: 10.1186/1471-2105-11-S1-S19 PMID: 20122190
  93. Thakur, N.; Qureshi, A.; Kumar, M. VIRsiRNAdb: A curated database of experimentally validated viral siRNA/shRNA. Nucleic Acids Res., 2012, 40(D1), D230-D236. doi: 10.1093/nar/gkr1147 PMID: 22139916
  94. Boopathi, V.; Subramaniyam, S.; Malik, A.; Lee, G.; Manavalan, B.; Yang, D.C. mACPpred: A support vector machine-based meta-predictor for identification of anticancer peptides. Int. J. Mol. Sci., 2019, 20(8), 1964. doi: 10.3390/ijms20081964 PMID: 31013619
  95. Frank, E.; Hall, M.; Trigg, L.; Holmes, G.; Witten, I.H. Data mining in bioinformatics using Weka. Bioinformatics, 2004, 20(15), 2479-2481. doi: 10.1093/bioinformatics/bth261 PMID: 15073010
  96. Abouelenien, M.; Yuan, X.; Duraisamy, P.; Yuan, X. Improving classification performance for the minority class in highly imbalanced dataset using boosting. Third International Conference on Computing Communication & Networking Technologies., 2013.
  97. D Richard, C. Random forests for classification in ecology. Ecology, 2007, 88(11), 2783-2792.
  98. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I.J.A. Attention is all you need. arXiv, 2017, 2017, 1706.03762.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers