In Silico Immunogenicity Assessment of Therapeutic Peptides
- Authors: Li W.1, Wei J.1, Jiang Q.1, Zhou Y.1, Yan X.2, Xiang C.3, Huang J.1
-
Affiliations:
- School of Life Science and Technology, University of Electronic Science and Technology of China
- School of Biological Sciences, University of Auckland
- School of Computer Science and Technology, Aba Teachers University
- Issue: Vol 31, No 26 (2024)
- Pages: 4100-4110
- Section: Anti-Infectives and Infectious Diseases
- URL: https://medjrf.com/0929-8673/article/view/644933
- DOI: https://doi.org/10.2174/0109298673264899231206093930
- ID: 644933
Cite item
Full Text
Abstract
:The application of therapeutic peptides in clinical practice has significantly progressed in the past decades. However, immunogenicity remains an inevitable and crucial issue in the development of therapeutic peptides. The prediction of antigenic peptides presented by MHC class II is a critical approach to evaluating the immunogenicity of therapeutic peptides. With the continuous upgrade of algorithms and databases in recent years, the prediction accuracy has been significantly improved. This has made in silico evaluation an important component of immunogenicity assessment in therapeutic peptide development. In this review, we summarize the development of peptide-MHC-II binding prediction methods for antigenic peptides presented by MHC class II molecules and provide a systematic explanation of the most advanced ones, aiming to deepen our understanding of this field that requires particular attention.
About the authors
Wenzhen Li
School of Life Science and Technology, University of Electronic Science and Technology of China
Email: info@benthamscience.net
Jinyi Wei
School of Life Science and Technology, University of Electronic Science and Technology of China
Email: info@benthamscience.net
Qianhu Jiang
School of Life Science and Technology, University of Electronic Science and Technology of China
Email: info@benthamscience.net
Yuwei Zhou
School of Life Science and Technology, University of Electronic Science and Technology of China
Email: info@benthamscience.net
Xingru Yan
School of Biological Sciences, University of Auckland
Email: info@benthamscience.net
Changcheng Xiang
School of Computer Science and Technology, Aba Teachers University
Author for correspondence.
Email: info@benthamscience.net
Jian Huang
School of Life Science and Technology, University of Electronic Science and Technology of China
Author for correspondence.
Email: info@benthamscience.net
References
- Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem., 2018, 26(10), 2700-2707. doi: 10.1016/j.bmc.2017.06.052 PMID: 28720325
- Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today, 2015, 20(1), 122-128. doi: 10.1016/j.drudis.2014.10.003 PMID: 25450771
- Ning, L.; Huang, J.; He, B.; Kang, J. An in silico immunogenicity analysis for PbHRH: An antiangiogenic peptibody by fusing HRH peptide and human IgG1 Fc fragment. Curr. Bioinform., 2020, 15(6), 547-553. doi: 10.2174/1574893614666190730104348
- Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic peptides: Current applications and future directions. Signal Transduct. Target. Ther., 2022, 7(1), 48. doi: 10.1038/s41392-022-00904-4 PMID: 35165272
- Sharma, A.; Kumar, A.; de la Torre, B.G.; Albericio, F. Liquid-phase peptide synthesis (LPPS): A third wave for the preparation of peptides. Chem. Rev., 2022, 122(16), 13516-13546. doi: 10.1021/acs.chemrev.2c00132 PMID: 35816287
- Jain, K.K. An overview of drug delivery systems. Methods Mol. Biol., 2020, 2059, 1-54. doi: 10.1007/978-1-4939-9798-5_1 PMID: 31435914
- Muttenthaler, M.; King, G.F.; Adams, D.J.; Alewood, P.F. Trends in peptide drug discovery. Nat. Rev. Drug Discov., 2021, 20(4), 309-325. doi: 10.1038/s41573-020-00135-8 PMID: 33536635
- Khalily, M.P.; Soydan, M. Peptide-based diagnostic and therapeutic agents: Where we are and where we are heading? Chem. Biol. Drug Des., 2023, 101(3), 772-793. doi: 10.1111/cbdd.14180 PMID: 36366980
- Zhang, H.; Saravanan, K.M.; Wei, Y.; Jiao, Y.; Yang, Y.; Pan, Y.; Wu, X.; Zhang, J.Z.H. Deep learning-based bioactive therapeutic peptide generation and screening. J. Chem. Inf. Model., 2023, 63(3), 835-845. doi: 10.1021/acs.jcim.2c01485 PMID: 36724090
- Jawa, V.; Cousens, L.P.; Awwad, M.; Wakshull, E.; Kropshofer, H.; De Groot, A.S. T-cell dependent immunogenicity of protein therapeutics: Preclinical assessment and mitigation. Clin. Immunol., 2013, 149(3), 534-555. doi: 10.1016/j.clim.2013.09.006 PMID: 24263283
- Watts, C. Capture and processing of exogenous antigens for presentation on MHC molecules. Annu. Rev. Immunol., 1997, 15(1), 821-850. doi: 10.1146/annurev.immunol.15.1.821 PMID: 9143708
- Vaisman-Mentesh, A.; Gutierrez-Gonzalez, M.; DeKosky, B.J.; Wine, Y. The molecular mechanisms that underlie the immune biology of anti-drug antibody formation following treatment with monoclonal antibodies. Front. Immunol., 2020, 11, 1951. doi: 10.3389/fimmu.2020.01951 PMID: 33013848
- Ning, L.; He, B.; Zhou, P.; Derda, R.; Huang, J. Molecular design of peptide-Fc fusion drugs. Curr. Drug Metab., 2019, 20(3), 203-208. doi: 10.2174/1389200219666180821095355 PMID: 30129406
- Rosenstock, J.; Balas, B.; Charbonnel, B.; Bolli, G.B.; Boldrin, M.; Ratner, R.; Balena, R. The fate of taspoglutide, a weekly GLP-1 receptor agonist, versus twice-daily exenatide for type 2 diabetes: the T-emerge 2 trial. Diabetes Care, 2013, 36(3), 498-504. doi: 10.2337/dc12-0709 PMID: 23139373
- Groell, F.; Jordan, O.; Borchard, G. In vitro models for immunogenicity prediction of therapeutic proteins. Eur. J. Pharm. Biopharm., 2018, 130, 128-142. doi: 10.1016/j.ejpb.2018.06.008 PMID: 29894817
- Zhou, Y.; Huang, Z.; Li, W.; Wei, J.; Jiang, Q.; Yang, W.; Huang, J. Deep learning in preclinical antibody drug discovery and development. Methods, 2023, 218, 57-71. doi: 10.1016/j.ymeth.2023.07.003 PMID: 37454742
- Zhou, Y.; Huang, Z.; Gou, Y.; Liu, S.; Yang, W.; Zhang, H.; Dzisoo, A.M.; Huang, J. AB-Amy: machine learning aided amyloidogenic risk prediction of therapeutic antibody light chains. Antib. Ther., 2023, 6(3), 147-156. doi: 10.1093/abt/tbad007 PMID: 37492587
- Zhou, Y.; Xie, S.; Yang, Y.; Jiang, L.; Liu, S.; Li, W.; Abagna, H.B.; Ning, L.; Huang, J. SSH2.0: A better tool for predicting the hydrophobic interaction risk of monoclonal antibody. Front. Genet., 2022, 13, 842127. doi: 10.3389/fgene.2022.842127 PMID: 35368659
- Paul, S.; Kolla, R.V.; Sidney, J.; Weiskopf, D.; Fleri, W.; Kim, Y.; Peters, B.; Sette, A. Evaluating the immunogenicity of protein drugs by applying in vitro MHC binding data and the immune epitope database and analysis resource. Clin. Dev. Immunol., 2013, 2013, 1-7. doi: 10.1155/2013/467852 PMID: 24222776
- Weaver, J.M.; Lazarski, C.A.; Richards, K.A.; Chaves, F.A.; Jenks, S.A.; Menges, P.R.; Sant, A.J. Immunodominance of CD4 T cells to foreign antigens is peptide intrinsic and independent of molecular context: implications for vaccine design. J. Immunol., 2008, 181(5), 3039-3048. doi: 10.4049/jimmunol.181.5.3039 PMID: 18713974
- Lazarski, C.A.; Chaves, F.A.; Jenks, S.A.; Wu, S.; Richards, K.A.; Weaver, J.M.; Sant, A.J. The kinetic stability of MHC class II:peptide complexes is a key parameter that dictates immunodominance. Immunity, 2005, 23(1), 29-40. doi: 10.1016/j.immuni.2005.05.009 PMID: 16039577
- Paul, S.; Grifoni, A.; Peters, B.; Sette, A. Major histocompatibility complex binding, eluted ligands, and immunogenicity: Benchmark testing and predictions. Front. Immunol., 2020, 10, 3151. doi: 10.3389/fimmu.2019.03151 PMID: 32117208
- Buus, S.; Sette, A.; Colon, S.M.; Jenis, D.M.; Grey, H.M. Isolation and characterization of antigen-la complexes involved in T cell recognition. Cell, 1986, 47(6), 1071-1077. doi: 10.1016/0092-8674(86)90822-6 PMID: 3490919
- Peters, B.; Bui, H.H.; Frankild, S.; Nielsen, M.; Lundegaard, C.; Kostem, E.; Basch, D.; Lamberth, K.; Harndahl, M.; Fleri, W.; Wilson, S.S.; Sidney, J.; Lund, O.; Buus, S.; Sette, A. A community resource benchmarking predictions of peptide binding to MHC-I molecules. PLOS Comput. Biol., 2006, 2(6), e65. doi: 10.1371/journal.pcbi.0020065 PMID: 16789818
- Sette, A.; Buus, S.; Colon, S.; Smith, J.A.; Miles, C.; Grey, H.M. Structural characteristics of an antigen required for its interaction with Ia and recognition by T cells. Nature, 1987, 328(6129), 395-399. doi: 10.1038/328395a0 PMID: 3497349
- Allen, P.M.; Matsueda, G.R.; Evans, R.J.; Dunbar, J.B., Jr; Marshall, G.R.; Unanue, E.R. Identification of the T-cell and Ia contact residues of a T-cell antigenic epitope. Nature, 1987, 327(6124), 713-715. doi: 10.1038/327713a0 PMID: 2439915
- Hammer, J.; Bono, E.; Gallazzi, F.; Belunis, C.; Nagy, Z.; Sinigaglia, F. Precise prediction of major histocompatibility complex class II-peptide interaction based on peptide side chain scanning. J. Exp. Med., 1994, 180(6), 2353-2358. doi: 10.1084/jem.180.6.2353 PMID: 7964508
- Rothbard, J.B.; Marshall, K.; Wilson, J.; Fugger, L.; Zaller, D. Prediction of peptide affinity to HLA DRB1*0401. Int. Arch. Allergy Immunol., 1994, 105(1), 1-7. doi: 10.1159/000236795 PMID: 8086825
- Mendes, M.; Mahita, J.; Blazeska, N.; Greenbaum, J.; Ha, B.; Wheeler, K.; Wang, J.; Shackelford, D.; Sette, A.; Peters, B. IEDB-3D 2.0: Structural data analysis within the Immune Epitope Database. Protein Sci., 2023, 32(4), e4605. doi: 10.1002/pro.4605 PMID: 36806329
- Vita, R.; Mahajan, S.; Overton, J.A.; Dhanda, S.K.; Martini, S.; Cantrell, J.R.; Wheeler, D.K.; Sette, A.; Peters, B. The immune epitope database (IEDB): 2018 update. Nucleic Acids Res., 2019, 47(D1), D339-D343. doi: 10.1093/nar/gky1006 PMID: 30357391
- Schuler, M.M.; Nastke, M.D.; Stevanović, S. SYFPEITHI: Database for searching and T-cell epitope prediction. Methods Mol. Biol., 2007, 409, 75-93. doi: 10.1007/978-1-60327-118-9_5 PMID: 18449993
- Nielsen, M.; Lundegaard, C.; Lund, O. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinformatics, 2007, 8(1), 238. doi: 10.1186/1471-2105-8-238 PMID: 17608956
- Bui, H.H.; Sidney, J.; Peters, B.; Sathiamurthy, M.; Sinichi, A.; Purton, K.A.; Mothé, B.R.; Chisari, F.V.; Watkins, D.I.; Sette, A. Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics, 2005, 57(5), 304-314. doi: 10.1007/s00251-005-0798-y PMID: 15868141
- Reche, P.A.; Glutting, J.P.; Reinherz, E.L. Prediction of MHC class I binding peptides using profile motifs. Hum. Immunol., 2002, 63(9), 701-709. doi: 10.1016/S0198-8859(02)00432-9 PMID: 12175724
- Sturniolo, T.; Bono, E.; Ding, J.; Raddrizzani, L.; Tuereci, O.; Sahin, U.; Braxenthaler, M.; Gallazzi, F.; Protti, M.P.; Sinigaglia, F.; Hammer, J. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat. Biotechnol., 1999, 17(6), 555-561. doi: 10.1038/9858 PMID: 10385319
- Singh, H.; Raghava, G.P.S. ProPred: prediction of HLA-DR binding sites. Bioinformatics, 2001, 17(12), 1236-1237. doi: 10.1093/bioinformatics/17.12.1236 PMID: 11751237
- Dönnes, P.; Kohlbacher, O. SVMHC: A server for prediction of MHC-binding peptides. Nucleic Acids Res, 2006, 34, 194-197.
- Zhang, L.; Chen, Y.; Wong, H.S.; Zhou, S.; Mamitsuka, H.; Zhu, S. TEPITOPEpan: extending TEPITOPE for peptide binding prediction covering over 700 HLA-DR molecules. PLoS One, 2012, 7(2), e30483. doi: 10.1371/journal.pone.0030483 PMID: 22383964
- Wang, P.; Sidney, J.; Dow, C.; Mothé, B.; Sette, A.; Peters, B. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLOS Comput. Biol., 2008, 4(4), e1000048. doi: 10.1371/journal.pcbi.1000048 PMID: 18389056
- Jani, S.P.; Kumar, S.P.; Mangukia, N.; Patel, S.K.; Pandya, H.A.; Rawal, R.M. MHC2AFFYPRED: A machine-learning approach to estimate affinity of MHC class II peptides based on structural interaction fingerprints. Proteins, 2023, 91(2), 277-289. doi: 10.1002/prot.26428 PMID: 36116110
- Brusic, V.; Rudy, G.; Honeyman, G.; Hammer, J.; Harrison, L. Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics, 1998, 14(2), 121-130. doi: 10.1093/bioinformatics/14.2.121 PMID: 9545443
- Noguchi, H.; Kato, R.; Hanai, T.; Matsubara, Y.; Honda, H.; Brusic, V.; Kobayashi, T. Hidden Markov model-based prediction of antigenic peptides that interact with MHC class II molecules. J. Biosci. Bioeng., 2002, 94(3), 264-270. doi: 10.1016/S1389-1723(02)80160-8 PMID: 16233301
- Lata, S.; Bhasin, M.; Raghava, G.P.S. Application of machine learning techniques in predicting MHC binders. Methods Mol. Biol., 2007, 409, 201-215. doi: 10.1007/978-1-60327-118-9_14 PMID: 18450002
- Karosiene, E.; Rasmussen, M.; Blicher, T.; Lund, O.; Buus, S.; Nielsen, M. NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method including all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ. Immunogenetics, 2013, 65(10), 711-724. doi: 10.1007/s00251-013-0720-y PMID: 23900783
- Nielsen, M.; Lundegaard, C.; Worning, P.; Lauemøller, S.L.; Lamberth, K.; Buus, S.; Brunak, S.; Lund, O. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci., 2003, 12(5), 1007-1017. doi: 10.1110/ps.0239403 PMID: 12717023
- Nielsen, M.; Lundegaard, C.; Blicher, T.; Peters, B.; Sette, A.; Justesen, S.; Buus, S.; Lund, O. Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan. PLOS Comput. Biol., 2008, 4(7), e1000107. doi: 10.1371/journal.pcbi.1000107 PMID: 18604266
- Nielsen, M.; Lund, O. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinformatics, 2009, 10(1), 296. doi: 10.1186/1471-2105-10-296 PMID: 19765293
- Pertseva, M.; Gao, B.; Neumeier, D.; Yermanos, A.; Reddy, S.T. Applications of machine and deep learning in adaptive immunity. Annu. Rev. Chem. Biomol. Eng., 2021, 12(1), 39-62. doi: 10.1146/annurev-chembioeng-101420-125021 PMID: 33852352
- Davies, M.N.; Sansom, C.E.; Beazley, C.; Moss, D.S. A novel predictive technique for the MHC class II peptide-binding interaction. Mol. Med., 2003, 9(9-12), 220-225. doi: 10.2119/2003-00032.Sansom PMID: 15208743
- Tong, J.C.; Zhang, G.L.; Tan, T.W.; August, J.T.; Brusic, V.; Ranganathan, S. Prediction of HLA-DQ3.2β ligands: Evidence of multiple registers in class II binding peptides. Bioinformatics, 2006, 22(10), 1232-1238. doi: 10.1093/bioinformatics/btl071 PMID: 16510499
- Bordner, A.J. Towards universal structure-based prediction of class II MHC epitopes for diverse allotypes. PLoS One, 2010, 5(12), e14383. doi: 10.1371/journal.pone.0014383 PMID: 21187956
- Atanasova, M.; Patronov, A.; Dimitrov, I.; Flower, D.R.; Doytchinova, I. EpiDOCK: A molecular docking-based tool for MHC class II binding prediction. Protein Eng. Des. Sel., 2013, 26(10), 631-634. doi: 10.1093/protein/gzt018 PMID: 23661105
- Laimer, J.; Lackner, P. MHCII3D-Robust structure based prediction of MHC II binding peptides. Int. J. Mol. Sci., 2020, 22(1), 12. doi: 10.3390/ijms22010012 PMID: 33374958
- Zhang, H.; Wang, P.; Papangelopoulos, N.; Xu, Y.; Sette, A.; Bourne, P.E.; Lund, O.; Ponomarenko, J.; Nielsen, M.; Peters, B. Limitations of Ab initio predictions of peptide binding to MHC class II molecules. PLoS One, 2010, 5(2), e9272. doi: 10.1371/journal.pone.0009272 PMID: 20174654
- Doytchinova, I.; Petkov, P.; Dimitrov, I.; Atanasova, M.; Flower, D.R. HLA-DP2 binding prediction by molecular dynamics simulations. Protein Sci., 2011, 20(11), 1918-1928. doi: 10.1002/pro.732 PMID: 21898654
- Greenbaum, J.; Sidney, J.; Chung, J.; Brander, C.; Peters, B.; Sette, A. Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes. Immunogenetics, 2011, 63(6), 325-335. doi: 10.1007/s00251-011-0513-0 PMID: 21305276
- Shen, W.J.; Zhang, X.; Zhang, S.; Liu, C.; Cui, W. The utility of supertype clustering in prediction for class II MHC-peptide binding. Molecules, 2018, 23(11), 3034. doi: 10.3390/molecules23113034 PMID: 30463372
- Zhang, L.; Udaka, K.; Mamitsuka, H.; Zhu, S. Toward more accurate pan-specific MHC-peptide binding prediction: A review of current methods and tools. Brief. Bioinform., 2012, 13(3), 350-364. doi: 10.1093/bib/bbr060 PMID: 21949215
- Degoot, A.M.; Chirove, F.; Ndifon, W. Trans-Allelic model for prediction of peptide:MHC-II Interactions. Front. Immunol., 2018, 9, 1410. doi: 10.3389/fimmu.2018.01410 PMID: 29988560
- Nielsen, M.; Justesen, S.; Lund, O.; Lundegaard, C.; Buus, S. NetMHCIIpan-2.0 - Improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight optimization training procedure. Immunome Res., 2010, 6(1), 9. doi: 10.1186/1745-7580-6-9 PMID: 21073747
- Andreatta, M.; Karosiene, E.; Rasmussen, M.; Stryhn, A.; Buus, S.; Nielsen, M. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Immunogenetics, 2015, 67(11-12), 641-650. doi: 10.1007/s00251-015-0873-y PMID: 26416257
- Bordner, A.J.; Mittelmann, H.D. MultiRTA: A simple yet reliable method for predicting peptide binding affinities for multiple class II MHC allotypes. BMC Bioinformatics, 2010, 11(1), 482. doi: 10.1186/1471-2105-11-482 PMID: 20868497
- Bordner, A.J.; Mittelmann, H.D. Prediction of the binding affinities of peptides to class II MHC using a regularized thermodynamic model. BMC Bioinformatics, 2010, 11(1), 41. doi: 10.1186/1471-2105-11-41 PMID: 20089173
- Zeng, H.; Gifford, D.K. Quantification of uncertainty in peptide-MHC binding prediction improves high-affinity peptide selection for therapeutic design. Cell Syst., 2019, 9(2), 159-166.e3. doi: 10.1016/j.cels.2019.05.004 PMID: 31176619
- Shao, X.M.; Bhattacharya, R.; Huang, J.; Sivakumar, I.K.A.; Tokheim, C.; Zheng, L.; Hirsch, D.; Kaminow, B.; Omdahl, A.; Bonsack, M.; Riemer, A.B.; Velculescu, V.E.; Anagnostou, V.; Pagel, K.A.; Karchin, R. High-throughput prediction of MHC class I and II neoantigens with MHC nuggets. Cancer Immunol. Res., 2020, 8(3), 396-408. doi: 10.1158/2326-6066.CIR-19-0464 PMID: 31871119
- Collobert, R. Natural Language Processing (almost) from Scratch. Pre-Print Server, 2011.
- Venkatesh, G.; Grover, A.; Srinivasaraghavan, G.; Rao, S. MHCAttnNet: Predicting MHC-peptide bindings for MHC alleles classes I and II using an attention-based deep neural model. Bioinformatics, 2020, 36(1), i399-i406. doi: 10.1093/bioinformatics/btaa479 PMID: 32657386
- Asgari, E.; Mofrad, M.R.K. Continuous distributed representation of biological sequences for deep proteomics and genomics. PLoS One, 2015, 10(11), e0141287. doi: 10.1371/journal.pone.0141287 PMID: 26555596
- Matthew Deep contextualized word representations. pre-print server, 2018.
- Devlin, J. BERT: Pre-training of deep bidirectional transformers for language understanding. Pre-Print Server, 2019.
- Liu, Z. DeepSeqPanII: An interpretable recurrent neural network model with attention mechanism for peptide-hla class ii binding prediction. IEEE/ACM Trans Comput Biol Bioinform, 2022, 19(4), 2188-2196. doi: 10.1109/TCBB.2021.3074927
- You, R.; Qu, W.; Mamitsuka, H.; Zhu, S. DeepMHCII: A novel binding core-aware deep interaction model for accurate MHC-II peptide binding affinity prediction. Bioinformatics, 2022, 38(Suppl. 1), i220-i228. doi: 10.1093/bioinformatics/btac225 PMID: 35758790
- Racle, J.; Michaux, J.; Rockinger, G.A.; Arnaud, M.; Bobisse, S.; Chong, C.; Guillaume, P.; Coukos, G.; Harari, A.; Jandus, C.; Bassani-Sternberg, M.; Gfeller, D. Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes. Nat. Biotechnol., 2019, 37(11), 1283-1286. doi: 10.1038/s41587-019-0289-6 PMID: 31611696
- Reynisson, B.; Alvarez, B.; Paul, S.; Peters, B.; Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res., 2020, 48(W1), W449-W454. doi: 10.1093/nar/gkaa379 PMID: 32406916
- Heng, Y.; Kuang, Z.; Xie, W.; Lan, H.; Huang, S.; Chen, L.; Shi, T.; Xu, L.; Pan, X.; Mei, H. A simple pan-specific RNN model for predicting HLA-II binding peptides. Mol. Immunol., 2021, 139, 177-183. doi: 10.1016/j.molimm.2021.09.004 PMID: 34555693
- Cheng, J.; Bendjama, K.; Rittner, K.; Malone, B. BERTMHC: Improved MHCpeptide class II interaction prediction with transformer and multiple instance learning. Bioinformatics, 2021, 37(22), 4172-4179. doi: 10.1093/bioinformatics/btab422 PMID: 34096999
- Junet, V.; Daura, X. CNN-PepPred: an open-source tool to create convolutional NN models for the discovery of patterns in peptide sets-application to peptideMHC class II binding prediction. Bioinformatics, 2021, 37(23), 4567-4568. doi: 10.1093/bioinformatics/btab687 PMID: 34601583
- Rosenberg, A.S.; Sauna, Z.E. Immunogenicity assessment during the development of protein therapeutics. J. Pharm. Pharmacol., 2018, 70(5), 584-594. doi: 10.1111/jphp.12810 PMID: 28872677
- Gupta, R.; Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R.K.; Kumar, P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers., 2021, 25(3), 1315-1360. doi: 10.1007/s11030-021-10217-3 PMID: 33844136
- Holland, C.J.; Cole, D.K.; Godkin, A. Re-Directing CD4+ T cell responses with the flanking residues of MHC Class II-Bound Peptides: The core is not enough. Front. Immunol., 2013, 4, 172. doi: 10.3389/fimmu.2013.00172 PMID: 23847615
- Jensen, K.K.; Andreatta, M.; Marcatili, P.; Buus, S.; Greenbaum, J.A.; Yan, Z.; Sette, A.; Peters, B.; Nielsen, M. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology, 2018, 154(3), 394-406. doi: 10.1111/imm.12889 PMID: 29315598
- Lee, C.H.; Huh, J.; Buckley, P.R.; Jang, M.; Pinho, M.P.; Fernandes, R.A.; Antanaviciute, A.; Simmons, A.; Koohy, H. A robust deep learning workflow to predict CD8 + T-cell epitopes. Genome Med., 2023, 15(1), 70. doi: 10.1186/s13073-023-01225-z PMID: 37705109
- Andreatta, M.; Trolle, T.; Yan, Z.; Greenbaum, J.A.; Peters, B.; Nielsen, M. An automated benchmarking platform for MHC class II binding prediction methods. Bioinformatics, 2018, 34(9), 1522-1528. doi: 10.1093/bioinformatics/btx820 PMID: 29281002
- EL-Manzalawy, Y.; Dobbs, D.; Honavar, V. On evaluating MHC-II binding peptide prediction methods. PLoS One, 2008, 3(9), e3268. doi: 10.1371/journal.pone.0003268 PMID: 18813344
- Lin, H.H. Evaluation of MHC-II peptide binding prediction servers: Applications for vaccine research. BMC Bioinformatics, 2008, 9(12), 22. doi: 10.1186/1471-2105-9-S12-S22
- Zhao, W.; Sher, X. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes. PLOS Comput. Biol., 2018, 14(11), e1006457. doi: 10.1371/journal.pcbi.1006457 PMID: 30408041
- Nielsen, M.; Andreatta, M.; Peters, B.; Buus, S. Immunoinformatics: Predicting peptideMHC binding. Annu. Rev. Biomed. Data Sci., 2020, 3(1), 191-215. doi: 10.1146/annurev-biodatasci-021920-100259 PMID: 37427310
Supplementary files
