Prediction Model for Therapeutic Responses in Ovarian Cancer Patients using Paclitaxel-resistant Immune-related lncRNAs


Cite item

Full Text

Abstract

Background::Ovarian cancer (OC) is the deadliest malignant tumor in women with a poor prognosis due to drug resistance and lack of prediction tools for therapeutic responses to anti- cancer drugs.

Objective::The objective of this study was to launch a prediction model for therapeutic responses in OC patients.

Methods::The RNA-seq technique was used to identify differentially expressed paclitaxel (PTX)- resistant lncRNAs (DE-lncRNAs). The Cancer Genome Atlas (TCGA)-OV and ImmPort database were used to obtain immune-related lncRNAs (ir-lncRNAs). Univariate, multivariate, and LASSO Cox regression analyses were performed to construct the prediction model. Kaplan- Meier plotter, Principal Component Analysis (PCA), nomogram, immune function analysis, and therapeutic response were applied with Genomics of Drug Sensitivity in Cancer (GDSC), CIBERSORT, and TCGA databases. The biological functions were evaluated in the CCLE database and OC cells.

Results::The RNA-seq defined 186 DE-lncRNAs between PTX-resistant A2780-PTX and PTXsensitive A2780 cells. Through the analysis of the TCGA-OV database, 225 ir-lncRNAs were identified. Analyzing 186 DE-lncRNAs and 225 ir-lncRNAs using univariate, multivariate, and LASSO Cox regression analyses, 9 PTX-resistant immune-related lncRNAs (DEir-lncRNAs) acted as biomarkers were discovered as potential biomarkers in the prediction model. Single-cell RNA sequencing (scRNA-seq) data of OC confirmed the relevance of DEir-lncRNAs in immune responsiveness. Patients with a low prediction score had a promising prognosis, whereas patients with a high prediction score were more prone to evade immunotherapy and chemotherapy and had poor prognosis.

Conclusion::The novel prediction model with 9 DEir-lncRNAs is a valuable tool for predicting immunotherapeutic and chemotherapeutic responses and prognosis of patients with OC.

About the authors

Xin Li

Research Center for Clinical Medicine, Jinshan Hospital of Fudan University

Email: info@benthamscience.net

Huiqiang Liu

Research Center for Clinical Medicine, Jinshan Hospital of Fudan University

Email: info@benthamscience.net

Fanchen Wang

Research Center for Clinical Medicine, Jinshan Hospital of Fudan University

Email: info@benthamscience.net

Jia Yuan

Research Center for Clinical Medicine, Jinshan Hospital of Fudan University

Email: info@benthamscience.net

Wencai Guan

Research Center for Clinical Medicine, Jinshan Hospital of Fudan University

Email: info@benthamscience.net

Guoxiong Xu

Research Center for Clinical Medicine, Jinshan Hospital of Fudan University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Kuroki, L.; Guntupalli, S.R. Treatment of epithelial ovarian cancer. BMJ, 2020, 371, m3773. doi: 10.1136/bmj.m3773 PMID: 33168565
  2. Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48. doi: 10.3322/caac.21763 PMID: 36633525
  3. Thusgaard, C.F.; Korsholm, M.; Koldby, K.M.; Kruse, T.A.; Thomassen, M.; Jochumsen, K.M. Epithelial ovarian cancer and the use of circulating tumor DNA: A systematic review. Gynecol. Oncol., 2021, 161(3), 884-895. doi: 10.1016/j.ygyno.2021.04.020 PMID: 33892886
  4. Das, T; Anand, U; Pandey, SK; Ashby, CR, Jr; Assaraf, YG; Chen, ZS Therapeutic strategies to overcome taxane resistance in cancer. Drug resistance updates: Reviews and commentaries in antimicrobial and anticancer chemotherapy. 2021, 55, 100754. doi: 10.1016/j.drup.2021.100754
  5. Tymon-Rosario, J.; Adjei, N.N.; Roque, D.M.; Santin, A.D. Microtubule-interfering drugs: Current and future roles in epithelial ovarian cancer treatment. Cancers, 2021, 13(24), 6239. doi: 10.3390/cancers13246239 PMID: 34944858
  6. Baird, R.D.; Tan, D.S.P.; Kaye, S.B. Weekly paclitaxel in the treatment of recurrent ovarian cancer. Nat. Rev. Clin. Oncol., 2010, 7(10), 575-582. doi: 10.1038/nrclinonc.2010.120 PMID: 20683437
  7. Markman, M.; Mekhail, T.M. Paclitaxel in cancer therapy. Expert Opin. Pharmacother., 2002, 3(6), 755-766. doi: 10.1517/14656566.3.6.755 PMID: 12036415
  8. Sharma, S.; Salomon, C. Techniques associated with exosome isolation for biomarker development: Liquid biopsies for ovarian cancer detection. Methods Mol. Biol., 2020, 2055, 181-199. doi: 10.1007/978-1-4939-9773-2_8 PMID: 31502152
  9. Newick, K.; O’Brien, S.; Moon, E.; Albelda, S.M. CAR T cell therapy for solid tumors. Annu. Rev. Med., 2017, 68(1), 139-152. doi: 10.1146/annurev-med-062315-120245 PMID: 27860544
  10. Lan, H.; Yuan, J.; Zeng, D.; Liu, C.; Guo, X.; Yong, J.; Zeng, X.; Xiao, S. The emerging role of non-coding RNAs in drug resistance of ovarian cancer. Front. Genet., 2021, 12, 693259. doi: 10.3389/fgene.2021.693259 PMID: 34512721
  11. Braga, E.A.; Fridman, M.V.; Moscovtsev, A.A.; Filippova, E.A.; Dmitriev, A.A.; Kushlinskii, N.E. LncRNAs in ovarian cancer progression, metastasis, and main pathways: ceRNA and alternative mechanisms. Int. J. Mol. Sci., 2020, 21(22), 8855. doi: 10.3390/ijms21228855 PMID: 33238475
  12. Song, Y.; Qu, H. Identification and validation of a seven m6A-related lncRNAs signature predicting prognosis of ovarian cancer. BMC Cancer, 2022, 22(1), 633. doi: 10.1186/s12885-022-09591-4 PMID: 35676619
  13. Zheng, J.; Guo, J.; Wang, Y.; Zheng, Y.; Zhang, K.; Tong, J. Bioinformatic analyses of the ferroptosis-related lncrnas signature for ovarian cancer. Front. Mol. Biosci., 2022, 8, 735871. doi: 10.3389/fmolb.2021.735871 PMID: 35127813
  14. Zheng, J.; Guo, J.; Zhu, L.; Zhou, Y.; Tong, J. Comprehensive analyses of glycolysis-related lncRNAs for ovarian cancer patients. J. Ovarian Res., 2021, 14(1), 124. doi: 10.1186/s13048-021-00881-2 PMID: 34560889
  15. Zhang, Z.; Xu, Z.; Yan, Y. Role of a pyroptosis-related lncRNA signature in risk stratification and immunotherapy of ovarian cancer. Front. Med., 2022, 8, 793515. doi: 10.3389/fmed.2021.793515 PMID: 35096881
  16. Li, H.; Liu, Z.Y.; Chen, Y.C.; Zhang, X.Y.; Wu, N.; Wang, J. Identification and validation of an immune-related lncRNAs signature to predict the overall survival of ovarian cancer. Front. Oncol., 2022, 12, 999654. doi: 10.3389/fonc.2022.999654 PMID: 36313727
  17. Lheureux, S.; Gourley, C.; Vergote, I.; Oza, A.M. Epithelial ovarian cancer. Lancet, 2019, 393(10177), 1240-1253. doi: 10.1016/S0140-6736(18)32552-2 PMID: 30910306
  18. Torre, L.A.; Trabert, B.; DeSantis, C.E.; Miller, K.D.; Samimi, G.; Runowicz, C.D.; Gaudet, M.M.; Jemal, A.; Siegel, R.L. Ovarian cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(4), 284-296. doi: 10.3322/caac.21456 PMID: 29809280
  19. Rodolakis, I.; Pergialiotis, V.; Liontos, M.; Haidopoulos, D.; Loutradis, D.; Rodolakis, A.; Bamias, A.; Thomakos, N. Chemotherapy response score in ovarian cancer patients: An overview of its clinical utility. J. Clin. Med., 2023, 12(6), 2155. doi: 10.3390/jcm12062155 PMID: 36983157
  20. Atallah, G.A.; Kampan, N.C.; Chew, K.T.; Mohd Mokhtar, N.; Md Zin, R.R.; Shafiee, M.N.B.; Abd Aziz, N.H.B. Predicting prognosis and platinum resistance in ovarian cancer: Role of immunohistochemistry biomarkers. Int. J. Mol. Sci., 2023, 24(3), 1973. doi: 10.3390/ijms24031973 PMID: 36768291
  21. Jin, Y.; Cao, J.; Cheng, H.; Hu, X. LncRNA POU6F2-AS2 contributes to malignant phenotypes and paclitaxel resistance by promoting SKP2 expression in stomach adenocarcinoma. J. Chemother., 2023, 35(7), 638-652. doi: 10.1080/1120009X.2023.2177807 PMID: 36797828
  22. Zhao, H.; Wang, A.; Zhang, Z. LncRNA SDHAP1 confers paclitaxel resistance of ovarian cancer by regulating EIF4G2 expression via miR-4465. J. Biochem., 2020, 168(2), 171-181. doi: 10.1093/jb/mvaa036 PMID: 32211849
  23. Chen, W.; Yan, L.; Long, B.; Lin, L. Identification of immune-related lncRNAs for predicting prognosis and immune landscape characteristics of uveal melanoma. J. Oncol., 2022, 2022, 1-12. doi: 10.1155/2022/7680657 PMID: 36405245
  24. Xing, X.L.; Xing, C.; Huang, Z.; Yao, Z.Y.; Liu, Y.W. Immune-related lncRNAs to construct novel signatures and predict the prognosis of rectal cancer. Front. Oncol., 2021, 11, 661846. doi: 10.3389/fonc.2021.661846 PMID: 34485113
  25. Cioffi, R.; Bergamini, A.; Rabaiotti, E.; Petrone, M.; Pella, F.; Ferrari, D.; Mangili, G.; Candiani, M. Neoadjuvant chemotherapy in high-risk ovarian cancer patients: Role of age. Tumori, 2019, 105(2), 168-173. doi: 10.1177/0300891618792468 PMID: 30157707
  26. Tajik, P.; van de Vrie, R.; Zafarmand, M.H.; Coens, C.; Buist, M.R.; Vergote, I. The FIGO stage IVA versus IVB of ovarian cancer: Prognostic value and predictive value for neoadjuvant chemotherapy. International journal of gynecological cancer. 2018, 28(3), 453-458. doi: 10.1097/IGC.0000000000001186
  27. Nasioudis, D.; Ko, E.M.; Haggerty, A.F.; Giuntoli, R.L., II; Burger, R.A.; Morgan, M.A.; Latif, N.A. Isolated distant lymph node metastases in ovarian cancer. Should a new substage be created? Gynecol. Oncol. Rep., 2019, 28, 86-90. doi: 10.1016/j.gore.2019.03.008 PMID: 30976643
  28. Liang, W.; Wang, L.; Li, H.; Liu, C.; Wu, M.; Li, J. The added value of CA125 normalization before interval debulking surgery to the chemotherapy response score for the prognostication of ovarian cancer patients receiving neoadjuvant chemotherapy for advanced disease. J. Cancer, 2021, 12(3), 946-953. doi: 10.7150/jca.52711 PMID: 33403051
  29. Klotz, D.M.; Link, T.; Wimberger, P.; Kuhlmann, J.D. A predictive and prognostic model for surgical outcome and prognosis in ovarian cancer computed by clinico-pathological and serological parameters (CA125, HE4, mesothelin). Clin. Chem. Lab. Med., 2023. doi: 10.1515/cclm-2023-0314
  30. Métairie, M.; Benoit, L.; Koual, M.; Bentivegna, E.; Wohrer, H.; Bolze, P.A.; Kerbage, Y.; Raimond, E.; Akladios, C.; Carcopino, X.; Canlorbe, G.; Uzan, J.; Lavoué, V.; Mimoun, C.; Huchon, C.; Koskas, M.; Costaz, H.; Margueritte, F.; Dabi, Y.; Touboul, C.; Bendifallah, S.; Ouldamer, L.; Delanoy, N.; Nguyen-Xuan, H.T.; Bats, A.S.; Azaïs, H. A suggested modification to FIGO stage IV epithelial ovarian cancer. Cancers, 2023, 15(3), 706. doi: 10.3390/cancers15030706 PMID: 36765667
  31. Zhu, J.W.; Wong, F.; Szymiczek, A.; Ene, G.E.V.; Zhang, S.; May, T.; Narod, S.A.; Kotsopoulos, J.; Akbari, M.R. Evaluating the utility of ctDNA in detecting residual cancer and predicting recurrence in patients with serous ovarian cancer. Int. J. Mol. Sci., 2023, 24(18), 14388. doi: 10.3390/ijms241814388 PMID: 37762691
  32. Lu, H.; Arshad, M.; Thornton, A.; Avesani, G.; Cunnea, P.; Curry, E.; Kanavati, F.; Liang, J.; Nixon, K.; Williams, S.T.; Hassan, M.A.; Bowtell, D.D.L.; Gabra, H.; Fotopoulou, C.; Rockall, A.; Aboagye, E.O. A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer. Nat. Commun., 2019, 10(1), 764. doi: 10.1038/s41467-019-08718-9 PMID: 30770825
  33. Weigelt, B.; Vargas, H.A.; Selenica, P.; Geyer, F.C.; Mazaheri, Y.; Blecua, P.; Conlon, N.; Hoang, L.N.; Jungbluth, A.A.; Snyder, A.; Ng, C.K.Y.; Papanastasiou, A.D.; Sosa, R.E.; Soslow, R.A.; Chi, D.S.; Gardner, G.J.; Shen, R.; Reis-Filho, J.S.; Sala, E. Radiogenomics analysis of intratumor heterogeneity in a patient with high-grade serous ovarian cancer. JCO Precis. Oncol., 2019, 3(3), 1-9. doi: 10.1200/PO.18.00410 PMID: 32914032
  34. Crispin-Ortuzar, M.; Woitek, R.; Reinius, M.A.V.; Moore, E.; Beer, L.; Bura, V.; Rundo, L.; McCague, C.; Ursprung, S.; Escudero Sanchez, L.; Martin-Gonzalez, P.; Mouliere, F.; Chandrananda, D.; Morris, J.; Goranova, T.; Piskorz, A.M.; Singh, N.; Sahdev, A.; Pintican, R.; Zerunian, M.; Rosenfeld, N.; Addley, H.; Jimenez-Linan, M.; Markowetz, F.; Sala, E.; Brenton, J.D. Integrated radiogenomics models predict response to neoadjuvant chemotherapy in high grade serous ovarian cancer. Nat. Commun., 2023, 14(1), 6756. doi: 10.1038/s41467-023-41820-7 PMID: 37875466
  35. Sharbatoghli, M.; Vafaei, S.; Aboulkheyr Es, H.; Asadi-Lari, M.; Totonchi, M.; Madjd, Z. Prediction of the treatment response in ovarian cancer: A ctDNA approach. J. Ovarian Res., 2020, 13(1), 124. doi: 10.1186/s13048-020-00729-1 PMID: 33076944
  36. Dai, D.; Li, Q.; Zhou, P.; Huang, J.; Zhuang, H.; Wu, H.; Chen, B. Analysis of omics data reveals nucleotide excision repair-related genes signature in highly-grade serous ovarian cancer to predict prognosis. Front. Cell Dev. Biol., 2022, 10, 874588. doi: 10.3389/fcell.2022.874588 PMID: 35769257
  37. Zhang, M.; Cheng, S.; Jin, Y.; Zhao, Y.; Wang, Y. Roles of CA125 in diagnosis, prediction, and oncogenesis of ovarian cancer. Biochim. Biophys. Acta Rev. Cancer, 2021, 1875(2), 188503. doi: 10.1016/j.bbcan.2021.188503 PMID: 33421585
  38. Alegría-Baños, J.A.; Jiménez-López, J.C.; Vergara-Castañeda, A.; de León, D.F.C.; Mohar-Betancourt, A.; Pérez-Montiel, D.; Sánchez-Domínguez, G.; García-Villarejo, M.; Olivares-Pérez, C.; Hernández-Constantino, Á.; González-Santiago, A.; Clara-Altamirano, M.; Arela-Quispe, L.; Prada-Ortega, D. Kinetics of HE4 and CA125 as prognosis biomarkers during neoadjuvant chemotherapy in advanced epithelial ovarian cancer. J. Ovarian Res., 2021, 14(1), 96. doi: 10.1186/s13048-021-00845-6 PMID: 34275472
  39. Zhang, M.; Wang, Y.; Xu, S.; Huang, S.; Wu, M.; Chen, G.; Wang, Y. Endoplasmic reticulum stress-related ten-biomarker risk classifier for survival evaluation in epithelial ovarian cancer and TRPM2: A potential therapeutic target of ovarian cancer. Int. J. Mol. Sci., 2023, 24(18), 14010. doi: 10.3390/ijms241814010 PMID: 37762313
  40. Yang, J.; Wang, C.; Zhang, Y.; Cheng, S.; Xu, Y.; Wang, Y. A novel pyroptosis-related signature for predicting prognosis and evaluating tumor immune microenvironment in ovarian cancer. J. Ovarian Res., 2023, 16(1), 196. doi: 10.1186/s13048-023-01275-2 PMID: 37730669
  41. Wang, X.; Wang, Y.; Sun, F.; Xu, Y.; Zhang, Z.; Yang, C.; Zhang, L.; Lou, G. Novel LncRNA ZFHX4-AS1 as a potential prognostic biomarker that affects the immune microenvironment in ovarian cancer. Front. Oncol., 2022, 12, 945518. doi: 10.3389/fonc.2022.945518 PMID: 35903691
  42. Shi, X.; Guo, X.; Li, X.; Wang, M.; Qin, R. Loss of Linc01060 induces pancreatic cancer progression through vinculin-mediated focal adhesion turnover. Cancer Lett., 2018, 433, 76-85. doi: 10.1016/j.canlet.2018.06.015 PMID: 29913236
  43. Li, J.; Liao, T.; Liu, H.; Yuan, H.; Ouyang, T.; Wang, J.; Chai, S.; Li, J.; Chen, J.; Li, X.; Zhao, H.; Xiong, N. Hypoxic glioma stem cell–derived exosomes containing linc01060 promote progression of glioma by regulating the MZF1/C-MYC/HIF1Α axis. Cancer Res., 2021, 81(1), 114-128. doi: 10.1158/0008-5472.CAN-20-2270 PMID: 33158815
  44. Zhu, L.; Zhang, X.P.; Xu, S.; Hu, M.G.; Zhao, Z.M.; Zhao, G.D.; Xiao, Z.H.; Liu, R. Identification of a CD4+ conventional T cells-related lncRNAs signature associated with hepatocellular carcinoma prognosis, therapy, and tumor microenvironment. Front. Immunol., 2023, 13, 1111246. doi: 10.3389/fimmu.2022.1111246 PMID: 36700197
  45. Li, L.; Han, J.; Zhang, S.; Dong, C.; Xiao, X. KIF26B-AS1 regulates TLR4 and activates the TLR4 signaling pathway to promote malignant progression of laryngeal cancer. J. Microbiol. Biotechnol., 2022, 32(10), 1344-1354. doi: 10.4014/jmb.2203.03037 PMID: 36224753
  46. Yang, C.; Xia, B.R.; Zhang, Z.C.; Zhang, Y.J.; Lou, G.; Jin, W.L. Immunotherapy for ovarian cancer: Adjuvant, combination, and neoadjuvant. Front. Immunol., 2020, 11, 577869. doi: 10.3389/fimmu.2020.577869 PMID: 33123161
  47. Margul, D.; Yu, C.; AlHilli, M.M. Tumor immune microenvironment in gynecologic cancers. Cancers, 2023, 15(15), 3849. doi: 10.3390/cancers15153849 PMID: 37568665
  48. Colombo, I.; Karakasis, K.; Suku, S.; Oza, A.M. Chasing immune checkpoint inhibitors in ovarian cancer: Novel combinations and biomarker discovery. Cancers, 2023, 15(12), 3220. doi: 10.3390/cancers15123220 PMID: 37370830
  49. Cucolo, L.; Chen, Q.; Qiu, J.; Yu, Y.; Klapholz, M.; Budinich, K.A.; Zhang, Z.; Shao, Y.; Brodsky, I.E.; Jordan, M.S.; Gilliland, D.G.; Zhang, N.R.; Shi, J.; Minn, A.J. The interferon-stimulated gene RIPK1 regulates cancer cell intrinsic and extrinsic resistance to immune checkpoint blockade. Immunity, 2022, 55(4), 671-685.e10. doi: 10.1016/j.immuni.2022.03.007 PMID: 35417675
  50. Song, J.; Yang, R.; Wei, R.; Du, Y.; He, P.; Liu, X. Pan- cancer analysis reveals RIPK2 predicts prognosis and promotes immune therapy resistance via triggering cytotoxic T lymphocytes dysfunction. Mol. Med., 2022, 28(1), 47. doi: 10.1186/s10020-022-00475-8 PMID: 35508972
  51. Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; Wong, F.; Azad, N.S.; Rucki, A.A.; Laheru, D.; Donehower, R.; Zaheer, A.; Fisher, G.A.; Crocenzi, T.S.; Lee, J.J.; Greten, T.F.; Duffy, A.G.; Ciombor, K.K.; Eyring, A.D.; Lam, B.H.; Joe, A.; Kang, S.P.; Holdhoff, M.; Danilova, L.; Cope, L.; Meyer, C.; Zhou, S.; Goldberg, R.M.; Armstrong, D.K.; Bever, K.M.; Fader, A.N.; Taube, J.; Housseau, F.; Spetzler, D.; Xiao, N.; Pardoll, D.M.; Papadopoulos, N.; Kinzler, K.W.; Eshleman, J.R.; Vogelstein, B.; Anders, R.A.; Diaz, L.A., Jr Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science, 2017, 357(6349), 409-413. doi: 10.1126/science.aan6733 PMID: 28596308
  52. Wang, H.; Fang, L.; Jiang, J.; Kuang, Y.; Wang, B.; Shang, X.; Han, P.; Li, Y.; Liu, M.; Zhang, Z.; Li, P. The cisplatin-induced lncRNA PANDAR dictates the chemoresistance of ovarian cancer via regulating SFRS2-mediated p53 phosphorylation. Cell Death Dis., 2018, 9(11), 1103. doi: 10.1038/s41419-018-1148-y PMID: 30375398
  53. Dai, C.; Xu, P.; Liu, S.; Xu, S.; Xu, J.; Fu, Z.; Cao, J.; Lv, M.; Zhou, J.; Liu, G.; Zhang, H.; Jia, X. Long noncoding RNA ZEB1-AS1 affects paclitaxel and cisplatin resistance by regulating MMP19 in epithelial ovarian cancer cells. Arch. Gynecol. Obstet., 2021, 303(5), 1271-1281. doi: 10.1007/s00404-020-05858-y PMID: 33151424
  54. Fathi, M.; Barar, J.; Erfan-Niya, H.; Omidi, Y. Methotrexate-conjugated chitosan-grafted pH- and thermo-responsive magnetic nanoparticles for targeted therapy of ovarian cancer. Int. J. Biol. Macromol., 2020, 154, 1175-1184. doi: 10.1016/j.ijbiomac.2019.10.272 PMID: 31730949
  55. Han, Z.; Shi, L. Long non-coding RNA LUCAT1 modulates methotrexate resistance in osteosarcoma via miR-200c/ABCB1 axis. Biochem. Biophys. Res. Commun., 2018, 495(1), 947-953. doi: 10.1016/j.bbrc.2017.11.121 PMID: 29170124
  56. Yuan, Z.; Zhang, Y.; Cao, D.; Shen, K.; Li, Q.; Zhang, G.; Wu, X.; Cui, M.; Yue, Y.; Cheng, W.; Wang, L.; Qu, P.; Tao, G.; Hou, J.; Sun, L.; Meng, Y.; Li, G.; Li, C.; Shi, H.; Chen, Y. Pegylated liposomal doxorubicin in patients with epithelial ovarian cancer. J. Ovarian Res., 2021, 14(1), 12. doi: 10.1186/s13048-020-00736-2 PMID: 33423683
  57. Chen, Q.; Yang, H.; Zhu, X.; Xiong, S.; Chi, H.; Xu, W. Integrative analysis of the doxorubicin-associated lncrna–mrna network identifies chemoresistance-associated lnc-TRDMT1-5 as a biomarker of breast cancer progression. Front. Genet., 2020, 11, 566. doi: 10.3389/fgene.2020.00566 PMID: 32547604
  58. Hong, S.H.; Lee, S.; Kim, H.G.; Lee, H.J.; Jung, K.H.; Lee, S.C.; Lee, N.R.; Yun, J.; Woo, I.S.; Park, K.H.; Kim, K.; Kim, H.Y.; Rha, S.Y.; Byun, J.H. Phase II study of gemcitabine and vinorelbine as second- or third-line therapy in patients with primary refractory or platinum-resistant recurrent ovarian and primary peritoneal cancer by the Korean cancer study group (KCSG)_KCSG GY10-10. Gynecol. Oncol., 2015, 136(2), 212-217. doi: 10.1016/j.ygyno.2014.11.017 PMID: 25462205
  59. Rothenberg, M.L.; Liu, P.Y.; Wilczynski, S.; Nahhas, W.A.; Winakur, G.L.; Jiang, C.S.; Moinpour, C.M.; Lyons, B.; Weiss, G.R.; Essell, J.H.; Smith, H.O.; Markman, M.; Alberts, D.S. Phase II trial of vinorelbine for relapsed ovarian cancer: A Southwest Oncology Group study. Gynecol. Oncol., 2004, 95(3), 506-512. doi: 10.1016/j.ygyno.2004.09.004 PMID: 15581954
  60. Ma, J.; Fan, Z.; Tang, Q.; Xia, H.; Zhang, T.; Bi, F. Aspirin attenuates YAP and β-catenin expression by promoting β-TrCP to overcome docetaxel and vinorelbine resistance in triple-negative breast cancer. Cell Death Dis., 2020, 11(7), 530. doi: 10.1038/s41419-020-2719-2 PMID: 32661222
  61. Tamari, S.; Menju, T.; Toyazaki, T.; Miyamoto, H.; Chiba, N.; Noguchi, M.; Ishikawa, H.; Miyata, R.; Kayawake, H.; Tanaka, S.; Yamada, Y.; Yutaka, Y.; Nakajima, D.; Ohsumi, A.; Hamaji, M.; Date, H. Nrf2/p-Fyn/ABCB1 axis accompanied by p-Fyn nuclear accumulation plays pivotal roles in vinorelbine resistance in non-small cell lung cancer. Oncol. Rep., 2022, 48(4), 171. doi: 10.3892/or.2022.8386 PMID: 35959810
  62. Busacca, S.; O’Regan, L.; Singh, A.; Sharkey, A.J.; Dawson, A.G.; Dzialo, J.; Parsons, A.; Kumar, N.; Schunselaar, L.M.; Guppy, N.; Nakas, A.; Sheaff, M.; Mansfield, A.S.; Janes, S.M.; Baas, P.; Fry, A.M.; Fennell, D.A. BRCA1/MAD2L1 deficiency disrupts the spindle assembly checkpoint to confer vinorelbine resistance in mesothelioma. Mol. Cancer Ther., 2021, 20(2), 379-388. doi: 10.1158/1535-7163.MCT-20-0363 PMID: 33158996
  63. Guan, L.Y.; Lu, Y. New developments in molecular targeted therapy of ovarian cancer. Discov. Med., 2018, 26(144), 219-229. PMID: 30695681

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers