Current Development of Data Resources and Bioinformatics Tools for Anticoronavirus Peptide
- Authors: Li B.1, Li M.1, Lu C.1, Wu Y.1, Chen H.1, He B.1
-
Affiliations:
- Medical College, Guizhou University
- Issue: Vol 31, No 26 (2024)
- Pages: 4079-4099
- Section: Anti-Infectives and Infectious Diseases
- URL: https://medjrf.com/0929-8673/article/view/644931
- DOI: https://doi.org/10.2174/0109298673264218231121104407
- ID: 644931
Cite item
Full Text
Abstract
Background:Since December 2019, the emergence of severe acute respiratory syndrome coronavirus 2, which gave rise to coronavirus disease 2019 (COVID-19), has considerably impacted global health. The identification of effective anticoronavirus peptides (ACVPs) and the establishment of robust data storage methods are critical in the fight against COVID-19. Traditional wet-lab peptide discovery approaches are timeconsuming and labor-intensive. With advancements in computer technology and bioinformatics, machine learning has gained prominence in the extraction of functional peptides from extensive datasets.
Methods:In this study, we comprehensively review data resources and predictors related to ACVPs published over the past two decades. In addition, we analyze the influence of various factors on model performance.
Results:We have reviewed nine ACVP-containing databases, which integrate detailed information on protein fragments effective against coronaviruses, providing crucial references for the development of antiviral drugs and vaccines. Additionally, we have assessed 15 peptide predictors for antiviral or specifically anticoronavirus activity. These predictors employ computational models to swiftly screen potential antiviral candidates, offering an efficient pathway for drug development.
Conclusion:Our study provides conclusive results and insights into the performance of different computational methods, and sheds light on the future trajectory of bioinformatics tools for ACVPs. This work offers a representative overview of contributions to the field, with an emphasis on the crucial role of ACVPs in combating COVID-19.
About the authors
Bowen Li
Medical College, Guizhou University
Email: info@benthamscience.net
Min Li
Medical College, Guizhou University
Email: info@benthamscience.net
Chunying Lu
Medical College, Guizhou University
Email: info@benthamscience.net
Yifei Wu
Medical College, Guizhou University
Email: info@benthamscience.net
Heng Chen
Medical College, Guizhou University
Author for correspondence.
Email: info@benthamscience.net
Bifang He
Medical College, Guizhou University
Author for correspondence.
Email: info@benthamscience.net
References
- Chakkour, M.; Salami, A.; Olleik, D.; Kamal, I.; Noureddine, F.Y.; Roz, A.E.; Ghssein, G. Risk markers of COVID-19, a study from South-Lebanon. COVID, 2022, 2(7), 867-876. doi: 10.3390/covid2070063
- Liu, Y.C.; Kuo, R.L.; Shih, S.R. COVID-19: The first documented coronavirus pandemic in history. Biomed. J., 2020, 43(4), 328-333. doi: 10.1016/j.bj.2020.04.007 PMID: 32387617
- Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol., 2020, 20(6), 363-374. doi: 10.1038/s41577-020-0311-8 PMID: 32346093
- Peiris, J.S.M.; Lai, S.T.; Poon, L.L.M.; Guan, Y.; Yam, L.Y.C.; Lim, W.; Nicholls, J.; Yee, W.K.S.; Yan, W.W.; Cheung, M.T.; Cheng, V.C.C.; Chan, K.H.; Tsang, D.N.C.; Yung, R.W.H.; Ng, T.K.; Yuen, K.Y. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet, 2003, 361(9366), 1319-1325. doi: 10.1016/S0140-6736(03)13077-2 PMID: 12711465
- Zumla, A.; Hui, D.S.; Perlman, S. Middle East respiratory syndrome. Lancet, 2015, 386(9997), 995-1007. doi: 10.1016/S0140-6736(15)60454-8 PMID: 26049252
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273. doi: 10.1038/s41586-020-2012-7 PMID: 32015507
- Yu, K.; Zhang, Q.; Liu, Z.; Du, Y.; Gao, X.; Zhao, Q.; Cheng, H.; Li, X.; Liu, Z.X. Deep learning based prediction of reversible HAT/HDAC-specific lysine acetylation. Brief. Bioinform., 2020, 21(5), 1798-1805. doi: 10.1093/bib/bbz107 PMID: 32978618
- Noureddine, F.Y.; Chakkour, M.; El Roz, A.; Reda, J.; Al Sahily, R.; Assi, A.; Joma, M.; Salami, H.; Hashem, S.J.; Harb, B.; Salami, A.; Ghssein, G. The Emergence of SARS-CoV-2 variant(s) and its impact on the prevalence of COVID-19 cases in the Nabatieh region, Lebanon. Med. Sci., 2021, 9(2), 40. doi: 10.3390/medsci9020040 PMID: 34199617
- Shah, M.; Woo, H.G. Molecular perspectives of SARS-CoV-2: Pathology, immune evasion, and therapeutic interventions. Mol. Cells, 2021, 44(6), 408-421. doi: 10.14348/molcells.2021.0026 PMID: 34059561
- Sinatti, G.; Santini, S.J.; Tarantino, G.; Picchi, G.; Cosimini, B.; Ranfone, F.; Casano, N.; Zingaropoli, M.A.; Iapadre, N.; Bianconi, S.; Armiento, A.; Carducci, P.; Ciardi, M.R.; Mastroianni, C.M.; Grimaldi, A.; Balsano, C. PaO2/FiO2 ratio forecasts COVID-19 patients outcome regardless of age: A cross-sectional, monocentric study. Intern. Emerg. Med., 2022, 17(3), 665-673. doi: 10.1007/s11739-021-02840-7 PMID: 34637082
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; Bailey, R.; Swanson, K.A.; Roychoudhury, S.; Koury, K.; Li, P.; Kalina, W.V.; Cooper, D.; Frenck, R.W., Jr; Hammitt, L.L.; Türeci, Ö.; Nell, H.; Schaefer, A.; Ünal, S.; Tresnan, D.B.; Mather, S.; Dormitzer, P.R.; Şahin, U.; Jansen, K.U.; Gruber, W.C.; Group, C.C.T. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med., 2020, 383(27), 2603-2615. doi: 10.1056/NEJMoa2034577 PMID: 33301246
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; McGettigan, J.; Khetan, S.; Segall, N.; Solis, J.; Brosz, A.; Fierro, C.; Schwartz, H.; Neuzil, K.; Corey, L.; Gilbert, P.; Janes, H.; Follmann, D.; Marovich, M.; Mascola, J.; Polakowski, L.; Ledgerwood, J.; Graham, B.S.; Bennett, H.; Pajon, R.; Knightly, C.; Leav, B.; Deng, W.; Zhou, H.; Han, S.; Ivarsson, M.; Miller, J.; Zaks, T.; Group, C.S. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med., 2021, 384(5), 403-416. doi: 10.1056/NEJMoa2035389 PMID: 33378609
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; Bibi, S.; Briner, C.; Cicconi, P.; Collins, A.M.; Colin-Jones, R.; Cutland, C.L.; Darton, T.C.; Dheda, K.; Duncan, C.J.A.; Emary, K.R.W.; Ewer, K.J.; Fairlie, L.; Faust, S.N.; Feng, S.; Ferreira, D.M.; Finn, A.; Goodman, A.L.; Green, C.M.; Green, C.A.; Heath, P.T.; Hill, C.; Hill, H.; Hirsch, I.; Hodgson, S.H.C.; Izu, A.; Jackson, S.; Jenkin, D.; Joe, C.C.D.; Kerridge, S.; Koen, A.; Kwatra, G.; Lazarus, R.; Lawrie, A.M.; Lelliott, A.; Libri, V.; Lillie, P.J.; Mallory, R.; Mendes, A.V.A.; Milan, E.P.; Minassian, A.M.; McGregor, A.; Morrison, H.; Mujadidi, Y.F.; Nana, A.; OReilly, P.J.; Padayachee, S.D.; Pittella, A.; Plested, E.; Pollock, K.M.; Ramasamy, M.N.; Rhead, S.; Schwarzbold, A.V.; Singh, N.; Smith, A.; Song, R.; Snape, M.D.; Sprinz, E.; Sutherland, R.K.; Tarrant, R.; Thomson, E.C.; Török, M.E.; Toshner, M.; Turner, D.P.J.; Vekemans, J.; Villafana, T.L.; Watson, M.E.E.; Williams, C.J.; Douglas, A.D.; Hill, A.V.S.; Lambe, T.; Gilbert, S.C.; Pollard, A.J.; Aban, M.; Abayomi, F.; Abeyskera, K.; Aboagye, J.; Adam, M.; Adams, K.; Adamson, J.; Adelaja, Y.A.; Adewetan, G.; Adlou, S.; Ahmed, K.; Akhalwaya, Y.; Akhalwaya, S.; Alcock, A.; Ali, A.; Allen, E.R.; Allen, L.; Almeida, T.C.D.S.C.; Alves, M.P.S.; Amorim, F.; Andritsou, F.; Anslow, R.; Appleby, M.; Arbe-Barnes, E.H.; Ariaans, M.P.; Arns, B.; Arruda, L.; Azi, P.; Azi, L.; Babbage, G.; Bailey, C.; Baker, K.F.; Baker, M.; Baker, N.; Baker, P.; Baldwin, L.; Baleanu, I.; Bandeira, D.; Bara, A.; Barbosa, M.A.S.; Barker, D.; Barlow, G.D.; Barnes, E.; Barr, A.S.; Barrett, J.R.; Barrett, J.; Bates, L.; Batten, A.; Beadon, K.; Beales, E.; Beckley, R.; Belij-Rammerstorfer, S.; Bell, J.; Bellamy, D.; Bellei, N.; Belton, S.; Berg, A.; Bermejo, L.; Berrie, E.; Berry, L.; Berzenyi, D.; Beveridge, A.; Bewley, K.R.; Bexhell, H.; Bhikha, S.; Bhorat, A.E.; Bhorat, Z.E.; Bijker, E.; Birch, G.; Birch, S.; Bird, A.; Bird, O.; Bisnauthsing, K.; Bittaye, M.; Blackstone, K.; Blackwell, L.; Bletchly, H.; Blundell, C.L.; Blundell, S.R.; Bodalia, P.; Boettger, B.C.; Bolam, E.; Boland, E.; Bormans, D.; Borthwick, N.; Bowring, F.; Boyd, A.; Bradley, P.; Brenner, T.; Brown, P.; Brown, C.; Brown-OSullivan, C.; Bruce, S.; Brunt, E.; Buchan, R.; Budd, W.; Bulbulia, Y.A.; Bull, M.; Burbage, J.; Burhan, H.; Burn, A.; Buttigieg, K.R.; Byard, N.; Cabera Puig, I.; Calderon, G.; Calvert, A.; Camara, S.; Cao, M.; Cappuccini, F.; Cardoso, J.R.; Carr, M.; Carroll, M.W.; Carson-Stevens, A.; Carvalho, Y.M.; Carvalho, J.A.M.; Casey, H.R.; Cashen, P.; Castro, T.; Castro, L.C.; Cathie, K.; Cavey, A.; Cerbino-Neto, J.; Chadwick, J.; Chapman, D.; Charlton, S.; Chelysheva, I.; Chester, O.; Chita, S.; Cho, J-S.; Cifuentes, L.; Clark, E.; Clark, M.; Clarke, A.; Clutterbuck, E.A.; Collins, S.L.K.; Conlon, C.P.; Connarty, S.; Coombes, N.; Cooper, C.; Cooper, R.; Cornelissen, L.; Corrah, T.; Cosgrove, C.; Cox, T.; Crocker, W.E.M.; Crosbie, S.; Cullen, L.; Cullen, D.; Cunha, D.R.M.F.; Cunningham, C.; Cuthbertson, F.C.; Da Guarda, S.N.F.; da Silva, L.P.; Damratoski, B.E.; Danos, Z.; Dantas, M.T.D.C.; Darroch, P.; Datoo, M.S.; Datta, C.; Davids, M.; Davies, S.L.; Davies, H.; Davis, E.; Davis, J.; Davis, J.; De Nobrega, M.M.D.; De Oliveira Kalid, L.M.; Dearlove, D.; Demissie, T.; Desai, A.; Di Marco, S.; Di Maso, C.; Dinelli, M.I.S.; Dinesh, T.; Docksey, C.; Dold, C.; Dong, T.; Donnellan, F.R.; Dos Santos, T.; dos Santos, T.G.; Dos Santos, E.P.; Douglas, N.; Downing, C.; Drake, J.; Drake-Brockman, R.; Driver, K.; Drury, R.; Dunachie, S.J.; Durham, B.S.; Dutra, L.; Easom, N.J.W.; van Eck, S.; Edwards, M.; Edwards, N.J.; El Muhanna, O.M.; Elias, S.C.; Elmore, M.; English, M.; Esmail, A.; Essack, Y.M.; Farmer, E.; Farooq, M.; Farrar, M.; Farrugia, L.; Faulkner, B.; Fedosyuk, S.; Felle, S.; Feng, S.; Ferreira Da Silva, C.; Field, S.; Fisher, R.; Flaxman, A.; Fletcher, J.; Fofie, H.; Fok, H.; Ford, K.J.; Fowler, J.; Fraiman, P.H.A.; Francis, E.; Franco, M.M.; Frater, J.; Freire, M.S.M.; Fry, S.H.; Fudge, S.; Furze, J.; Fuskova, M.; Galian-Rubio, P.; Galiza, E.; Garlant, H.; Gavrila, M.; Geddes, A.; Gibbons, K.A.; Gilbride, C.; Gill, H.; Glynn, S.; Godwin, K.; Gokani, K.; Goldoni, U.C.; Goncalves, M.; Gonzalez, I.G.S.; Goodwin, J.; Goondiwala, A.; Gordon-Quayle, K.; Gorini, G.; Grab, J.; Gracie, L.; Greenland, M.; Greenwood, N.; Greffrath, J.; Groenewald, M.M.; Grossi, L.; Gupta, G.; Hackett, M.; Hallis, B.; Hamaluba, M.; Hamilton, E.; Hamlyn, J.; Hammersley, D.; Hanrath, A.T.; Hanumunthadu, B.; Harris, S.A.; Harris, C.; Harris, T.; Harrison, T.D.; Harrison, D.; Hart, T.C.; Hartnell, B.; Hassan, S.; Haughney, J.; Hawkins, S.; Hay, J.; Head, I.; Henry, J.; Hermosin Herrera, M.; Hettle, D.B.; Hill, J.; Hodges, G.; Horne, E.; Hou, M.M.; Houlihan, C.; Howe, E.; Howell, N.; Humphreys, J.; Humphries, H.E.; Hurley, K.; Huson, C.; Hyder-Wright, A.; Hyams, C.; Ikram, S.; Ishwarbhai, A.; Ivan, M.; Iveson, P.; Iyer, V.; Jackson, F.; De Jager, J.; Jaumdally, S.; Jeffers, H.; Jesudason, N.; Jones, B.; Jones, K.; Jones, E.; Jones, C.; Jorge, M.R.; Jose, A.; Joshi, A.; Júnior, E.A.M.S.; Kadziola, J.; Kailath, R.; Kana, F.; Karampatsas, K.; Kasanyinga, M.; Keen, J.; Kelly, E.J.; Kelly, D.M.; Kelly, D.; Kelly, S.; Kerr, D.; Kfouri, R.Á.; Khan, L.; Khozoee, B.; Kidd, S.; Killen, A.; Kinch, J.; Kinch, P.; King, L.D.W.; King, T.B.; Kingham, L.; Klenerman, P.; Knapper, F.; Knight, J.C.; Knott, D.; Koleva, S.; Lang, M.; Lang, G.; Larkworthy, C.W.; Larwood, J.P.J.; Law, R.; Lazarus, E.M.; Leach, A.; Lees, E.A.; Lemm, N-M.; Lessa, A.; Leung, S.; Li, Y.; Lias, A.M.; Liatsikos, K.; Linder, A.; Lipworth, S.; Liu, S.; Liu, X.; Lloyd, A.; Lloyd, S.; Loew, L.; Lopez Ramon, R.; Lora, L.; Lowthorpe, V.; Luz, K.; MacDonald, J.C.; MacGregor, G.; Madhavan, M.; Mainwaring, D.O.; Makambwa, E.; Makinson, R.; Malahleha, M.; Malamatsho, R.; Mallett, G.; Mansatta, K.; Maoko, T.; Mapetla, K.; Marchevsky, N.G.; Marinou, S.; Marlow, E.; Marques, G.N.; Marriott, P.; Marshall, R.P.; Marshall, J.L.; Martins, F.J.; Masenya, M.; Masilela, M.; Masters, S.K.; Mathew, M.; Matlebjane, H.; Matshidiso, K.; Mazur, O.; Mazzella, A.; McCaughan, H.; McEwan, J.; McGlashan, J.; McInroy, L.; McIntyre, Z.; McLenaghan, D.; McRobert, N.; McSwiggan, S.; Megson, C.; Mehdipour, S.; Meijs, W.; Mendonça, R.N.Á.; Mentzer, A.J.; Mirtorabi, N.; Mitton, C.; Mnyakeni, S.; Moghaddas, F.; Molapo, K.; Moloi, M.; Moore, M.; Moraes-Pinto, M.I.; Moran, M.; Morey, E.; Morgans, R.; Morris, S.; Morris, S.; Morris, H.C.; Morselli, F.; Morshead, G.; Morter, R.; Mottal, L.; Moultrie, A.; Moya, N.; Mpelembue, M.; Msomi, S.; Mugodi, Y.; Mukhopadhyay, E.; Muller, J.; Munro, A.; Munro, C.; Murphy, S.; Mweu, P.; Myasaki, C.H.; Naik, G.; Naker, K.; Nastouli, E.; Nazir, A.; Ndlovu, B.; Neffa, F.; Njenga, C.; Noal, H.; Noé, A.; Novaes, G.; Nugent, F.L.; Nunes, G.; OBrien, K.; OConnor, D.; Odam, M.; Oelofse, S.; Oguti, B.; Olchawski, V.; Oldfield, N.J.; Oliveira, M.G.; Oliveira, C.; Oosthuizen, A.; OReilly, P.; Osborne, P.; Owen, D.R.J.; Owen, L.; Owens, D.; Owino, N.; Pacurar, M.; Paiva, B.V.B.; Palhares, E.M.F.; Palmer, S.; Parkinson, S.; Parracho, H.M.R.T.; Parsons, K.; Patel, D.; Patel, B.; Patel, F.; Patel, K.; Patrick-Smith, M.; Payne, R.O.; Peng, Y.; Penn, E.J.; Pennington, A.; Peralta Alvarez, M.P.; Perring, J.; Perry, N.; Perumal, R.; Petkar, S.; Philip, T.; Phillips, D.J.; Phillips, J.; Phohu, M.K.; Pickup, L.; Pieterse, S.; Piper, J.; Pipini, D.; Plank, M.; Du Plessis, J.; Pollard, S.; Pooley, J.; Pooran, A.; Poulton, I.; Powers, C.; Presa, F.B.; Price, D.A.; Price, V.; Primeira, M.; Proud, P.C.; Provstgaard-Morys, S.; Pueschel, S.; Pulido, D.; Quaid, S.; Rabara, R.; Radford, A.; Radia, K.; Rajapaska, D.; Rajeswaran, T.; Ramos, A.S.F.; Ramos Lopez, F.; Rampling, T.; Rand, J.; Ratcliffe, H.; Rawlinson, T.; Rea, D.; Rees, B.; Reiné, J.; Resuello-Dauti, M.; Reyes Pabon, E.; Ribiero, C.M.; Ricamara, M.; Richter, A.; Ritchie, N.; Ritchie, A.J.; Robbins, A.J.; Roberts, H.; Robinson, R.E.; Robinson, H.; Rocchetti, T.T.; Rocha, B.P.; Roche, S.; Rollier, C.; Rose, L.; Ross Russell, A.L.; Rossouw, L.; Royal, S.; Rudiansyah, I.; Ruiz, S.; Saich, S.; Sala, C.; Sale, J.; Salman, A.M.; Salvador, N.; Salvador, S.; Sampaio, M.; Samson, A.D.; Sanchez-Gonzalez, A.; Sanders, H.; Sanders, K.; Santos, E.; Santos Guerra, M.F.S.; Satti, I.; Saunders, J.E.; Saunders, C.; Sayed, A.; Schim van der Loeff, I.; Schmid, A.B.; Schofield, E.; Screaton, G.; Seddiqi, S.; Segireddy, R.R.; Senger, R.; Serrano, S.; Shah, R.; Shaik, I.; Sharpe, H.E.; Sharrocks, K.; Shaw, R.; Shea, A.; Shepherd, A.; Shepherd, J.G.; Shiham, F.; Sidhom, E.; Silk, S.E.; da Silva Moraes, A.C.; Silva-Junior, G.; Silva-Reyes, L.; Silveira, A.D.; Silveira, M.B.V.; Sinha, J.; Skelly, D.T.; Smith, D.C.; Smith, N.; Smith, H.E.; Smith, D.J.; Smith, C.C.; Soares, A.; Soares, T.; Solórzano, C.; Sorio, G.L.; Sorley, K.; Sosa-Rodriguez, T.; Souza, C.M.C.D.L.; Souza, B.S.D.F.; Souza, A.R.; Spencer, A.J.; Spina, F.; Spoors, L.; Stafford, L.; Stamford, I.; Starinskij, I.; Stein, R.; Steven, J.; Stockdale, L.; Stockwell, L.V.; Strickland, L.H.; Stuart, A.C.; Sturdy, A.; Sutton, N.; Szigeti, A.; Tahiri-Alaoui, A.; Tanner, R.; Taoushanis, C.; Tarr, A.W.; Taylor, K.; Taylor, U.; Taylor, I.J.; Taylor, J.; te Water Naude, R.; Themistocleous, Y.; Themistocleous, A.; Thomas, M.; Thomas, K.; Thomas, T.M.; Thombrayil, A.; Thompson, F.; Thompson, A.; Thompson, K.; Thompson, A.; Thomson, J.; Thornton-Jones, V.; Tighe, P.J.; Tinoco, L.A.; Tiongson, G.; Tladinyane, B.; Tomasicchio, M.; Tomic, A.; Tonks, S.; Towner, J.; Tran, N.; Tree, J.; Trillana, G.; Trinham, C.; Trivett, R.; Truby, A.; Tsheko, B.L.; Turabi, A.; Turner, R.; Turner, C.; Ulaszewska, M.; Underwood, B.R.; Varughese, R.; Verbart, D.; Verheul, M.; Vichos, I.; Vieira, T.; Waddington, C.S.; Walker, L.; Wallis, E.; Wand, M.; Warbick, D.; Wardell, T.; Warimwe, G.; Warren, S.C.; Watkins, B.; Watson, E.; Webb, S.; Webb-Bridges, A.; Webster, A.; Welch, J.; Wells, J.; West, A.; White, C.; White, R.; Williams, P.; Williams, R.L.; Winslow, R.; Woodyer, M.; Worth, A.T.; Wright, D.; Wroblewska, M.; Yao, A.; Zimmer, R.; Zizi, D.; Zuidewind, P. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet, 2021, 397(10269), 99-111. doi: 10.1016/S0140-6736(20)32661-1 PMID: 33306989
- Sadoff, J.; Gray, G.; Vandebosch, A.; Cárdenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Fennema, H.; Spiessens, B.; Offergeld, K.; Scheper, G.; Taylor, K.L.; Robb, M.L.; Treanor, J.; Barouch, D.H.; Stoddard, J.; Ryser, M.F.; Marovich, M.A.; Neuzil, K.M.; Corey, L.; Cauwenberghs, N.; Tanner, T.; Hardt, K.; Ruiz-Guiñazú, J.; Le Gars, M.; Schuitemaker, H.; Van Hoof, J.; Struyf, F.; Douoguih, M.; Group, E.S. Safety and efficacy of single-dose Ad26.COV2.S vaccine against COVID-19. N. Engl. J. Med., 2021, 384(23), 2187-2201. doi: 10.1056/NEJMoa2101544 PMID: 33882225
- Barouch, D.H.; Stephenson, K.E.; Sadoff, J.; Yu, J.; Chang, A.; Gebre, M.; McMahan, K.; Liu, J.; Chandrashekar, A.; Patel, S.; Le Gars, M.; de Groot, A.M.; Heerwegh, D.; Struyf, F.; Douoguih, M.; van Hoof, J.; Schuitemaker, H. Durable humoral and cellular immune responses 8 months after Ad26.COV2.S vaccination. N. Engl. J. Med., 2021, 385(10), 951-953. doi: 10.1056/NEJMc2108829 PMID: 34260834
- Tannock, G.A.; Kim, H.; Xue, L. Why are vaccines against many human viral diseases still unavailable; an historic perspective? J. Med. Virol., 2020, 92(2), 129-138. doi: 10.1002/jmv.25593 PMID: 31502669
- Marqus, S.; Pirogova, E.; Piva, T.J. Evaluation of the use of therapeutic peptides for cancer treatment. J. Biomed. Sci., 2017, 24(1), 21. doi: 10.1186/s12929-017-0328-x PMID: 28320393
- Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des., 2013, 81(1), 136-147. doi: 10.1111/cbdd.12055 PMID: 23253135
- Zhang, Q.; Chen, X.; Li, B.; Lu, C.; Yang, S.; Long, J.; Chen, H.; Huang, J.; He, B. A database of anti-coronavirus peptides. Sci. Data, 2022, 9(1), 294. doi: 10.1038/s41597-022-01394-3 PMID: 35697698
- Wang, Z.; Wang, G. APD: The antimicrobial peptide database. Nucleic Acids Res., 2004, 32(90001), 590D-592. doi: 10.1093/nar/gkh025 PMID: 14681488
- Wang, G.; Li, X.; Wang, Z. APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res., 2009, 37(Database issue), D933-D937. doi: 10.1093/nar/gkn823 PMID: 18957441
- Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res., 2016, 44(D1), D1087-D1093. doi: 10.1093/nar/gkv1278 PMID: 26602694
- Thomas, S.; Karnik, S.; Barai, R.S.; Jayaraman, V.K.; Idicula-Thomas, S. CAMP: A useful resource for research on antimicrobial peptides. Nucleic Acids Res., 2010, 38(Database issue), D774-D780. doi: 10.1093/nar/gkp1021 PMID: 19923233
- Waghu, F.H.; Gopi, L.; Barai, R.S.; Ramteke, P.; Nizami, B.; Idicula-Thomas, S. CAMP: Collection of sequences and structures of antimicrobial peptides. Nucleic Acids Res., 2014, 42(D1), D1154-D1158. doi: 10.1093/nar/gkt1157 PMID: 24265220
- Waghu, F.H.; Barai, R.S.; Gurung, P.; Idicula-Thomas, S. CAMPR3: A database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res., 2016, 44(D1), D1094-D1097. doi: 10.1093/nar/gkv1051 PMID: 26467475
- Gawde, U.; Chakraborty, S.; Waghu, F.H.; Barai, R.S.; Khanderkar, A.; Indraguru, R.; Shirsat, T.; Idicula-Thomas, S. CAMPR4: A database of natural and synthetic antimicrobial peptides. Nucleic Acids Res., 2023, 51(D1), D377-D383. doi: 10.1093/nar/gkac933 PMID: 36370097
- Thakur, N.; Qureshi, A.; Kumar, M. AVPpred: Collection and prediction of highly effective antiviral peptides. Nucleic Acids Res., 2012, 40, W199-W204. doi: 10.1093/nar/gks450 PMID: 22638580
- Zhao, X.; Wu, H.; Lu, H.; Li, G.; Huang, Q. LAMP: A database linking antimicrobial peptides. PLoS One, 2013, 8(6), e66557. doi: 10.1371/journal.pone.0066557 PMID: 23825543
- Gogoladze, G.; Grigolava, M.; Vishnepolsky, B.; Chubinidze, M.; Duroux, P.; Lefranc, M.P.; Pirtskhalava, M. DBAASP: Database of antimicrobial activity and structure of peptides. FEMS Microbiol. Lett., 2014, 357(1), 63-68. doi: 10.1111/1574-6968.12489 PMID: 24888447
- Pirtskhalava, M.; Gabrielian, A.; Cruz, P.; Griggs, H.L.; Squires, R.B.; Hurt, D.E.; Grigolava, M.; Chubinidze, M.; Gogoladze, G.; Vishnepolsky, B.; Alekseev, V.; Rosenthal, A.; Tartakovsky, M. DBAASP v.2: An enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res., 2016, 44(D1), D1104-D1112. doi: 10.1093/nar/gkv1174 PMID: 26578581
- Pirtskhalava, M.; Amstrong, A.A.; Grigolava, M.; Chubinidze, M.; Alimbarashvili, E.; Vishnepolsky, B.; Gabrielian, A.; Rosenthal, A.; Hurt, D.E.; Tartakovsky, M. DBAASP v3: Database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Res., 2021, 49(D1), D288-D297. doi: 10.1093/nar/gkaa991 PMID: 33151284
- Qureshi, A.; Thakur, N.; Tandon, H.; Kumar, M. AVPdb: A database of experimentally validated antiviral peptides targeting medically important viruses. Nucleic Acids Res., 2014, 42(D1), D1147-D1153. doi: 10.1093/nar/gkt1191 PMID: 24285301
- Fan, L.; Sun, J.; Zhou, M.; Zhou, J.; Lao, X.; Zheng, H.; Xu, H. DRAMP: A comprehensive data repository of antimicrobial peptides. Sci. Rep., 2016, 6(1), 24482. doi: 10.1038/srep24482 PMID: 27075512
- Kang, X.; Dong, F.; Shi, C.; Liu, S.; Sun, J.; Chen, J.; Li, H.; Xu, H.; Lao, X.; Zheng, H. DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci. Data, 2019, 6(1), 148. doi: 10.1038/s41597-019-0154-y PMID: 31409791
- Shi, G.; Kang, X.; Dong, F.; Liu, Y.; Zhu, N.; Hu, Y.; Xu, H.; Lao, X.; Zheng, H. DRAMP 3.0: An enhanced comprehensive data repository of antimicrobial peptides. Nucleic Acids Res., 2022, 50(D1), D488-D496. doi: 10.1093/nar/gkab651 PMID: 34390348
- Jhong, J.H.; Chi, Y.H.; Li, W.C.; Lin, T.H.; Huang, K.Y.; Lee, T.Y. dbAMP: An integrated resource for exploring antimicrobial peptides with functional activities and physicochemical properties on transcriptome and proteome data. Nucleic Acids Res., 2019, 47(D1), D285-D297. doi: 10.1093/nar/gky1030 PMID: 30380085
- Jhong, J.H.; Yao, L.; Pang, Y.; Li, Z.; Chung, C.R.; Wang, R.; Li, S.; Li, W.; Luo, M.; Ma, R.; Huang, Y.; Zhu, X.; Zhang, J.; Feng, H.; Cheng, Q.; Wang, C.; Xi, K.; Wu, L.C.; Chang, T.H.; Horng, J.T.; Zhu, L.; Chiang, Y.C.; Wang, Z.; Lee, T.Y. dbAMP 2.0: Updated resource for antimicrobial peptides with an enhanced scanning method for genomic and proteomic data. Nucleic Acids Res., 2022, 50(D1), D460-D470. doi: 10.1093/nar/gkab1080 PMID: 34850155
- Timmons, P.B.; Hewage, C.M. ENNAVIA is a novel method which employs neural networks for antiviral and anti-coronavirus activity prediction for therapeutic peptides. Brief. Bioinform., 2021, 22(6), bbab258. doi: 10.1093/bib/bbab258 PMID: 34297817
- Kurata, H.; Tsukiyama, S.; Manavalan, B. iACVP: Markedly enhanced identification of anti-coronavirus peptides using a dataset-specific word2vec model. Brief. Bioinform., 2022, 23(4), bbac265. doi: 10.1093/bib/bbac265 PMID: 35772910
- Chang, K.Y.; Yang, J.R. Analysis and prediction of highly effective antiviral peptides based on random forests. PLoS One, 2013, 8(8), e70166. doi: 10.1371/journal.pone.0070166 PMID: 23940542
- Beltrán Lissabet, J.F.; Belén, L.H.; Farias, J.G. AntiVPP 1.0: A portable tool for prediction of antiviral peptides. Comput. Biol. Med., 2019, 107, 127-130. doi: 10.1016/j.compbiomed.2019.02.011 PMID: 30802694
- Schaduangrat, N.; Nantasenamat, C.; Prachayasittikul, V.; Shoombuatong, W. Meta-iAVP: A sequence-based meta-predictor for improving the prediction of antiviral peptides using effective feature representation. Int. J. Mol. Sci., 2019, 20(22), 5743. doi: 10.3390/ijms20225743 PMID: 31731751
- Wei, L.; Zhou, C.; Su, R.; Zou, Q. PEPred-Suite: Improved and robust prediction of therapeutic peptides using adaptive feature representation learning. Bioinformatics, 2019, 35(21), 4272-4280. doi: 10.1093/bioinformatics/btz246 PMID: 30994882
- Chowdhury, A.S.; Reehl, S.M.; Kehn-Hall, K.; Bishop, B.; Webb-Robertson, B.J.M. Better understanding and prediction of antiviral peptides through primary and secondary structure feature importance. Sci. Rep., 2020, 10(1), 19260. doi: 10.1038/s41598-020-76161-8 PMID: 33159146
- Li, J.; Pu, Y.; Tang, J.; Zou, Q.; Guo, F. DeepAVP: A dual-channel deep neural network for identifying variable-length antiviral peptides. IEEE J. Biomed. Health Inform., 2020, 24(10), 3012-3019. doi: 10.1109/JBHI.2020.2977091 PMID: 32142462
- Zhang, Y.P.; Zou, Q. PPTPP: A novel therapeutic peptide prediction method using physicochemical property encoding and adaptive feature representation learning. Bioinformatics, 2020, 36(13), 3982-3987. doi: 10.1093/bioinformatics/btaa275 PMID: 32348463
- Cortes, C.; Vapnik, V.; Vapnik, V.; Llorens, C.; Vapnik, V.N.; Cortes, C. Support-vector networks. Mach. Learn., 1995, 20(3), 273-297. doi: 10.1007/BF00994018
- Breiman, L. Random forests. Mach. Learn., 2001, 45(1), 5-32. doi: 10.1023/A:1010933404324
- Zare, M.; Mohabatkar, H.; Faramarzi, F.; Beigi, M.M.; Behbahani, M.J.T.O.B.J. Using chous pseudo amino acid composition and machine learningmethod to predict the antiviral peptides. Open Bioinform.atics J., 2015, 9, 13-19.
- Freund, Y. A short introduction to boosting. J. Japanese Soci. Artif. Intell., 1999, 14(5), 771-780.
- Graves, A.; Schmidhuber, J. IEEE International Joint Conference on Neural Networks., 2005.
- Lecun, Y.; Bottou, L.J.P.o.t.I. Gradient-based learning applied to document recognition. Proc. IEEE, 1998, 86(11), 2278-2324. doi: 10.1109/5.726791
- Pang, Y.; Wang, Z.; Jhong, J.H.; Lee, T.Y. Identifying anti-coronavirus peptides by incorporating different negative datasets and imbalanced learning strategies. Brief. Bioinform., 2021, 22(2), 1085-1095. doi: 10.1093/bib/bbaa423 PMID: 33497434
- Tyagi, A.; Tuknait, A.; Anand, P.; Gupta, S.; Sharma, M.; Mathur, D.; Joshi, A.; Singh, S.; Gautam, A.; Raghava, G.P.S.; Cancer, P.P.D. CancerPPD: A database of anticancer peptides and proteins. Nucleic Acids Res., 2015, 43(D1), D837-D843. doi: 10.1093/nar/gku892 PMID: 25270878
- Agrawal, P.; Bhalla, S.; Chaudhary, K.; Kumar, R.; Sharma, M.; Raghava, G.P.S. In silico approach for prediction of antifungal peptides. Front. Microbiol., 2018, 9, 323. doi: 10.3389/fmicb.2018.00323 PMID: 29535692
- Kaushik, A.C.; Mehmood, A.; Selvaraj, G.; Dai, X.; Pan, Y.; Wei, D.Q. CoronaPep: An anti-coronavirus peptide generation tool. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2021, 18(4), 1299-1304. doi: 10.1109/TCBB.2021.3064630 PMID: 33687847
- Pang, Y.; Yao, L.; Jhong, J.H.; Wang, Z.; Lee, T.Y. AVPIden: A new scheme for identification and functional prediction of antiviral peptides based on machine learning approaches. Brief. Bioinform., 2021, 22(6), bbab263. doi: 10.1093/bib/bbab263 PMID: 34279599
- Qureshi, A.; Thakur, N.; Kumar, M. HIPdb: A database of experimentally validated HIV inhibiting peptides. PLoS One, 2013, 8(1), e54908. doi: 10.1371/journal.pone.0054908 PMID: 23359817
- Mcculloch, W.S.; Pitts, W.H. A logical calculus of ideas immanent in nervous activity. Bull. Math. Biophy., 1942, 5, 115-133. PMID: 2185863
- Manavalan, B.; Basith, S.; Lee, G. Comparative analysis of machine learning-based approaches for identifying therapeutic peptides targeting SARS-CoV-2. Brief. Bioinform., 2022, 23(1), bbab412. doi: 10.1093/bib/bbab412 PMID: 34595489
- Sharma, R.; Shrivastava, S.; Singh, S.K.; Kumar, A.; Singh, A.K.; Saxena, S. Deep-AVPpred: Artificial intelligence driven discovery of peptide drugs for viral infections. IEEE J. Biomed. Health Inform., 2022, 26(10), 5067-5074. doi: 10.1109/JBHI.2021.3130825 PMID: 34822333
- Singh, S.; Chaudhary, K.; Dhanda, S.K.; Bhalla, S.; Usmani, S.S.; Gautam, A.; Tuknait, A.; Agrawal, P.; Mathur, D.; Raghava, G.P.S. SATPdb: A database of structurally annotated therapeutic peptides. Nucleic Acids Res., 2016, 44(D1), D1119-D1126. doi: 10.1093/nar/gkv1114 PMID: 26527728
- Aguilera-Mendoza, L.; Marrero-Ponce, Y.; Beltran, J.A.; Tellez Ibarra, R.; Guillen-Ramirez, H.A.; Brizuela, C.A. Graph-based data integration from bioactive peptide databases of pharmaceutical interest: Toward an organized collection enabling visual network analysis. Bioinformatics, 2019, 35(22), 4739-4747. doi: 10.1093/bioinformatics/btz260 PMID: 30994884
- Sharma, R.; Shrivastava, S.; Kumar Singh, S.; Kumar, A.; Saxena, S.; Kumar Singh, R. Deep-ABPpred: Identifying antibacterial peptides in protein sequences using bidirectional LSTM with word2vec. Brief. Bioinform., 2021, 22(5), bbab065. doi: 10.1093/bib/bbab065 PMID: 33784381
- Sharma, R.; Shrivastava, S.; Kumar Singh, S.; Kumar, A.; Saxena, S.; Kumar Singh, R. AniAMPpred: Artificial intelligence guided discovery of novel antimicrobial peptides in animal kingdom. Brief. Bioinform., 2021, 22(6), bbab242. doi: 10.1093/bib/bbab242 PMID: 34259329
- Sharma, R.; Shrivastava, S.; Kumar Singh, S.; Kumar, A.; Saxena, S.; Kumar Singh, R. Deep-AFPpred: Identifying novel antifungal peptides using pretrained embeddings from seq2vec with 1DCNN-BiLSTM. Brief. Bioinform., 2022, 23(1), bbab422. doi: 10.1093/bib/bbab422 PMID: 34670278
- Singh, V.; Shrivastava, S.; Kumar Singh, S.; Kumar, A.; Saxena, S. StaBle-ABPpred: A stacked ensemble predictor based on biLSTM and attention mechanism for accelerated discovery of antibacterial peptides. Brief. Bioinform., 2022, 23(1), bbab439. doi: 10.1093/bib/bbab439 PMID: 34750606
- Mclachlan, G.J. Discriminant Analysis and Statistical Pattern Recognition; Wiley, 2004. doi: 10.1002/0471725293
- Li, W.; Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 2006, 22(13), 1658-1659. doi: 10.1093/bioinformatics/btl158 PMID: 16731699
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics, 2012, 28(23), 3150-3152. doi: 10.1093/bioinformatics/bts565 PMID: 23060610
- Huang, Y.; Niu, B.; Gao, Y.; Fu, L.; Li, W.; Suite, C.D-H.I.T. CD-HIT Suite: A web server for clustering and comparing biological sequences. Bioinformatics, 2010, 26(5), 680-682. doi: 10.1093/bioinformatics/btq003 PMID: 20053844
- Lin, S.X.; Lapointe, J. Theoretical and experimental biology in one-A symposium in honour of Professor Kuo-Chen Chous 50th anniversary and Professor Richard Giegés 40th anniversary of their scientific careers. J. Biomed. Sci. Eng., 2013, 6(4), 435-442. doi: 10.4236/jbise.2013.64054
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Sys. Sci., 1997, 55(1), 119-139.
- Ramesh, V.; Parkavi, P.; Yasodha, P. Performance analysis of data mining techniques for placement chance prediction. Int. J. Sci. Eng. Res., 2011, 2(8), 2229-5518.
- Sakamoto, T.; Uehara, K. Induction of N-level decision trees. Transac. Inform. Proc. Soc. Japan, 1997, 38, 419-428.
- Ali, S.; Smith, K.A. On learning algorithm selection for classification. Appl. Soft Comput., 2006, 6(2), 119-138. doi: 10.1016/j.asoc.2004.12.002
- Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Strltist., 1992, 46(3), 1-12.
- Xiao, N.; Cao, D.S.; Zhu, M.F.; Xu, Q.S. protr/ProtrWeb: R package and web server for generating various numerical representation schemes of protein sequences. Bioinformatics, 2015, 31(11), 1857-1859. doi: 10.1093/bioinformatics/btv042 PMID: 25619996
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat., 2001, 29(5), 29. doi: 10.1214/aos/1013203451
- Ettayapuram Ramaprasad, A.S.; Singh, S.; Gajendra P S, R.; Venkatesan, S. AntiAngioPred: A server for prediction of anti-angiogenic peptides. PLoS One, 2015, 10(9), e0136990. doi: 10.1371/journal.pone.0136990 PMID: 26335203
- Lata, S.; Sharma, B.K.; Raghava, G.P.S. Analysis and prediction of antibacterial peptides. BMC Bioinformatics, 2007, 8(1), 263. doi: 10.1186/1471-2105-8-263 PMID: 17645800
- Wei, L.; Zhou, C.; Chen, H.; Song, J.; Su, R. ACPred-FL: A sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides. Bioinformatics, 2018, 34(23), 4007-4016. doi: 10.1093/bioinformatics/bty451 PMID: 29868903
- Manavalan, B.; Shin, T.H.; Kim, M.O.; Lee, G. AIPpred: Sequence-based prediction of anti-inflammatory peptides using random forest. Front. Pharmacol., 2018, 9, 276. doi: 10.3389/fphar.2018.00276 PMID: 29636690
- Wei, L.; Xing, P.; Su, R.; Shi, G.; Ma, Z.S.; Zou, Q. CPPred-RF: A sequence-based predictor for identifying cell-penetrating peptides and their uptake efficiency. J. Proteome Res., 2017, 16(5), 2044-2053. doi: 10.1021/acs.jproteome.7b00019 PMID: 28436664
- Rajput, A.; Gupta, A.K.; Kumar, M. Prediction and analysis of quorum sensing peptides based on sequence features. PLoS One, 2015, 10(3), e0120066. doi: 10.1371/journal.pone.0120066 PMID: 25781990
- Li, N.; Kang, J.; Jiang, L.; He, B.; Lin, H.; Huang, J. PSBinder: A web service for predicting polystyrene surface-binding peptides. BioMed Res. Int., 2017, 2017, 1-5. doi: 10.1155/2017/5761517 PMID: 29445741
- Hanchuan Peng; Fuhui Long; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27(8), 1226-1238. doi: 10.1109/TPAMI.2005.159 PMID: 16119262
- McGraw, R.; Zhang, R. Multivariate analysis of homogeneous nucleation rate measurements. Nucleation in the p-toluic acid/sulfuric acid/water system. J. Chem. Phys., 2008, 128(6), 064508. doi: 10.1063/1.2830030 PMID: 18282057
- Wei, L.; Xing, P.; Shi, G.; Ji, Z.; Zou, Q. Fast prediction of protein methylation sites using a sequence-based feature selection technique. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2019, 16(4), 1264-1273. doi: 10.1109/TCBB.2017.2670558 PMID: 28222000
- Rao, B.; Zhou, C.; Zhang, G.; Su, R.; Wei, L. ACPred-Fuse: Fusing multi-view information improves the prediction of anticancer peptides. Brief. Bioinform., 2020, 21(5), 1846-1855. doi: 10.1093/bib/bbz088 PMID: 31729528
- Zou, Q.; Zeng, J.; Cao, L.; Ji, R. A novel features ranking metric with application to scalable visual and bioinformatics data classification. Neurocomputing, 2016, 173, 346-354. doi: 10.1016/j.neucom.2014.12.123
- Lata, S.; Mishra, N.K.; Raghava, G.P. AntiBP2: Improved version of antibacterial peptide prediction. BMC Bioinforma., 2010, 11(S1), S19. doi: 10.1186/1471-2105-11-S1-S19 PMID: 20122190
- Thakur, N.; Qureshi, A.; Kumar, M. VIRsiRNAdb: A curated database of experimentally validated viral siRNA/shRNA. Nucleic Acids Res., 2012, 40(D1), D230-D236. doi: 10.1093/nar/gkr1147 PMID: 22139916
- Boopathi, V.; Subramaniyam, S.; Malik, A.; Lee, G.; Manavalan, B.; Yang, D.C. mACPpred: A support vector machine-based meta-predictor for identification of anticancer peptides. Int. J. Mol. Sci., 2019, 20(8), 1964. doi: 10.3390/ijms20081964 PMID: 31013619
- Frank, E.; Hall, M.; Trigg, L.; Holmes, G.; Witten, I.H. Data mining in bioinformatics using Weka. Bioinformatics, 2004, 20(15), 2479-2481. doi: 10.1093/bioinformatics/bth261 PMID: 15073010
- Abouelenien, M.; Yuan, X.; Duraisamy, P.; Yuan, X. Improving classification performance for the minority class in highly imbalanced dataset using boosting. Third International Conference on Computing Communication & Networking Technologies., 2013.
- D Richard, C. Random forests for classification in ecology. Ecology, 2007, 88(11), 2783-2792.
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I.J.A. Attention is all you need. arXiv, 2017, 2017, 1706.03762.
Supplementary files
