In Silico Immunogenicity Assessment of Therapeutic Peptides


Cite item

Full Text

Abstract

:The application of therapeutic peptides in clinical practice has significantly progressed in the past decades. However, immunogenicity remains an inevitable and crucial issue in the development of therapeutic peptides. The prediction of antigenic peptides presented by MHC class II is a critical approach to evaluating the immunogenicity of therapeutic peptides. With the continuous upgrade of algorithms and databases in recent years, the prediction accuracy has been significantly improved. This has made in silico evaluation an important component of immunogenicity assessment in therapeutic peptide development. In this review, we summarize the development of peptide-MHC-II binding prediction methods for antigenic peptides presented by MHC class II molecules and provide a systematic explanation of the most advanced ones, aiming to deepen our understanding of this field that requires particular attention.

About the authors

Wenzhen Li

School of Life Science and Technology, University of Electronic Science and Technology of China

Email: info@benthamscience.net

Jinyi Wei

School of Life Science and Technology, University of Electronic Science and Technology of China

Email: info@benthamscience.net

Qianhu Jiang

School of Life Science and Technology, University of Electronic Science and Technology of China

Email: info@benthamscience.net

Yuwei Zhou

School of Life Science and Technology, University of Electronic Science and Technology of China

Email: info@benthamscience.net

Xingru Yan

School of Biological Sciences, University of Auckland

Email: info@benthamscience.net

Changcheng Xiang

School of Computer Science and Technology, Aba Teachers University

Author for correspondence.
Email: info@benthamscience.net

Jian Huang

School of Life Science and Technology, University of Electronic Science and Technology of China

Author for correspondence.
Email: info@benthamscience.net

References

  1. Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem., 2018, 26(10), 2700-2707. doi: 10.1016/j.bmc.2017.06.052 PMID: 28720325
  2. Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today, 2015, 20(1), 122-128. doi: 10.1016/j.drudis.2014.10.003 PMID: 25450771
  3. Ning, L.; Huang, J.; He, B.; Kang, J. An in silico immunogenicity analysis for PbHRH: An antiangiogenic peptibody by fusing HRH peptide and human IgG1 Fc fragment. Curr. Bioinform., 2020, 15(6), 547-553. doi: 10.2174/1574893614666190730104348
  4. Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic peptides: Current applications and future directions. Signal Transduct. Target. Ther., 2022, 7(1), 48. doi: 10.1038/s41392-022-00904-4 PMID: 35165272
  5. Sharma, A.; Kumar, A.; de la Torre, B.G.; Albericio, F. Liquid-phase peptide synthesis (LPPS): A third wave for the preparation of peptides. Chem. Rev., 2022, 122(16), 13516-13546. doi: 10.1021/acs.chemrev.2c00132 PMID: 35816287
  6. Jain, K.K. An overview of drug delivery systems. Methods Mol. Biol., 2020, 2059, 1-54. doi: 10.1007/978-1-4939-9798-5_1 PMID: 31435914
  7. Muttenthaler, M.; King, G.F.; Adams, D.J.; Alewood, P.F. Trends in peptide drug discovery. Nat. Rev. Drug Discov., 2021, 20(4), 309-325. doi: 10.1038/s41573-020-00135-8 PMID: 33536635
  8. Khalily, M.P.; Soydan, M. Peptide-based diagnostic and therapeutic agents: Where we are and where we are heading? Chem. Biol. Drug Des., 2023, 101(3), 772-793. doi: 10.1111/cbdd.14180 PMID: 36366980
  9. Zhang, H.; Saravanan, K.M.; Wei, Y.; Jiao, Y.; Yang, Y.; Pan, Y.; Wu, X.; Zhang, J.Z.H. Deep learning-based bioactive therapeutic peptide generation and screening. J. Chem. Inf. Model., 2023, 63(3), 835-845. doi: 10.1021/acs.jcim.2c01485 PMID: 36724090
  10. Jawa, V.; Cousens, L.P.; Awwad, M.; Wakshull, E.; Kropshofer, H.; De Groot, A.S. T-cell dependent immunogenicity of protein therapeutics: Preclinical assessment and mitigation. Clin. Immunol., 2013, 149(3), 534-555. doi: 10.1016/j.clim.2013.09.006 PMID: 24263283
  11. Watts, C. Capture and processing of exogenous antigens for presentation on MHC molecules. Annu. Rev. Immunol., 1997, 15(1), 821-850. doi: 10.1146/annurev.immunol.15.1.821 PMID: 9143708
  12. Vaisman-Mentesh, A.; Gutierrez-Gonzalez, M.; DeKosky, B.J.; Wine, Y. The molecular mechanisms that underlie the immune biology of anti-drug antibody formation following treatment with monoclonal antibodies. Front. Immunol., 2020, 11, 1951. doi: 10.3389/fimmu.2020.01951 PMID: 33013848
  13. Ning, L.; He, B.; Zhou, P.; Derda, R.; Huang, J. Molecular design of peptide-Fc fusion drugs. Curr. Drug Metab., 2019, 20(3), 203-208. doi: 10.2174/1389200219666180821095355 PMID: 30129406
  14. Rosenstock, J.; Balas, B.; Charbonnel, B.; Bolli, G.B.; Boldrin, M.; Ratner, R.; Balena, R. The fate of taspoglutide, a weekly GLP-1 receptor agonist, versus twice-daily exenatide for type 2 diabetes: the T-emerge 2 trial. Diabetes Care, 2013, 36(3), 498-504. doi: 10.2337/dc12-0709 PMID: 23139373
  15. Groell, F.; Jordan, O.; Borchard, G. In vitro models for immunogenicity prediction of therapeutic proteins. Eur. J. Pharm. Biopharm., 2018, 130, 128-142. doi: 10.1016/j.ejpb.2018.06.008 PMID: 29894817
  16. Zhou, Y.; Huang, Z.; Li, W.; Wei, J.; Jiang, Q.; Yang, W.; Huang, J. Deep learning in preclinical antibody drug discovery and development. Methods, 2023, 218, 57-71. doi: 10.1016/j.ymeth.2023.07.003 PMID: 37454742
  17. Zhou, Y.; Huang, Z.; Gou, Y.; Liu, S.; Yang, W.; Zhang, H.; Dzisoo, A.M.; Huang, J. AB-Amy: machine learning aided amyloidogenic risk prediction of therapeutic antibody light chains. Antib. Ther., 2023, 6(3), 147-156. doi: 10.1093/abt/tbad007 PMID: 37492587
  18. Zhou, Y.; Xie, S.; Yang, Y.; Jiang, L.; Liu, S.; Li, W.; Abagna, H.B.; Ning, L.; Huang, J. SSH2.0: A better tool for predicting the hydrophobic interaction risk of monoclonal antibody. Front. Genet., 2022, 13, 842127. doi: 10.3389/fgene.2022.842127 PMID: 35368659
  19. Paul, S.; Kolla, R.V.; Sidney, J.; Weiskopf, D.; Fleri, W.; Kim, Y.; Peters, B.; Sette, A. Evaluating the immunogenicity of protein drugs by applying in vitro MHC binding data and the immune epitope database and analysis resource. Clin. Dev. Immunol., 2013, 2013, 1-7. doi: 10.1155/2013/467852 PMID: 24222776
  20. Weaver, J.M.; Lazarski, C.A.; Richards, K.A.; Chaves, F.A.; Jenks, S.A.; Menges, P.R.; Sant, A.J. Immunodominance of CD4 T cells to foreign antigens is peptide intrinsic and independent of molecular context: implications for vaccine design. J. Immunol., 2008, 181(5), 3039-3048. doi: 10.4049/jimmunol.181.5.3039 PMID: 18713974
  21. Lazarski, C.A.; Chaves, F.A.; Jenks, S.A.; Wu, S.; Richards, K.A.; Weaver, J.M.; Sant, A.J. The kinetic stability of MHC class II:peptide complexes is a key parameter that dictates immunodominance. Immunity, 2005, 23(1), 29-40. doi: 10.1016/j.immuni.2005.05.009 PMID: 16039577
  22. Paul, S.; Grifoni, A.; Peters, B.; Sette, A. Major histocompatibility complex binding, eluted ligands, and immunogenicity: Benchmark testing and predictions. Front. Immunol., 2020, 10, 3151. doi: 10.3389/fimmu.2019.03151 PMID: 32117208
  23. Buus, S.; Sette, A.; Colon, S.M.; Jenis, D.M.; Grey, H.M. Isolation and characterization of antigen-la complexes involved in T cell recognition. Cell, 1986, 47(6), 1071-1077. doi: 10.1016/0092-8674(86)90822-6 PMID: 3490919
  24. Peters, B.; Bui, H.H.; Frankild, S.; Nielsen, M.; Lundegaard, C.; Kostem, E.; Basch, D.; Lamberth, K.; Harndahl, M.; Fleri, W.; Wilson, S.S.; Sidney, J.; Lund, O.; Buus, S.; Sette, A. A community resource benchmarking predictions of peptide binding to MHC-I molecules. PLOS Comput. Biol., 2006, 2(6), e65. doi: 10.1371/journal.pcbi.0020065 PMID: 16789818
  25. Sette, A.; Buus, S.; Colon, S.; Smith, J.A.; Miles, C.; Grey, H.M. Structural characteristics of an antigen required for its interaction with Ia and recognition by T cells. Nature, 1987, 328(6129), 395-399. doi: 10.1038/328395a0 PMID: 3497349
  26. Allen, P.M.; Matsueda, G.R.; Evans, R.J.; Dunbar, J.B., Jr; Marshall, G.R.; Unanue, E.R. Identification of the T-cell and Ia contact residues of a T-cell antigenic epitope. Nature, 1987, 327(6124), 713-715. doi: 10.1038/327713a0 PMID: 2439915
  27. Hammer, J.; Bono, E.; Gallazzi, F.; Belunis, C.; Nagy, Z.; Sinigaglia, F. Precise prediction of major histocompatibility complex class II-peptide interaction based on peptide side chain scanning. J. Exp. Med., 1994, 180(6), 2353-2358. doi: 10.1084/jem.180.6.2353 PMID: 7964508
  28. Rothbard, J.B.; Marshall, K.; Wilson, J.; Fugger, L.; Zaller, D. Prediction of peptide affinity to HLA DRB1*0401. Int. Arch. Allergy Immunol., 1994, 105(1), 1-7. doi: 10.1159/000236795 PMID: 8086825
  29. Mendes, M.; Mahita, J.; Blazeska, N.; Greenbaum, J.; Ha, B.; Wheeler, K.; Wang, J.; Shackelford, D.; Sette, A.; Peters, B. IEDB-3D 2.0: Structural data analysis within the Immune Epitope Database. Protein Sci., 2023, 32(4), e4605. doi: 10.1002/pro.4605 PMID: 36806329
  30. Vita, R.; Mahajan, S.; Overton, J.A.; Dhanda, S.K.; Martini, S.; Cantrell, J.R.; Wheeler, D.K.; Sette, A.; Peters, B. The immune epitope database (IEDB): 2018 update. Nucleic Acids Res., 2019, 47(D1), D339-D343. doi: 10.1093/nar/gky1006 PMID: 30357391
  31. Schuler, M.M.; Nastke, M.D.; Stevanović, S. SYFPEITHI: Database for searching and T-cell epitope prediction. Methods Mol. Biol., 2007, 409, 75-93. doi: 10.1007/978-1-60327-118-9_5 PMID: 18449993
  32. Nielsen, M.; Lundegaard, C.; Lund, O. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinformatics, 2007, 8(1), 238. doi: 10.1186/1471-2105-8-238 PMID: 17608956
  33. Bui, H.H.; Sidney, J.; Peters, B.; Sathiamurthy, M.; Sinichi, A.; Purton, K.A.; Mothé, B.R.; Chisari, F.V.; Watkins, D.I.; Sette, A. Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics, 2005, 57(5), 304-314. doi: 10.1007/s00251-005-0798-y PMID: 15868141
  34. Reche, P.A.; Glutting, J.P.; Reinherz, E.L. Prediction of MHC class I binding peptides using profile motifs. Hum. Immunol., 2002, 63(9), 701-709. doi: 10.1016/S0198-8859(02)00432-9 PMID: 12175724
  35. Sturniolo, T.; Bono, E.; Ding, J.; Raddrizzani, L.; Tuereci, O.; Sahin, U.; Braxenthaler, M.; Gallazzi, F.; Protti, M.P.; Sinigaglia, F.; Hammer, J. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat. Biotechnol., 1999, 17(6), 555-561. doi: 10.1038/9858 PMID: 10385319
  36. Singh, H.; Raghava, G.P.S. ProPred: prediction of HLA-DR binding sites. Bioinformatics, 2001, 17(12), 1236-1237. doi: 10.1093/bioinformatics/17.12.1236 PMID: 11751237
  37. Dönnes, P.; Kohlbacher, O. SVMHC: A server for prediction of MHC-binding peptides. Nucleic Acids Res, 2006, 34, 194-197.
  38. Zhang, L.; Chen, Y.; Wong, H.S.; Zhou, S.; Mamitsuka, H.; Zhu, S. TEPITOPEpan: extending TEPITOPE for peptide binding prediction covering over 700 HLA-DR molecules. PLoS One, 2012, 7(2), e30483. doi: 10.1371/journal.pone.0030483 PMID: 22383964
  39. Wang, P.; Sidney, J.; Dow, C.; Mothé, B.; Sette, A.; Peters, B. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLOS Comput. Biol., 2008, 4(4), e1000048. doi: 10.1371/journal.pcbi.1000048 PMID: 18389056
  40. Jani, S.P.; Kumar, S.P.; Mangukia, N.; Patel, S.K.; Pandya, H.A.; Rawal, R.M. MHC2AFFYPRED: A machine-learning approach to estimate affinity of MHC class II peptides based on structural interaction fingerprints. Proteins, 2023, 91(2), 277-289. doi: 10.1002/prot.26428 PMID: 36116110
  41. Brusic, V.; Rudy, G.; Honeyman, G.; Hammer, J.; Harrison, L. Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics, 1998, 14(2), 121-130. doi: 10.1093/bioinformatics/14.2.121 PMID: 9545443
  42. Noguchi, H.; Kato, R.; Hanai, T.; Matsubara, Y.; Honda, H.; Brusic, V.; Kobayashi, T. Hidden Markov model-based prediction of antigenic peptides that interact with MHC class II molecules. J. Biosci. Bioeng., 2002, 94(3), 264-270. doi: 10.1016/S1389-1723(02)80160-8 PMID: 16233301
  43. Lata, S.; Bhasin, M.; Raghava, G.P.S. Application of machine learning techniques in predicting MHC binders. Methods Mol. Biol., 2007, 409, 201-215. doi: 10.1007/978-1-60327-118-9_14 PMID: 18450002
  44. Karosiene, E.; Rasmussen, M.; Blicher, T.; Lund, O.; Buus, S.; Nielsen, M. NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method including all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ. Immunogenetics, 2013, 65(10), 711-724. doi: 10.1007/s00251-013-0720-y PMID: 23900783
  45. Nielsen, M.; Lundegaard, C.; Worning, P.; Lauemøller, S.L.; Lamberth, K.; Buus, S.; Brunak, S.; Lund, O. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci., 2003, 12(5), 1007-1017. doi: 10.1110/ps.0239403 PMID: 12717023
  46. Nielsen, M.; Lundegaard, C.; Blicher, T.; Peters, B.; Sette, A.; Justesen, S.; Buus, S.; Lund, O. Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan. PLOS Comput. Biol., 2008, 4(7), e1000107. doi: 10.1371/journal.pcbi.1000107 PMID: 18604266
  47. Nielsen, M.; Lund, O. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinformatics, 2009, 10(1), 296. doi: 10.1186/1471-2105-10-296 PMID: 19765293
  48. Pertseva, M.; Gao, B.; Neumeier, D.; Yermanos, A.; Reddy, S.T. Applications of machine and deep learning in adaptive immunity. Annu. Rev. Chem. Biomol. Eng., 2021, 12(1), 39-62. doi: 10.1146/annurev-chembioeng-101420-125021 PMID: 33852352
  49. Davies, M.N.; Sansom, C.E.; Beazley, C.; Moss, D.S. A novel predictive technique for the MHC class II peptide-binding interaction. Mol. Med., 2003, 9(9-12), 220-225. doi: 10.2119/2003-00032.Sansom PMID: 15208743
  50. Tong, J.C.; Zhang, G.L.; Tan, T.W.; August, J.T.; Brusic, V.; Ranganathan, S. Prediction of HLA-DQ3.2β ligands: Evidence of multiple registers in class II binding peptides. Bioinformatics, 2006, 22(10), 1232-1238. doi: 10.1093/bioinformatics/btl071 PMID: 16510499
  51. Bordner, A.J. Towards universal structure-based prediction of class II MHC epitopes for diverse allotypes. PLoS One, 2010, 5(12), e14383. doi: 10.1371/journal.pone.0014383 PMID: 21187956
  52. Atanasova, M.; Patronov, A.; Dimitrov, I.; Flower, D.R.; Doytchinova, I. EpiDOCK: A molecular docking-based tool for MHC class II binding prediction. Protein Eng. Des. Sel., 2013, 26(10), 631-634. doi: 10.1093/protein/gzt018 PMID: 23661105
  53. Laimer, J.; Lackner, P. MHCII3D-Robust structure based prediction of MHC II binding peptides. Int. J. Mol. Sci., 2020, 22(1), 12. doi: 10.3390/ijms22010012 PMID: 33374958
  54. Zhang, H.; Wang, P.; Papangelopoulos, N.; Xu, Y.; Sette, A.; Bourne, P.E.; Lund, O.; Ponomarenko, J.; Nielsen, M.; Peters, B. Limitations of Ab initio predictions of peptide binding to MHC class II molecules. PLoS One, 2010, 5(2), e9272. doi: 10.1371/journal.pone.0009272 PMID: 20174654
  55. Doytchinova, I.; Petkov, P.; Dimitrov, I.; Atanasova, M.; Flower, D.R. HLA-DP2 binding prediction by molecular dynamics simulations. Protein Sci., 2011, 20(11), 1918-1928. doi: 10.1002/pro.732 PMID: 21898654
  56. Greenbaum, J.; Sidney, J.; Chung, J.; Brander, C.; Peters, B.; Sette, A. Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes. Immunogenetics, 2011, 63(6), 325-335. doi: 10.1007/s00251-011-0513-0 PMID: 21305276
  57. Shen, W.J.; Zhang, X.; Zhang, S.; Liu, C.; Cui, W. The utility of supertype clustering in prediction for class II MHC-peptide binding. Molecules, 2018, 23(11), 3034. doi: 10.3390/molecules23113034 PMID: 30463372
  58. Zhang, L.; Udaka, K.; Mamitsuka, H.; Zhu, S. Toward more accurate pan-specific MHC-peptide binding prediction: A review of current methods and tools. Brief. Bioinform., 2012, 13(3), 350-364. doi: 10.1093/bib/bbr060 PMID: 21949215
  59. Degoot, A.M.; Chirove, F.; Ndifon, W. Trans-Allelic model for prediction of peptide:MHC-II Interactions. Front. Immunol., 2018, 9, 1410. doi: 10.3389/fimmu.2018.01410 PMID: 29988560
  60. Nielsen, M.; Justesen, S.; Lund, O.; Lundegaard, C.; Buus, S. NetMHCIIpan-2.0 - Improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight optimization training procedure. Immunome Res., 2010, 6(1), 9. doi: 10.1186/1745-7580-6-9 PMID: 21073747
  61. Andreatta, M.; Karosiene, E.; Rasmussen, M.; Stryhn, A.; Buus, S.; Nielsen, M. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Immunogenetics, 2015, 67(11-12), 641-650. doi: 10.1007/s00251-015-0873-y PMID: 26416257
  62. Bordner, A.J.; Mittelmann, H.D. MultiRTA: A simple yet reliable method for predicting peptide binding affinities for multiple class II MHC allotypes. BMC Bioinformatics, 2010, 11(1), 482. doi: 10.1186/1471-2105-11-482 PMID: 20868497
  63. Bordner, A.J.; Mittelmann, H.D. Prediction of the binding affinities of peptides to class II MHC using a regularized thermodynamic model. BMC Bioinformatics, 2010, 11(1), 41. doi: 10.1186/1471-2105-11-41 PMID: 20089173
  64. Zeng, H.; Gifford, D.K. Quantification of uncertainty in peptide-MHC binding prediction improves high-affinity peptide selection for therapeutic design. Cell Syst., 2019, 9(2), 159-166.e3. doi: 10.1016/j.cels.2019.05.004 PMID: 31176619
  65. Shao, X.M.; Bhattacharya, R.; Huang, J.; Sivakumar, I.K.A.; Tokheim, C.; Zheng, L.; Hirsch, D.; Kaminow, B.; Omdahl, A.; Bonsack, M.; Riemer, A.B.; Velculescu, V.E.; Anagnostou, V.; Pagel, K.A.; Karchin, R. High-throughput prediction of MHC class I and II neoantigens with MHC nuggets. Cancer Immunol. Res., 2020, 8(3), 396-408. doi: 10.1158/2326-6066.CIR-19-0464 PMID: 31871119
  66. Collobert, R. Natural Language Processing (almost) from Scratch. Pre-Print Server, 2011.
  67. Venkatesh, G.; Grover, A.; Srinivasaraghavan, G.; Rao, S. MHCAttnNet: Predicting MHC-peptide bindings for MHC alleles classes I and II using an attention-based deep neural model. Bioinformatics, 2020, 36(1), i399-i406. doi: 10.1093/bioinformatics/btaa479 PMID: 32657386
  68. Asgari, E.; Mofrad, M.R.K. Continuous distributed representation of biological sequences for deep proteomics and genomics. PLoS One, 2015, 10(11), e0141287. doi: 10.1371/journal.pone.0141287 PMID: 26555596
  69. Matthew Deep contextualized word representations. pre-print server, 2018.
  70. Devlin, J. BERT: Pre-training of deep bidirectional transformers for language understanding. Pre-Print Server, 2019.
  71. Liu, Z. DeepSeqPanII: An interpretable recurrent neural network model with attention mechanism for peptide-hla class ii binding prediction. IEEE/ACM Trans Comput Biol Bioinform, 2022, 19(4), 2188-2196. doi: 10.1109/TCBB.2021.3074927
  72. You, R.; Qu, W.; Mamitsuka, H.; Zhu, S. DeepMHCII: A novel binding core-aware deep interaction model for accurate MHC-II peptide binding affinity prediction. Bioinformatics, 2022, 38(Suppl. 1), i220-i228. doi: 10.1093/bioinformatics/btac225 PMID: 35758790
  73. Racle, J.; Michaux, J.; Rockinger, G.A.; Arnaud, M.; Bobisse, S.; Chong, C.; Guillaume, P.; Coukos, G.; Harari, A.; Jandus, C.; Bassani-Sternberg, M.; Gfeller, D. Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes. Nat. Biotechnol., 2019, 37(11), 1283-1286. doi: 10.1038/s41587-019-0289-6 PMID: 31611696
  74. Reynisson, B.; Alvarez, B.; Paul, S.; Peters, B.; Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res., 2020, 48(W1), W449-W454. doi: 10.1093/nar/gkaa379 PMID: 32406916
  75. Heng, Y.; Kuang, Z.; Xie, W.; Lan, H.; Huang, S.; Chen, L.; Shi, T.; Xu, L.; Pan, X.; Mei, H. A simple pan-specific RNN model for predicting HLA-II binding peptides. Mol. Immunol., 2021, 139, 177-183. doi: 10.1016/j.molimm.2021.09.004 PMID: 34555693
  76. Cheng, J.; Bendjama, K.; Rittner, K.; Malone, B. BERTMHC: Improved MHC–peptide class II interaction prediction with transformer and multiple instance learning. Bioinformatics, 2021, 37(22), 4172-4179. doi: 10.1093/bioinformatics/btab422 PMID: 34096999
  77. Junet, V.; Daura, X. CNN-PepPred: an open-source tool to create convolutional NN models for the discovery of patterns in peptide sets-application to peptide–MHC class II binding prediction. Bioinformatics, 2021, 37(23), 4567-4568. doi: 10.1093/bioinformatics/btab687 PMID: 34601583
  78. Rosenberg, A.S.; Sauna, Z.E. Immunogenicity assessment during the development of protein therapeutics. J. Pharm. Pharmacol., 2018, 70(5), 584-594. doi: 10.1111/jphp.12810 PMID: 28872677
  79. Gupta, R.; Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R.K.; Kumar, P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers., 2021, 25(3), 1315-1360. doi: 10.1007/s11030-021-10217-3 PMID: 33844136
  80. Holland, C.J.; Cole, D.K.; Godkin, A. Re-Directing CD4+ T cell responses with the flanking residues of MHC Class II-Bound Peptides: The core is not enough. Front. Immunol., 2013, 4, 172. doi: 10.3389/fimmu.2013.00172 PMID: 23847615
  81. Jensen, K.K.; Andreatta, M.; Marcatili, P.; Buus, S.; Greenbaum, J.A.; Yan, Z.; Sette, A.; Peters, B.; Nielsen, M. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology, 2018, 154(3), 394-406. doi: 10.1111/imm.12889 PMID: 29315598
  82. Lee, C.H.; Huh, J.; Buckley, P.R.; Jang, M.; Pinho, M.P.; Fernandes, R.A.; Antanaviciute, A.; Simmons, A.; Koohy, H. A robust deep learning workflow to predict CD8 + T-cell epitopes. Genome Med., 2023, 15(1), 70. doi: 10.1186/s13073-023-01225-z PMID: 37705109
  83. Andreatta, M.; Trolle, T.; Yan, Z.; Greenbaum, J.A.; Peters, B.; Nielsen, M. An automated benchmarking platform for MHC class II binding prediction methods. Bioinformatics, 2018, 34(9), 1522-1528. doi: 10.1093/bioinformatics/btx820 PMID: 29281002
  84. EL-Manzalawy, Y.; Dobbs, D.; Honavar, V. On evaluating MHC-II binding peptide prediction methods. PLoS One, 2008, 3(9), e3268. doi: 10.1371/journal.pone.0003268 PMID: 18813344
  85. Lin, H.H. Evaluation of MHC-II peptide binding prediction servers: Applications for vaccine research. BMC Bioinformatics, 2008, 9(12), 22. doi: 10.1186/1471-2105-9-S12-S22
  86. Zhao, W.; Sher, X. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes. PLOS Comput. Biol., 2018, 14(11), e1006457. doi: 10.1371/journal.pcbi.1006457 PMID: 30408041
  87. Nielsen, M.; Andreatta, M.; Peters, B.; Buus, S. Immunoinformatics: Predicting peptide–MHC binding. Annu. Rev. Biomed. Data Sci., 2020, 3(1), 191-215. doi: 10.1146/annurev-biodatasci-021920-100259 PMID: 37427310

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers