An Update on Glutathione's Biosynthesis, Metabolism, Functions, and Medicinal Purposes


Цитировать

Полный текст

Аннотация

Glutathione (GSH) has been the focus of increased scientific interest in the last decades. It plays a crucial role in all major physiological processes by supplying antioxidant defenses through participating in cellular redox reactions in the human body and other living organisms. GSH also participates in detoxifying xenobiotics, protecting protein thiols from crosslinking and oxidation, regulating the cell cycle, storing cysteine, etc. The significant role of GSH in the most important physiological processes has been highlighted, such as maintaining the redox balance and reducing oxidative stress due to its ability to inactivate the reactive oxygen, nitrogen, and sulfur species. It can also enhance metabolic detoxification and regulate the function of the immune system. All of these characteristics make it a universal biomarker since its proper balance is essential for improving health and treating some age-related disorders. This review presents a current concept of the synthesis and metabolism of GSH; its main functions in a living organism, and as a precursor and cofactor; data on the use of GSH for medicinal purposes in the prevention and treatment of some diseases, as well as a nutritional strategy to maintain a normal pool of GSH in the body. The data were gathered by searching relevant information in multiple databases, such as PubMed, Scopus, ScienceDirect, and Google Scholar.

Об авторах

Amin Gasmi

Department of Research, Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée

Email: info@benthamscience.net

Aniqa Nasreen

Department of Physiology, King Edward Medical University

Email: info@benthamscience.net

Larysa Lenchyk

Department of Chemistry of Natural Compounds, National University of Pharmacy

Email: info@benthamscience.net

Roman Lysiuk

Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University

Email: info@benthamscience.net

Massimiliano Peana

Department of Chemical, Physics, Mathematics and Natural Sciences, University of Sassari

Email: info@benthamscience.net

Nataliya Shapovalova

Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University

Email: info@benthamscience.net

Salva Piscopo

Department of Research, Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée

Email: info@benthamscience.net

Mykola Komisarenko

Department of Chemistry of Natural Compounds, National University of Pharmacy

Email: info@benthamscience.net

Mariia Shanaida

Department of Pharmacognosy and Medical Botany, Ternopil State Medical University

Email: info@benthamscience.net

Kateryna Smetanina

Department of Organic Chemistry and Pharmacy, Lutsk National Technical University

Email: info@benthamscience.net

Halyna Antonyak

Department of Ecology, Ivan Franko National University of Lviv

Email: info@benthamscience.net

Liudmyla Fira

Department of Pharmacognosy and Medical Botany, Ternopil State Medical University

Email: info@benthamscience.net

Petro Lykhatskyi

Department of Pharmacognosy and Medical Botany, Ternopil State Medical University

Email: info@benthamscience.net

Dmytro Fira

Department of Pharmacognosy and Medical Botany, Ternopil State Medical University

Email: info@benthamscience.net

Geir Bjørklund

Department of Research, Council for Nutritional and Environmental Medicine

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Lushchak, V.I. Glutathione homeostasis and functions: Potential targets for medical interventions. J. Amino Acids, 2012, 2012, 1-26. doi: 10.1155/2012/736837 PMID: 22500213
  2. Meister, A.; Anderson, M.E. Glutathione. Annu. Rev. Biochem., 1984, 52, 711-760.
  3. Forman, H.J.; Zhang, H.; Rinna, A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Aspects Med., 2009, 30(1-2), 1-12. doi: 10.1016/j.mam.2008.08.006 PMID: 18796312
  4. Vašková, J.; Kočan, L.; Vaško, L.; Perjési, P. Glutathione-related enzymes and proteins: A review. Molecules, 2023, 28(3), 1447. doi: 10.3390/molecules28031447 PMID: 36771108
  5. Forman, H.J.; Thomas, M.J. Oxidant production and bactericidal activity of phagocytes. Annu. Rev. Physiol., 1986, 48(1), 669-680. doi: 10.1146/annurev.ph.48.030186.003321 PMID: 3010830
  6. Korost, Y.V.; Sokurenko, O.O.; Kalashchenko, S.I.; Odynetsʹ, M.O. Understanding biochemical processes as the proposal of successful disease treatment. State-Art Technol. Med., 2016, 3-4(129-130), 20-23.
  7. Marí, M.; de Gregorio, E.; de Dios, C.; Roca-Agujetas, V.; Cucarull, B.; Tutusaus, A.; Morales, A.; Colell, A. Mitochondrial glutathione: Recent insights and role in disease. Antioxidants, 2020, 9(10), 909. doi: 10.3390/antiox9100909 PMID: 32987701
  8. Gao, X.; Yu, X.; Zhang, C.; Wang, Y.; Sun, Y.; Sun, H.; Zhang, H.; Shi, Y.; He, X. Telomeres and mitochondrial metabolism: Implications for cellular senescence and age-related diseases. Stem Cell Rev. Rep., 2022, 18(7), 2315-2327. doi: 10.1007/s12015-022-10370-8 PMID: 35460064
  9. Roger, L.; Tomas, F.; Gire, V. Mechanisms and regulation of cellular senescence. Int. J. Mol. Sci., 2021, 22(23), 13173. doi: 10.3390/ijms222313173 PMID: 34884978
  10. Martini, H.; Passos, J. Cellular senescence: All roads lead to mitochondria. FEBS J., 2022, 290(5), 1186-1202. PMID: 35048548
  11. Meister, A. Glutathione metabolism and its selective modification. J. Biol. Chem., 1988, 263(33), 17205-17208. doi: 10.1016/S0021-9258(19)77815-6 PMID: 3053703
  12. Cantin, A.M.; North, S.L.; Hubbard, R.C.; Crystal, R.G. Normal alveolar epithelial lining fluid contains high levels of glutathione. J Appl Physiol, 1987, 63(1), 152-157.
  13. Venglarik, C.J.; Giron-Calle, J.; Wigley, A.F.; Malle, E.; Watanabe, N.; Forman, H.J. Hypochlorous acid alters bronchial epithelial cell membrane properties and prevention by extracellular glutathione. J. Appl. Physiol., 2003, 95(6), 2444-2452.
  14. Pizzorno, J. Glutathione! Integr. Med., 2014, 13(1), 8-12. PMID: 26770075
  15. Ruiz-Capillas, C., Eds.; Nollet., L.M.L., Eds.; Flow Injection Analysis of Food Additives; Shpigun, L.K.CRC Press: C.Ruiz-Capillas, 2015, p. 736.
  16. Iskusnykh, I.Y.; Zakharova, A.A.; Pathak, D. Glutathione in brain disorders and aging. Molecules., 2022, 27(1), 324. doi: 10.3390/molecules27010324 PMID: 35011559
  17. Hajam, Y.A.; Rani, R.; Ganie, S.Y.; Sheikh, T.A.; Javaid, D.; Qadri, S.S.; Pramodh, S.; Alsulimani, A.; Alkhanani, M.F.; Harakeh, S.; Hussain, A.; Haque, S.; Reshi, M.S. Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives. Cells., 2022, 11(3), 552. doi: 10.3390/cells11030552 PMID: 35159361
  18. Kulinsky, V.I.; Kolesnichenko, L.S. Nuclear glutathione and its functions. Biomed. Khim., 2010, 56(6), 657-662. doi: 10.18097/PBMC20105606657 PMID: 21395068
  19. Ranganna, K.; Mathew, O.P.; Yatsu, F.M.; Yousefipour, Z.; Hayes, B.E.; Milton, S.G. Involvement of glutathione/glutathione S-transferase antioxidant system in butyrate-inhibited vascular smooth muscle cell proliferation. FEBS J., 2007, 274(22), 5962-5978. doi: 10.1111/j.1742-4658.2007.06119.x PMID: 17961182
  20. Sies, H.; Ketterer, B. Glutathione conjugation. Mechanisms and biological significance; Academic Press: London, 1988.
  21. Sies, H. Glutathione and its role in cellular functions. Free Radic. Biol. Med., 1999, 27(9-10), 916-921. doi: 10.1016/S0891-5849(99)00177-X PMID: 10569624
  22. Potęga, A. Glutathione-mediated conjugation of anticancer drugs: An overview of reaction mechanisms and biological significance for drug detoxification and bioactivation. Molecules., 2022, 27(16), 5252. doi: 10.3390/molecules27165252 PMID: 36014491
  23. Hatem, E.; El Banna, N.; Huang, M.E. Multifaceted roles of glutathione and glutathione-based systems in carcinogenesis and anticancer drug resistance. Antioxid. Redox Signal., 2017, 27(15), 1217-1234. doi: 10.1089/ars.2017.7134 PMID: 28537430
  24. Bansal, A.; Simon, M.C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol., 2018, 217(7), 2291-2298. doi: 10.1083/jcb.201804161 PMID: 29915025
  25. Tew, K.D. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res., 2016, 76(1), 7-9. doi: 10.1158/0008-5472.CAN-15-3143 PMID: 26729789
  26. Ennis, S.R.; Kawai, N.; Ren, X.; Abdelkarim, G.E.; Keep, R.F. Glutamine uptake at the blood-brain barrier is mediated by N-system transport. J. Neurochem., 1998, 71(6), 2565-2573. doi: 10.1046/j.1471-4159.1998.71062565.x PMID: 9832157
  27. Dringen, R.; Kranich, O.; Hamprecht, B. The γ-glutamyl transpeptidase inhibitor acivicin preserves glutathione released by astroglial cells in culture. Neurochem. Res., 1997, 22(6), 727-733. doi: 10.1023/A:1027310328310 PMID: 9178957
  28. Dringen, R. Metabolism and functions of glutathione in brain. Prog. Neurobiol., 2000, 62(6), 649-671. doi: 10.1016/S0301-0082(99)00060-X PMID: 10880854
  29. Aoyama, K. Glutathione in the Brain. Int. J. Mol. Sci., 2021, 22(9), 5010. doi: 10.3390/ijms22095010 PMID: 34065042
  30. Bjørklund, G.; Peana, M.; Maes, M.; Dadar, M.; Severin, B. The glutathione system in Parkinson’s disease and its progression. Neurosci. Biobehav. Rev., 2021, 120, 470-478. doi: 10.1016/j.neubiorev.2020.10.004 PMID: 33068556
  31. Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr. J., 2015, 15(1), 71. doi: 10.1186/s12937-016-0186-5 PMID: 27456681
  32. Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126. doi: 10.4103/0973-7847.70902 PMID: 22228951
  33. Estrela, J.M.; Ortega, A.; Obrador, E. Glutathione in cancer biology and therapy. Crit. Rev. Clin. Lab. Sci., 2006, 43(2), 143-181. doi: 10.1080/10408360500523878 PMID: 16517421
  34. Lu, S.C. Regulation of glutathione synthesis. Mol. Aspects Med., 2009, 30(1-2), 42-59. doi: 10.1016/j.mam.2008.05.005 PMID: 18601945
  35. White, C.C.; Viernes, H.; Krejsa, C.M.; Botta, D.; Kavanagh, T.J. Fluorescence-based microtiter plate assay for glutamate–cysteine ligase activity. Anal. Biochem., 2003, 318(2), 175-180. doi: 10.1016/S0003-2697(03)00143-X PMID: 12814619
  36. Oppenheimer, L.; Wellner, V.P.; Griffith, O.W.; Meister, A. Glutathione synthetase. Purification from rat kidney and mapping of the substrate binding sites. J. Biol. Chem., 1979, 254(12), 5184-5190. doi: 10.1016/S0021-9258(18)50577-9 PMID: 447639
  37. Wu, G.; Lupton, J.R.; Turner, N.D.; Fang, Y-Z.; Yang, S. Glutathione metabolism and its implications for health. J. Nutr., 2004, 134(3), 489-492. doi: 10.1093/jn/134.3.489 PMID: 14988435
  38. Griffith, O.W. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic. Biol. Med., 1999, 27(9-10), 922-935. doi: 10.1016/S0891-5849(99)00176-8 PMID: 10569625
  39. Garlitska, N.; Fira, L.; Lykhatskyi, P.; Boyko, L. Biochemical mechanisms of oxidative stress in animals exposed to hexavalent chromium compounds in the case of isoniazid–rifampicin hepatitis. Farmacia, 2021, 69(2), 253-259. doi: 10.31925/farmacia.2021.2.9
  40. Gontova, T.; Koshovyi, O.; Shanaida, M.; Vlasova, I.; Grytsyk, L.; Zhumashova, G.; Sayakova, G.; Boshkayeva, A. Determination of standardization parameters of Oxycoccus macrocarpus (Ait.) Pursh and Oxycoccus palustris pers. leaves. Sci.: Pharm. Sci., 2022, 3, 48-57.
  41. Faheem, S.A.; Saeed, N.M.; El-Naga, R.N.; Ayoub, I.M.; Azab, S.S. Hepatoprotective effect of cranberry nutraceutical extract in non-alcoholic fatty liver model in rats: Impact on insulin resistance and Nrf-2 expression. Front. Pharmacol., 2020, 11, 218. doi: 10.3389/fphar.2020.00218 PMID: 32256346
  42. Ali, M.; Khan, T.; Fatima, K.; Ali, Q.A.; Ovais, M.; Khalil, A.T.; Ullah, I.; Raza, A.; Shinwari, Z.K.; Idrees, M. Selected hepatoprotective herbal medicines: Evidence from ethnomedicinal applications, animal models, and possible mechanism of actions. Phytother. Res., 2018, 32(2), 199-215. doi: 10.1002/ptr.5957 PMID: 29047177
  43. Chung, T.K. L-2-oxothiazolidine-4-carboxylate as a cysteine precursor: Efficacy for growth and hepatic glutathione synthesis in chicks and rats. J Nutr., 1990, 120(2), 158-165.
  44. Lyons, J.; Rauh-Pfeiffer, A.; Yu, Y.M.; Lu, X.M.; Zurakowski, D.; Tompkins, R.G.; Ajami, A.M.; Young, V.R.; Castillo, L. Blood glutathione synthesis rates in healthy adults receiving a sulfur amino acid-free diet. Proc. Natl. Acad. Sci., 2000, 97(10), 5071-5076. doi: 10.1073/pnas.090083297 PMID: 10792033
  45. Jahoor, F.; Jackson, A.; Gazzard, B.; Philips, G.; Sharpstone, D.; Frazer, M.E.; Heird, W. Erythrocyte glutathione deficiency in symptom-free HIV infection is associated with decreased synthesis rate. Am. J. Physiol., 1999, 276(1), E205-E211. PMID: 9886968
  46. Lu, S.C. In current topics in cellular regulation; Academic Press, 2001, Vol. 36, pp. 95-116.
  47. Reeds, P.J.; Burrin, D.G.; Stoll, B.; Jahoor, F.; Wykes, L.; Henry, J.; Frazer, M.E. Enteral glutamate is the preferential source for mucosal glutathione synthesis in fed piglets. Am. J. Physiol., 1997, 273(2 Pt 1), E408-E415. PMID: 9277395
  48. Watford, M. Net interorgan transport of L-glutamate in rats occurs via the plasma, not via erythrocytes. J. Nutr., 2002, 132(5), 952-956. doi: 10.1093/jn/132.5.952 PMID: 11983820
  49. Grimble, R.F.; Jackson, A.A.; Persaud, C.; Wride, M.J.; Delers, F.; Engler, R. Cysteine and glycine supplementation modulate the metabolic response to tumor necrosis factor alpha in rats fed a low protein diet. J. Nutr., 1992, 122(11), 2066-2073. doi: 10.1093/jn/122.11.2066 PMID: 1279141
  50. Yu, Y.M.; Ryan, C.M.; Fei, Z.W.; Lu, X.M.; Castillo, L.; Schultz, J.T.; Tompkins, R.G.; Young, V.R. Plasma L -5-oxoproline kinetics and whole blood glutathione synthesis rates in severely burned adult humans. Am. J. Physiol. Endocrinol. Metab., 2002, 282(2), E247-E258. doi: 10.1152/ajpendo.00206.2001 PMID: 11788355
  51. Sen, C.K. In Stress adaptation, prophylaxis and treatment; Springer: Boston, MA, 1999, pp. 31-42. doi: 10.1007/978-1-4615-5097-6_4
  52. Aquilano, K.; Baldelli, S.; Ciriolo, M.R. Glutathione: New roles in redox signaling for an old antioxidant. Front. Pharmacol., 2014, 5, 196. doi: 10.3389/fphar.2014.00196 PMID: 25206336
  53. Sen, C.K.; Packer, L. Thiol homeostasis and supplements in physical exercise. Am. J. Clin. Nutr., 2000, 72(S2), 653S-669S. doi: 10.1093/ajcn/72.2.653S PMID: 10919972
  54. Faubert, B.; Solmonson, A.; DeBerardinis, R.J. Metabolic reprogramming and cancer progression. Science, 2020, 368(6487), eaaw5473. doi: 10.1126/science.aaw5473 PMID: 32273439
  55. Sharma, R.; Yang, Y.; Sharma, A.; Awasthi, S.; Awasthi, Y.C. Antioxidant role of glutathione S-transferases: Protection against oxidant toxicity and regulation of stress-mediated apoptosis. Antioxid. Redox Signal., 2004, 6(2), 289-300. doi: 10.1089/152308604322899350 PMID: 15025930
  56. Rauhala, P.; Andoh, T.; Chiueh, C. Neuroprotective properties of nitric oxide and nitrosoglutathione. Toxicol. Appl. Pharmacol., 2005, 207(S2), 91-95. doi: 10.1016/j.taap.2005.02.028 PMID: 15987648
  57. Moreno-Sanchez, R.; Hernández, M.A.; Pérez, J.C.; Vázquez, C.; Rodriguez-Enriquez, S.; Saavedra, E. Control of the NADPH supply and GSH recycling for oxidative stress management in hepatoma and liver mitochondria. Biochim Biophys Acta Bioenerg., 2018, 1859(10), 1138-1150.
  58. Kinno, A.; Kasamatsu, S.; Akaike, T.; Ihara, H. Reactive sulfur species omics analysis in the brain tissue of the 5xFAD mouse model of Alzheimer’s disease. Antioxidants, 2023, 12(5), 1105. doi: 10.3390/antiox12051105 PMID: 37237971
  59. Barayeu, U.; Schilling, D.; Eid, M.; Xavier da Silva, T.N.; Schlicker, L.; Mitreska, N.; Zapp, C.; Gräter, F.; Miller, A.K.; Kappl, R.; Schulze, A.; Friedmann, A.J.P.; Dick, T.P. Hydropersulfides inhibit lipid peroxidation and ferroptosis by scavenging radicals. Nat. Chem. Biol., 2023, 19(1), 28-37. doi: 10.1038/s41589-022-01145-w PMID: 36109647
  60. Karkhanei, B.; Talebi, G.E.; Mehri, F. Evaluation of oxidative stress level: Total antioxidant capacity, total oxidant status and glutathione activity in patients with COVID-19. New Microbes New Infect., 2021, 42, 100897. doi: 10.1016/j.nmni.2021.100897 PMID: 34026228
  61. Labarrere, C.A.; Kassab, G.S. Glutathione deficiency in the pathogenesis of SARS-CoV-2 infection and its effects upon the host immune response in severe COVID-19 disease. Front. Microbiol., 2022, 13, 979719. doi: 10.3389/fmicb.2022.979719 PMID: 36274722
  62. Polonikov, A. Endogenous deficiency of glutathione as the most likely cause of serious manifestations and death in COVID-19 patients. ACS Infect. Dis., 2020, 6(7), 1558-1562. doi: 10.1021/acsinfecdis.0c00288 PMID: 32463221
  63. Žarković, N.; Jastrząb, A.; Jarocka-Karpowicz, I.; Orehovec, B.; Baršić, B.; Tarle, M.; Kmet, M.; Lukšić, I.; Łuczaj, W.; Skrzydlewska, E. The impact of severe COVID-19 on plasma antioxidants. Molecules., 2022, 27(16), 5323. doi: 10.3390/molecules27165323 PMID: 36014561
  64. Tymoshenko, M.; Gaida, I.; Kravchenko, O.; Ostapchenko, I. Content of different forms of glutathione and activity of glutathione reductase in cells of the gastrointestinal mucosa under experimental gastric carcinogenesis in Ukrainian. Visnyk Kyyivsʹkoho Natsionalʹnoho Universytetu Imeni T. Shevchenka, 2012, 61, 34-36.
  65. Averill-Bates, D. The antioxidant glutathione. In: Vitamins and Hormones; , 2023; 121, pp. 109-141.
  66. Redza-Dutordoir, M.; Averill-Bates, D.A. Interactions between reactive oxygen species and autophagy. Biochim. Biophys. Acta Mol. Cell Res., 2021, 1868(8), 119041. doi: 10.1016/j.bbamcr.2021.119041 PMID: 33872672
  67. Borras, C.; Gambini, J.; Vina, J. Mitochondrial oxidant generation is involved in determining why females live longer than males. Front Biosci., 2007, 12, 1008-1013.
  68. Kulinsky, V.I.; Kolesnichenko, L.S. Mitochondrial glutathione. Biochemistry., 2007, 72(7), 698-701. doi: 10.1134/S0006297907070024 PMID: 17680760
  69. Wang, L.; Ahn, Y.J.; Asmis, R. Sexual dimorphism in glutathione metabolism and glutathione-dependent responses. Redox Biol., 2020, 31, 101410. doi: 10.1016/j.redox.2019.101410 PMID: 31883838
  70. Lushchak, V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact., 2014, 224, 164-175. doi: 10.1016/j.cbi.2014.10.016 PMID: 25452175
  71. Bjørklund, G.; Dadar, M.; Chirumbolo, S.; Lysiuk, R. Flavonoids as detoxifying and pro-survival agents: What’s new? Food Chem. Toxicol., 2017, 110, 240-250. doi: 10.1016/j.fct.2017.10.039 PMID: 29079495
  72. Bjørklund, G.; Dadar, M.; Martins, N.; Chirumbolo, S.; Goh, B.H.; Smetanina, K.; Lysiuk, R. Brief challenges on medicinal plants: An eye-opening look at ageing-related disorders. Basic Clin. Pharmacol. Toxicol., 2018, 122(6), 539-558. doi: 10.1111/bcpt.12972 PMID: 29369521
  73. Hayes, J.D. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol., 2005, 45, 51-88.
  74. Chorna, I.V.; Dronik, G.V.; Rogozinsky, M.S. Biological values of antioxidant protection system indicators in assessing the safety of the exercise of genetically modified organisms. Young Scientist, 2018, 10(62), 461-469.
  75. Hayes, J.D.; Pulford, D.J. The glutathione S-transferase supergene family: Regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol., 1995, 30(6), 445-520. doi: 10.3109/10409239509083491 PMID: 8770536
  76. Cahill, L.E.; Fontaine-Bisson, B.; El-Sohemy, A. Functional genetic variants of glutathione S-transferase protect against serum ascorbic acid deficiency. Am. J. Clin. Nutr., 2009, 90(5), 1411-1417. doi: 10.3945/ajcn.2009.28327 PMID: 19710200
  77. Xu, S.; Wang, Y.; Roe, B.; Pearson, W.R. Characterization of the human class Mu glutathione S-transferase gene cluster and the GSTM1 deletion. J. Biol. Chem., 1998, 273(6), 3517-3527. doi: 10.1074/jbc.273.6.3517 PMID: 9452477
  78. Frova, C. Glutathione transferases in the genomics era: New insights and perspectives. Biomol. Eng., 2006, 23(4), 149-169. doi: 10.1016/j.bioeng.2006.05.020 PMID: 16839810
  79. Makarchuk, V.A.; Ushakova, G.O.; Krylova, O.O. The glutathione system in the blood of rats and morphological changes of the pancreas under experimental acute and chronic pancreatitis. Ukr. Biochem. J., 2013, 85(1), 71-78. doi: 10.15407/ubj85.01.071 PMID: 23534292
  80. Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev., 2014, 2014, 1-31. doi: 10.1155/2014/360438 PMID: 24999379
  81. Hamilton, D.S.; Zhang, X.; Ding, Z.; Hubatsch, I.; Mannervik, B.; Houk, K.N.; Ganem, B.; Creighton, D.J. Mechanism of the glutathione transferase-catalyzed conversion of antitumor 2-crotonyloxymethyl-2-cycloalkenones to GSH adducts. J. Am. Chem. Soc., 2003, 125(49), 15049-15058. doi: 10.1021/ja030396p PMID: 14653739
  82. Tkach, S.M. Glutathione as a universal hepatoprotector with pleiotropic effects. Health Ukraine, 2018, 2(48), 16-17.
  83. Gons’kyĭ, IaI.; Korda, M.M.; Klishch, I.M. Status of the free radical oxidation and antioxidant system in rats with toxic liver damage; effect of tocopherol and dimethylsulfoxide. Ukr. Biokhim. Zh., 1991, 63(5), 112-116. PMID: 1788866
  84. Skakun, N.P.; Stepanova, Y.N. Comparative evaluation of the hepatoprotective, antioxidant and choleretic activity of flavonoid drugs. Vrach. Delo, 1988, 12, 52-54. PMID: 3245169
  85. Bjørklund, G.; Shanaida, M.; Lysiuk, R.; Butnariu, M.; Peana, M.; Sarac, I.; Strus, O.; Smetanina, K.; Chirumbolo, S. Natural compounds and products from an anti-aging perspective. Molecules, 2022, 27(20), 7084. doi: 10.3390/molecules27207084 PMID: 36296673
  86. Maus, A.; Peters, G.J. Glutamate and α-ketoglutarate: key players in glioma metabolism. Amino Acids, 2017, 49(1), 21-32. doi: 10.1007/s00726-016-2342-9 PMID: 27752843
  87. Dang, L.; Jin, S.; Su, S.M. IDH mutations in glioma and acute myeloid leukemia. Trends Mol. Med., 2010, 16(9), 387-397. doi: 10.1016/j.molmed.2010.07.002 PMID: 20692206
  88. Vélot, C.; Srere, P.A. Reversible transdominant inhibition of a metabolic pathway. In vivo evidence of interaction between two sequential tricarboxylic acid cycle enzymes in yeast. J. Biol. Chem., 2000, 275(17), 12926-12933. PMID: 10777592
  89. Sriram, G.; Martinez, J.A.; McCabe, E.R.B.; Liao, J.C.; Dipple, K.M. Single-gene disorders: What role could moonlighting enzymes play? Am. J. Hum. Genet., 2005, 76(6), 911-924. doi: 10.1086/430799 PMID: 15877277
  90. Lushchak, O.; Piroddi, M.; Galli, F.; Lushchak, V. Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species. Redox Rep., 2013, 19(1), 8-15.
  91. Bulteau, A.L.; Ikeda-Saito, M.; Szweda, L.I. Redox-dependent modulation of aconitase activity in intact mitochondria. Biochemistry., 2003, 42(50), 14846-14855. doi: 10.1021/bi0353979 PMID: 14674759
  92. Velsor, L.W.; Kariya, C.; Kachadourian, R.; Day, B.J. Mitochondrial oxidative stress in the lungs of cystic fibrosis transmembrane conductance regulator protein mutant mice. Am. J. Respir. Cell Mol. Biol., 2006, 35(5), 579-586. doi: 10.1165/rcmb.2005-0473OC PMID: 16763223
  93. Jannat, R.; Uraji, M.; Morofuji, M.; Islam, M.M.; Bloom, R.E.; Nakamura, Y.; McClung, C.R.; Schroeder, J.I.; Mori, I.C.; Murata, Y. Roles of intracellular hydrogen peroxide accumulation in abscisic acid signaling in arabidopsis guard cells. J. Plant Physiol., 2011, 168(16), 1919-1926. doi: 10.1016/j.jplph.2011.05.006 PMID: 21665322
  94. Noctor, G.; Foyer, C.H. ASCORBATE AND GLUTATHIONE: Keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1998, 49(1), 249-279. doi: 10.1146/annurev.arplant.49.1.249 PMID: 15012235
  95. Puskas, F.; Gergely, P.; Niland, B.; Banki, K.; Perl, A. Differential regulation of hydrogen peroxide and Fas-dependent apoptosis pathways by dehydroascorbate, the oxidized form of vitamin C. Antioxid. Redox Signal., 2002, 4(3), 357-369. doi: 10.1089/15230860260196164 PMID: 12215204
  96. Whitbread, A.K.; Masoumi, A.; Tetlow, N.; Schmuck, E.; Coggan, M.; Board, P.G. Characterization of the omega class of glutathione transferases. Methods Enzymol., 2005, 401, 78-99. doi: 10.1016/S0076-6879(05)01005-0 PMID: 16399380
  97. Jimenez, A.; Hernandez, J.A.; del Rio, L.A.; Sevilla, F. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol., 1997, 114(1), 275-284. doi: 10.1104/pp.114.1.275 PMID: 12223704
  98. Bartoli, C.; Buet, A.; Gergoff Grozeff, G.; Galatro, A.; Simontacchi, M. Ascorbate-glutathione cycle and abiotic stress tolerance in plants. In: Ascorbic Acid in Plant Growth, Development and Stress Tolerance; Springer, 2017; pp. 177-200.
  99. Rusu, M.E.; Fizeșan, I.; Vlase, L.; Popa, D.S. Antioxidants in age-related diseases and anti-aging strategies. Antioxidants, 2022, 11(10), 1868. doi: 10.3390/antiox11101868 PMID: 36290589
  100. Deponte, M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(5), 3217-3266. doi: 10.1016/j.bbagen.2012.09.018 PMID: 23036594
  101. Mirończuk-Chodakowska, I.; Witkowska, A.M.; Zujko, M.E. Endogenous non-enzymatic antioxidants in the human body. Adv. Med. Sci., 2018, 63(1), 68-78. doi: 10.1016/j.advms.2017.05.005 PMID: 28822266
  102. Gasmi, A.; Mujawdiya, P.K.; Noor, S.; Lysiuk, R.; Darmohray, R.; Piscopo, S.; Lenchyk, L.; Antonyak, H.; Dehtiarova, K.; Shanaida, M.; Polishchuk, A.; Shanaida, V.; Peana, M.; Bjørklund, G. Polyphenols in metabolic diseases. Molecules., 2022, 27(19), 6280. doi: 10.3390/molecules27196280 PMID: 36234817
  103. Quispe, C.; Cruz-Martins, N.; Manca, M.L.; Manconi, M.; Sytar, O.; Hudz, N.; Shanaida, M.; Kumar, M.; Taheri, Y.; Martorell, M.; Sharifi-Rad, J.; Pintus, G.; Cho, W.C. Nano-derived therapeutic formulations with curcumin in inflammation-related diseases. Oxid. Med. Cell. Longev., 2021, 2021, 1-15. doi: 10.1155/2021/3149223 PMID: 34584616
  104. Chirumbolo, S.; Bjørklund, G.; Lysiuk, R.; Vella, A.; Lenchyk, L.; Upyr, T. Targeting cancer with phytochemicals via their fine tuning of the cell survival signaling pathways. Int. J. Mol. Sci., 2018, 19(11), 3568. doi: 10.3390/ijms19113568 PMID: 30424557
  105. Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact., 2006, 160(1), 1-40. doi: 10.1016/j.cbi.2005.12.009 PMID: 16430879
  106. Babula, P.; Masarik, M.; Adam, V.; Eckschlager, T.; Stiborova, M.; Trnkova, L.; Skutkova, H.; Provaznik, I.; Hubalek, J.; Kizek, R. Mammalian metallothioneins: Properties and functions. Metallomics, 2012, 4(8), 739-750. doi: 10.1039/c2mt20081c PMID: 22791193
  107. Zhang, J.; Zhou, X.; Wu, W.; Wang, J.; Xie, H.; Wu, Z. Regeneration of glutathione by α-lipoic acid via Nrf2/ARE signaling pathway alleviates cadmium-induced HepG2 cell toxicity. Environ. Toxicol. Pharmacol., 2017, 51, 30-37. doi: 10.1016/j.etap.2017.02.022 PMID: 28262510
  108. Patel, J.; Matnor, N.A.; Iyer, A.; Brown, L. A regenerative antioxidant protocol of vitamin E and α-lipoic acid ameliorates cardiovascular and metabolic changes in fructose-fed rats. Evid. Based Complement. Alternat. Med., 2011, 2011, 1-8. doi: 10.1155/2011/120801 PMID: 21437191
  109. Rochette, L.; Ghibu, S.; Muresan, A.; Vergely, C. Alpha-lipoic acid: Molecular mechanisms and therapeutic potential in diabetes. Can. J. Physiol. Pharmacol., 2015, 93(12), 1021-1027. doi: 10.1139/cjpp-2014-0353 PMID: 26406389
  110. Durand, P.; Prost, M.; Loreau, N.; Lussier-Cacan, S.; Blache, D. Impaired homocysteine metabolism and atherothrombotic disease. Lab. Invest., 2001, 81(5), 645-672. doi: 10.1038/labinvest.3780275 PMID: 11351038
  111. Glushchenko, A.V.; Jacobsen, D.W. Molecular targeting of proteins by L-homocysteine: Mechanistic implications for vascular disease. Antioxid. Redox Signal., 2007, 9(11), 1883-1898. doi: 10.1089/ars.2007.1809 PMID: 17760510
  112. Škovierová, H.; Vidomanová, E.; Mahmood, S.; Sopková, J.; Drgová, A.; Červeňová, T.; Halašová, E.; Lehotský, J. The molecular and cellular effect of homocysteine metabolism imbalance on human health. Int. J. Mol. Sci., 2016, 17(10), 1733. doi: 10.3390/ijms17101733 PMID: 27775595
  113. Mosharov, E.; Cranford, M.R.; Banerjee, R. The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes. Biochemistry, 2000, 39(42), 13005-13011. doi: 10.1021/bi001088w PMID: 11041866
  114. Vitvitsky, V.; Mosharov, E.; Tritt, M.; Ataullakhanov, F.; Banerjee, R. Redox regulation of homocysteine-dependent glutathione synthesis. Redox Rep., 2003, 8(1), 57-63. doi: 10.1179/135100003125001260 PMID: 12631446
  115. Tian, L.; Shi, M.M.; Forman, H.J. Increased transcription of the regulatory subunit of gamma-glutamylcysteine synthetase in rat lung epithelial L2 cells exposed to oxidative stress or glutathione depletion. Arch. Biochem. Biophys., 1997, 342(1), 126-133. doi: 10.1006/abbi.1997.9997 PMID: 9185621
  116. Vitvitsky, V.; Dayal, S.; Stabler, S.; Zhou, Y.; Wang, H.; Lentz, S.R.; Banerjee, R. Perturbations in homocysteine-linked redox homeostasis in a murine model for hyperhomocysteinemia. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2004, 287(1), R39-R46. doi: 10.1152/ajpregu.00036.2004 PMID: 15016621
  117. Schalinske, K.L.; Smazal, A.L. Homocysteine imbalance: A pathological metabolic marker. Adv. Nutr., 2012, 3(6), 755-762. doi: 10.3945/an.112.002758 PMID: 23153729
  118. Bjørklund, G.; Peana, M.; Dadar, M.; Lozynska, I.; Chirumbolo, S.; Lysiuk, R.; Lenchyk, L.; Upyr, T.; Severin, B. The role of B vitamins in stroke prevention. Crit. Rev. Food Sci. Nutr., 2022, 62(20), 5462-5475. doi: 10.1080/10408398.2021.1885341 PMID: 33724098
  119. Murray, T.V.A.; Dong, X.; Sawyer, G.J.; Caldwell, A.; Halket, J.; Sherwood, R.; Quaglia, A.; Dew, T.; Anilkumar, N.; Burr, S.; Mistry, R.K.; Martin, D.; Schröder, K.; Brandes, R.P.; Hughes, R.D.; Shah, A.M.; Brewer, A.C. NADPH oxidase 4 regulates homocysteine metabolism and protects against acetaminophen-induced liver damage in mice. Free Radic. Biol. Med., 2015, 89, 918-930. doi: 10.1016/j.freeradbiomed.2015.09.015 PMID: 26472193
  120. Guttormsen, A.B.; Ueland, P.M.; Nesthus, I.; Nygård, O.; Schneede, J.; Vollset, S.E.; Refsum, H. Determinants and vitamin responsiveness of intermediate hyperhomocysteinemia (> or = 40 micromol/liter). The Hordaland Homocysteine Study. J. Clin. Invest., 1996, 98(9), 2174-2183. doi: 10.1172/JCI119024 PMID: 8903338
  121. Vollset, S.E.; Refsum, H.; Ueland, P.M. Population determinants of homocysteine. Am. J. Clin. Nutr., 2001, 73(3), 499-500. doi: 10.1093/ajcn/73.3.499 PMID: 11237921
  122. Moat, S.J. Plasma total homocysteine: Instigator or indicator of cardiovascular disease? Ann. Clin. Biochem., 2008, 45(4), 345-348. doi: 10.1258/acb.2008.008053 PMID: 18583617
  123. Kidd, P.M. Alzheimer’s disease, amnestic mild cognitive impairment, and age-associated memory impairment: Current understanding and progress toward integrative prevention. Altern. Med. Rev., 2008, 13(2), 85-115. PMID: 18590347
  124. Schafer, J.H.; Glass, T.A.; Bolla, K.I.; Mintz, M.; Jedlicka, A.E.; Schwartz, B.S. Homocysteine and cognitive function in a population-based study of older adults. J. Am. Geriatr. Soc., 2005, 53(3), 381-388. doi: 10.1111/j.1532-5415.2005.53153.x PMID: 15743278
  125. Kalinina, E.V.; Chernov, N.N.; Novichkova, M.D. Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes. Biochemistry., 2014, 79(13), 1562-1583. doi: 10.1134/S0006297914130082 PMID: 25749165
  126. Holmgren, A. Thioredoxin and glutaredoxin systems. J. Biol. Chem., 1989, 264(24), 13963-13966. doi: 10.1016/S0021-9258(18)71625-6 PMID: 2668278
  127. Grant, C.M. Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol. Microbiol., 2001, 39(3), 533-541. doi: 10.1046/j.1365-2958.2001.02283.x PMID: 11169096
  128. Berndt, C.; Lillig, C.H.; Holmgren, A. Thioredoxins and glutaredoxins as facilitators of protein folding. Biochim. Biophys. Acta Mol. Cell Res., 2008, 1783(4), 641-650. doi: 10.1016/j.bbamcr.2008.02.003 PMID: 18331844
  129. Heras, B.; Edeling, M.A.; Schirra, H.J.; Raina, S.; Martin, J.L. Crystal structures of the DsbG disulfide isomerase reveal an unstable disulfide. Proc. Natl. Acad. Sci. , 2004, 101(24), 8876-8881. doi: 10.1073/pnas.0402769101 PMID: 15184683
  130. Bjørklund, G.; Zou, L.; Wang, J.; Chasapis, C.T.; Peana, M. Thioredoxin reductase as a pharmacological target. Pharmacol. Res., 2021, 174, 105854. doi: 10.1016/j.phrs.2021.105854 PMID: 34455077
  131. Haffo, L.; Lu, J.; Bykov, V.J.N.; Martin, S.S.; Ren, X.; Coppo, L.; Wiman, K.G.; Holmgren, A. Inhibition of the glutaredoxin and thioredoxin systems and ribonucleotide reductase by mutant p53-targeting compound APR-246. Sci. Rep., 2018, 8(1), 12671. doi: 10.1038/s41598-018-31048-7 PMID: 30140002
  132. DiFrancisco-Donoghue, J.; Lamberg, E.M.; Rabin, E.; Elokda, A.; Fazzini, E.; Werner, W.G. Effects of exercise and B vitamins on homocysteine and glutathione in Parkinson’s disease: a randomized trial. Neurodegener. Dis., 2012, 10(1-4), 127-134. doi: 10.1159/000333790 PMID: 22261439
  133. Montecinos, V.; Guzmán, P.; Barra, V.; Villagrán, M.; Muñoz-Montesino, C.; Sotomayor, K.; Escobar, E.; Godoy, A.; Mardones, L.; Sotomayor, P.; Guzmán, C.; Vásquez, O.; Gallardo, V.; van Zundert, B.; Bono, M.R.; Oñate, S.A.; Bustamante, M.; Cárcamo, J.G.; Rivas, C.I.; Vera, J.C.; Vitamin, C. Vitamin C is an essential antioxidant that enhances survival of oxidatively stressed human vascular endothelial cells in the presence of a vast molar excess of glutathione. J. Biol. Chem., 2007, 282(21), 15506-15515. doi: 10.1074/jbc.M608361200 PMID: 17403685
  134. Kennedy, D. B vitamins and the brain: Mechanisms, dose and efficacy-a review. Nutrients., 2016, 8(2), 68. doi: 10.3390/nu8020068 PMID: 26828517
  135. Antonyak, H.; Iskra, R.; Panas, N.; Lysiuk, R. Trace Elements and Minerals in Health and Longevity; Malavolta, M.; Mocchegiani, E. Springer Nature: Switzerland AG, 2018, pp. 63-98.
  136. Solovyev, N.; Drobyshev, E.; Bjørklund, G.; Dubrovskii, Y.; Lysiuk, R.; Rayman, M.P. Selenium, selenoprotein P, and Alzheimer’s disease: Is there a link? Free Radic. Biol. Med., 2018, 127, 124-133. doi: 10.1016/j.freeradbiomed.2018.02.030 PMID: 29481840
  137. Bjørklund, G.; Shanaida, M.; Lysiuk, R.; Antonyak, H.; Klishch, I.; Shanaida, V.; Peana, M. Selenium: An antioxidant with a critical role in anti-aging. Molecules, 2022, 27(19), 6613. doi: 10.3390/molecules27196613 PMID: 36235150
  138. Bose, S.; Vyas, P.; Singh, M.; Singh, M. Plasma zinc antioxidant vitamins, glutathione levels and total antioxidant activity in oral leukoplakia. Dent. Res. J. , 2012, 9(2), 158-161. doi: 10.4103/1735-3327.95229 PMID: 22623931
  139. Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The essential metals for humans: A brief overview. J. Inorg. Biochem., 2019, 195, 120-129. doi: 10.1016/j.jinorgbio.2019.03.013 PMID: 30939379
  140. Dolbashid, A.S.; Mohktar, M.S.; Zaman, W.S.W.K.; Basri, N.R.H.; Azmi, M.F.; Sawai, S.; Ilyasa, M.Y.H. International Conference for Innovation in Biomedical Engineering and Life Sciences, 2017, pp. 147-151.
  141. Atkuri, K.R.; Mantovani, J.J.; Herzenberg, L.A.; Herzenberg, L.A. N-Acetylcysteine-a safe antidote for cysteine/glutathione deficiency. Curr. Opin. Pharmacol., 2007, 7(4), 355-359. doi: 10.1016/j.coph.2007.04.005 PMID: 17602868
  142. Noctor, G.; Mhamdi, A.; Chaouch, S.; Han, Y.; Neukermans, J.; Marquez-Garcia, B.; Queval, G.; Foyer, C.H. Glutathione in plants: An integrated overview. Plant Cell Environ., 2012, 35(2), 454-484. doi: 10.1111/j.1365-3040.2011.02400.x PMID: 21777251
  143. Meister, A. Glutathione-ascorbic acid antioxidant system in animals. J. Biol. Chem., 1994, 269(13), 9397-9400. doi: 10.1016/S0021-9258(17)36891-6 PMID: 8144521
  144. Cairns, N.G.; Pasternak, M.; Wachter, A.; Cobbett, C.S.; Meyer, A.J. Maturation of arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol., 2006, 141(2), 446-455. doi: 10.1104/pp.106.077982 PMID: 16531482
  145. Noctor, G.; Mhamdi, A. Quantitative measurement of ascorbate and glutathione by spectrophotometry. Methods Mol. Biol., 2022, 2526, 87-96. doi: 10.1007/978-1-0716-2469-2_6 PMID: 35657513
  146. Baimukhametova, E.; Taipova, R.; Kuluev, B. Glutathione and glutathione S-transferases: Key components of the antioxidant protection system of plants. Biomics., 2016, 8, 311-322.
  147. Rae, C.D.; Williams, S.R. Glutathione in the human brain: Review of its roles and measurement by magnetic resonance spectroscopy. Anal. Biochem., 2017, 529, 127-143. doi: 10.1016/j.ab.2016.12.022 PMID: 28034792
  148. Dwivedi, D.; Megha, K.; Mishra, R.; Mandal, P.K. Glutathione in brain: Overview of its conformations, functions, biochemical characteristics, quantitation and potential therapeutic role in brain disorders. Neurochem. Res., 2020, 45(7), 1461-1480. doi: 10.1007/s11064-020-03030-1 PMID: 32297027
  149. Aoyama, K.; Nakaki, T. Neuroprotective properties of the excitatory amino acid carrier 1 (EAAC1). Amino Acids, 2013, 45(1), 133-142. doi: 10.1007/s00726-013-1481-5 PMID: 23462929
  150. Allaman, I.; Bélanger, M.; Magistretti, P.J. Astrocyte–neuron metabolic relationships: For better and for worse. Trends Neurosci., 2011, 34(2), 76-87. doi: 10.1016/j.tins.2010.12.001 PMID: 21236501
  151. Aoyama, K.; Watabe, M.; Nakaki, T. Regulation of neuronal glutathione synthesis. J. Pharmacol. Sci., 2008, 108(3), 227-238. doi: 10.1254/jphs.08R01CR PMID: 19008644
  152. Massucci, F.A.; DiNuzzo, M.; Giove, F.; Maraviglia, B.; Castillo, I.P.; Marinari, E.; Martino, A.D. Energy metabolism and glutamate-glutamine cycle in the brain: A stoichiometric modeling perspective. BMC Syst. Biol., 2013, 7(1), 103. doi: 10.1186/1752-0509-7-103 PMID: 24112710
  153. Liu, B.; Teschemacher, A.G.; Kasparov, S. Astroglia as a cellular target for neuroprotection and treatment of neuro-psychiatric disorders. Glia, 2017, 65(8), 1205-1226. doi: 10.1002/glia.23136 PMID: 28300322
  154. Bjørklund, G.; Doşa, M.D.; Maes, M.; Dadar, M.; Frye, R.E.; Peana, M.; Chirumbolo, S. The impact of glutathione metabolism in autism spectrum disorder. Pharmacol. Res., 2021, 166, 105437. doi: 10.1016/j.phrs.2021.105437 PMID: 33493659
  155. Bjørklund, G.; Tinkov, A.A.; Hosnedlová, B.; Kizek, R.; Ajsuvakova, O.P.; Chirumbolo, S.; Skalnaya, M.G.; Peana, M.; Dadar, M.; El-Ansary, A.; Qasem, H.; Adams, J.B.; Aaseth, J.; Skalny, A.V. The role of glutathione redox imbalance in autism spectrum disorder: A review. Free Radic. Biol. Med., 2020, 160, 149-162. doi: 10.1016/j.freeradbiomed.2020.07.017 PMID: 32745763
  156. Park, H.R.; Lee, J.M.; Moon, H.E.; Lee, D.S.; Kim, B.N.; Kim, J.; Kim, D.G.; Paek, S.H. A short review on the current understanding of autism spectrum disorders. Exp. Neurobiol., 2016, 25(1), 1-13. doi: 10.5607/en.2016.25.1.1 PMID: 26924928
  157. DeMaagd, G.; Philip, A. Parkinson’s disease and its management: Part 1: Disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. P&T, 2015, 40(8), 504-532. PMID: 26236139
  158. Hwang, O. Role of oxidative stress in Parkinson’s disease. Exp. Neurobiol., 2013, 22(1), 11-17. doi: 10.5607/en.2013.22.1.11 PMID: 23585717
  159. Kim, K. Glutathione in the nervous system as a potential therapeutic target to control the development and progression of amyotrophic lateral sclerosis. Antioxidants, 2021, 10(7), 1011. doi: 10.3390/antiox10071011 PMID: 34201812
  160. Mandal, P.K.; Shukla, D.; Tripathi, M.; Ersland, L. Cognitive improvement with glutathione supplement in Alzheimer’s disease: A way forward. J. Alzheimers Dis., 2019, 68(2), 531-535. doi: 10.3233/JAD-181054 PMID: 30776003
  161. Pocernich, C.B.; Butterfield, D.A. Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochim. Biophys. Acta Mol. Basis Dis., 2012, 1822(5), 625-630. doi: 10.1016/j.bbadis.2011.10.003 PMID: 22015471
  162. Calabresi, P.A. Diagnosis and management of multiple sclerosis. Am. Fam. Physician, 2004, 70(10), 1935-1944. PMID: 15571060
  163. Ouyang, L.; Shi, Z.; Zhao, S.; Wang, F.T.; Zhou, T.T.; Liu, B.; Bao, J.K. Programmed cell death pathways in cancer: A review of apoptosis, autophagy and programmed necrosis. Cell Prolif., 2012, 45(6), 487-498. doi: 10.1111/j.1365-2184.2012.00845.x PMID: 23030059
  164. Su, Z.; Yang, Z.; Xu, Y.; Chen, Y.; Yu, Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol. Cancer, 2015, 14(1), 48. doi: 10.1186/s12943-015-0321-5 PMID: 25743109
  165. Hammond, C.L.; Marchan, R.; Krance, S.M.; Ballatori, N. Glutathione export during apoptosis requires functional multidrug resistance-associated proteins. J. Biol. Chem., 2007, 282(19), 14337-14347. doi: 10.1074/jbc.M611019200 PMID: 17374608
  166. Zou, X.; Feng, Z.; Li, Y.; Wang, Y.; Wertz, K.; Weber, P.; Fu, Y.; Liu, J. Stimulation of GSH synthesis to prevent oxidative stress-induced apoptosis by hydroxytyrosol in human retinal pigment epithelial cells: Activation of Nrf2 and JNK-p62/SQSTM1 pathways. J. Nutr. Biochem., 2012, 23(8), 994-1006. doi: 10.1016/j.jnutbio.2011.05.006 PMID: 21937211
  167. Akhtar, M.J.; Ahamed, M.; Alhadlaq, H.A.; Alshamsan, A. Nanotoxicity of cobalt induced by oxidant generation and glutathione depletion in MCF-7 cells. Toxicol. In Vitro, 2017, 40, 94-101. doi: 10.1016/j.tiv.2016.12.012 PMID: 28024936
  168. Kagan, V.E.; Mao, G.; Qu, F.; Angeli, J.P.F.; Doll, S.; Croix, C.S.; Dar, H.H.; Liu, B.; Tyurin, V.A.; Ritov, V.B.; Kapralov, A.A.; Amoscato, A.A.; Jiang, J.; Anthonymuthu, T.; Mohammadyani, D.; Yang, Q.; Proneth, B.; Klein-Seetharaman, J.; Watkins, S.; Bahar, I.; Greenberger, J.; Mallampalli, R.K.; Stockwell, B.R.; Tyurina, Y.Y.; Conrad, M.; Bayır, H. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol., 2017, 13(1), 81-90. doi: 10.1038/nchembio.2238 PMID: 27842066
  169. Angeli, J.P.F.; Shah, R.; Pratt, D.A.; Conrad, M. Ferroptosis inhibition: Mechanisms and opportunities. Trends Pharmacol. Sci., 2017, 38(5), 489-498. doi: 10.1016/j.tips.2017.02.005 PMID: 28363764
  170. Filomeni, G.; Desideri, E.; Cardaci, S.; Rotilio, G.; Ciriolo, M.R. Under the ROS: Thiol network is the principal suspect for autophagy commitment. Autophagy, 2010, 6(7), 999-1005. doi: 10.4161/auto.6.7.12754 PMID: 20639698
  171. Mancilla, H.; Maldonado, R.; Cereceda, K.; Villarroel-Espíndola, F.; Montes de Oca, M.; Angulo, C.; Castro, M.A.; Slebe, J.C.; Vera, J.C.; Lavandero, S.; Concha, I.I. Glutathione depletion induces spermatogonial cell autophagy. J. Cell. Biochem., 2015, 116(10), 2283-2292. doi: 10.1002/jcb.25178 PMID: 25833220
  172. Balendiran, G.K.; Dabur, R.; Fraser, D. The role of glutathione in cancer. Cell Biochem. Funct., 2004, 22(6), 343-352. doi: 10.1002/cbf.1149 PMID: 15386533
  173. Niu, B.; Liao, K.; Zhou, Y.; Wen, T.; Quan, G.; Pan, X.; Wu, C. Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials, 2021, 277, 121110. doi: 10.1016/j.biomaterials.2021.121110 PMID: 34482088
  174. Nunes, S.; Serpa, J. Glutathione in ovarian cancer: A double-edged sword. Int. J. Mol. Sci., 2018, 19(7), 1882. doi: 10.3390/ijms19071882 PMID: 29949936
  175. Kennedy, L.; Sandhu, J.K.; Harper, M.E.; Cuperlovic-Culf, M. Role of glutathione in cancer: From mechanisms to therapies. Biomolecules, 2020, 10(10), 1429. doi: 10.3390/biom10101429 PMID: 33050144
  176. Traverso, N.; Ricciarelli, R.; Nitti, M.; Marengo, B.; Furfaro, A.L.; Pronzato, M.A.; Marinari, U.M.; Domenicotti, C. Role of glutathione in cancer progression and chemoresistance. Oxid. Med. Cell. Longev., 2013, 2013, 1-10. doi: 10.1155/2013/972913 PMID: 23766865
  177. Galadari, S.; Rahman, A.; Pallichankandy, S.; Thayyullathil, F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic. Biol. Med., 2017, 104, 144-164. doi: 10.1016/j.freeradbiomed.2017.01.004 PMID: 28088622
  178. Somasundaram, V.; Basudhar, D.; Bharadwaj, G.; No, J.H.; Ridnour, L.A.; Cheng, R.Y.S.; Fujita, M.; Thomas, D.D.; Anderson, S.K.; McVicar, D.W.; Wink, D.A. Molecular mechanisms of nitric oxide in cancer progression, signal transduction, and metabolism. Antioxid. Redox Signal., 2019, 30(8), 1124-1143. doi: 10.1089/ars.2018.7527 PMID: 29634348
  179. Homma, T.; Fujii, J. Application of glutathione as anti-oxidative and anti-aging drugs. Curr. Drug Metab., 2015, 16(7), 560-571. doi: 10.2174/1389200216666151015114515 PMID: 26467067
  180. Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P. Oxidative stress, aging, and diseases. Clin. Interv. Aging, 2018, 13, 757-772. doi: 10.2147/CIA.S158513 PMID: 29731617
  181. Sinha, R.; Sinha, I.; Calcagnotto, A.; Trushin, N.; Haley, J.S.; Schell, T.D.; Richie, J.P., Jr. Oral supplementation with liposomal glutathione elevates body stores of glutathione and markers of immune function. Eur. J. Clin. Nutr., 2018, 72(1), 105-111. doi: 10.1038/ejcn.2017.132 PMID: 28853742
  182. Richie, J.P., Jr; Nichenametla, S.; Neidig, W.; Calcagnotto, A.; Haley, J.S.; Schell, T.D.; Muscat, J.E. Randomized controlled trial of oral glutathione supplementation on body stores of glutathione. Eur. J. Nutr., 2015, 54(2), 251-263. doi: 10.1007/s00394-014-0706-z PMID: 24791752
  183. Barardo, D.; Thornton, D.; Thoppil, H.; Walsh, M.; Sharifi, S.; Ferreira, S.; Anžič, A.; Fernandes, M.; Monteiro, P.; Grum, T.; Cordeiro, R.; De-Souza, E.A.; Budovsky, A.; Araujo, N.; Gruber, J.; Petrascheck, M.; Fraifeld, V.E.; Zhavoronkov, A.; Moskalev, A.; de Magalhães, J.P. The DrugAge database of aging-related drugs. Aging Cell, 2017, 16(3), 594-597. doi: 10.1111/acel.12585 PMID: 28299908
  184. Varesi, A.; Campagnoli, L.; Pierella, E.; Bavestrello Piccini, G.; Carrara, A.; Ricevuti, G.; Scassellati, C.; Bonvicini, C.; Pascale, A. The Role of Antioxidants in the Interplay between Oxidative Stress and Senescence; Antioxidants: Basel, Switzerland, 2022, p. 11.
  185. Gasmi, A.; Shanaida, M.; Oleshchuk, O.; Semenova, Y.; Mujawdiya, P.K.; Ivankiv, Y.; Pokryshko, O.; Noor, S.; Piscopo, S.; Adamiv, S.; Bjørklund, G. Natural ingredients to improve immunity. Pharmaceuticals., 2023, 16(4), 528. doi: 10.3390/ph16040528 PMID: 37111285
  186. Kidd, P.M. Glutathione: Systemic protectant against oxidative and free radical damage. Altern. Med. Rev., 1997, 2, 155-176.
  187. Witschi, A.; Reddy, S.; Stofer, B.; Lauterburg, B.H. The systemic availability of oral glutathione. Eur. J. Clin. Pharmacol., 1992, 43(6), 667-669. doi: 10.1007/BF02284971 PMID: 1362956
  188. Prousky, J. The treatment of pulmonary diseases and respiratory-related conditions with inhaled (nebulized or aerosolized) glutathione. Evid. Based Complement. Alternat. Med., 2008, 5(1), 27-35. doi: 10.1093/ecam/nem040 PMID: 18317545
  189. Palamara, A.T.; Garaci, E.; Rotilio, G.; Ciriolo, M.R.; Casablanca, A.; Fraternale, A.; Rossi, L.; Schiavano, G.F.; Chiarantlni, L.; Magnani, M. Inhibition of murine AIDS by reduced glutathione. AIDS Res. Hum. Retroviruses, 1996, 12(14), 1373-1381. doi: 10.1089/aid.1996.12.1373 PMID: 8891117
  190. Schauer, R.J.; Kalmuk, S.; Gerbes, A.L.; Leiderer, R.; Meissner, H.; Schildberg, F.W.; Messmer, K.; Bilzer, M. Intravenous administration of glutathione protects parenchymal and non-parenchymal liver cells against reperfusion injury following rat liver transplantation. World J. Gastroenterol., 2004, 10(6), 864-870. doi: 10.3748/wjg.v10.i6.864 PMID: 15040034
  191. Schmitt, B.; Vicenzi, M.; Garrel, C.; Denis, F.M. Effects of N-acetylcysteine, oral glutathione (GSH) and a novel sublingual form of GSH on oxidative stress markers: A comparative crossover study. Redox Biol., 2015, 6, 198-205. doi: 10.1016/j.redox.2015.07.012 PMID: 26262996
  192. Coles, L.D.; Tuite, P.J.; Öz, G.; Mishra, U.R.; Kartha, R.V.; Sullivan, K.M.; Cloyd, J.C.; Terpstra, M. Repeated-dose oral n-acetylcysteine in Parkinson’s disease: Pharmacokinetics and effect on brain glutathione and oxidative stress. J. Clin. Pharmacol., 2018, 58(2), 158-167. doi: 10.1002/jcph.1008 PMID: 28940353
  193. To, K.; Cao, R.; Yegiazaryan, A.; Owens, J.; Nguyen, T.; Sasaninia, K.; Vaughn, C.; Singh, M.; Truong, E.; Medina, A.; Avitia, E.; Villegas, J.; Pham, C.; Sathananthan, A.; Venketaraman, V. Effects of oral liposomal glutathione in altering the immune responses against Mycobacterium tuberculosis and the Mycobacterium bovis BCG strain in individuals with type 2 diabetes. Front. Cell. Infect. Microbiol., 2021, 11, 657775. doi: 10.3389/fcimb.2021.657775 PMID: 34150674
  194. Kretzschmar, M. Regulation of hepatic glutathione metabolism and its role in hepatotoxicity. Exp. Toxicol. Pathol., 1996, 48(5), 439-446. doi: 10.1016/S0940-2993(96)80054-6 PMID: 8765689
  195. Fukagawa, N.K.; Ajami, A.M.; Young, V.R. Plasma methionine and cysteine kinetics in response to an intravenous glutathione infusion in adult humans. Am. J. Physiol., 1996, 270(2 Pt 1), E209-E214. PMID: 8779940
  196. Davids, L.M.; Van Wyk, J.C.; Khumalo, N.P. Intravenous glutathione for skin lightening: Inadequate safety data. S. Afr. Med. J., 2016, 106(8), 782-786. doi: 10.7196/SAMJ.2016.v106i8.10878 PMID: 27499402
  197. Aoyama, K.; Nakaki, T. Impaired glutathione synthesis in neurodegeneration. Int. J. Mol. Sci., 2013, 14(10), 21021-21044. doi: 10.3390/ijms141021021 PMID: 24145751
  198. Paromov, V.; Kumari, S.; Brannon, M.; Kanaparthy, N.S.; Yang, H.; Smith, M.G.; Stone, W.L. Protective effect of liposome-encapsulated glutathione in a human epidermal model exposed to a mustard gas analog. J. Toxicol., 2011, 2011, 1-11. doi: 10.1155/2011/109516 PMID: 21776256
  199. Lv, H.; Zhen, C.; Liu, J.; Yang, P.; Hu, L.; Shang, P. Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy. Oxid. Med. Cell. Longev., 2019, 2019, 1-16. doi: 10.1155/2019/3150145 PMID: 31281572
  200. Xiong, Y.; Xiao, C.; Li, Z.; Yang, X. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem. Soc. Rev., 2021, 50(10), 6013-6041. doi: 10.1039/D0CS00718H PMID: 34027953
  201. Sarawi, W.S.; Alhusaini, A.M.; Fadda, L.M.; Alomar, H.A.; Albaker, A.B.; Aljrboa, A.S.; Alotaibi, A.M.; Hasan, I.H.; Mahmoud, A.M. Nano-curcumin prevents cardiac injury, oxidative stress and inflammation, and modulates TLR4/NF-κB and MAPK signaling in copper sulfate-intoxicated rats. Antioxidants, 2021, 10(9), 1414. doi: 10.3390/antiox10091414 PMID: 34573046
  202. Wu, J.H.; Batist, G. Glutathione and glutathione analogues; Therapeutic potentials. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(5), 3350-3353. doi: 10.1016/j.bbagen.2012.11.016 PMID: 23201199
  203. Pedre, B.; Barayeu, U.; Ezeriņa, D.; Dick, T.P. The mechanism of action of N-acetylcysteine (NAC): The emerging role of H2S and sulfane sulfur species. Pharmacol. Ther., 2021, 228, 107916. doi: 10.1016/j.pharmthera.2021.107916 PMID: 34171332
  204. Ramachandran, A.; Jaeschke, H. Acetaminophen hepatotoxicity. Semin. Liver Dis., 2019, 39(2), 221-234. doi: 10.1055/s-0039-1679919 PMID: 30849782
  205. Adil, M.; Amin, S.; Mohtashim, M. N-acetylcysteine in dermatology. Indian J. Dermatol. Venereol. Leprol., 2018, 84(6), 652-659. doi: 10.4103/ijdvl.IJDVL_33_18 PMID: 30246706
  206. Kumar, P.; Osahon, O.W.; Sekhar, R.V. GlyNAC (Glycine and N-Acetylcysteine) supplementation in mice increases length of life by correcting glutathione deficiency, oxidative stress, mitochondrial dysfunction, abnormalities in mitophagy and nutrient sensing, and genomic damage. Nutrients., 2022, 14(5), 1114. doi: 10.3390/nu14051114 PMID: 35268089
  207. Sekhar, R.V. GlyNAC supplementation improves glutathione deficiency, oxidative stress, mitochondrial dysfunction, inflammation, aging hallmarks, metabolic defects, muscle strength, cognitive decline, and body composition: Implications for healthy aging. J. Nutr., 2021, 151(12), 3606-3616. doi: 10.1093/jn/nxab309 PMID: 34587244
  208. Kumar, P.; Liu, C.; Suliburk, J.; Hsu, J.W.; Muthupillai, R.; Jahoor, F.; Minard, C.G.; Taffet, G.E.; Sekhar, R.V. Supplementing Glycine and N-Acetylcysteine (GlyNAC) in older adults improves glutathione deficiency, oxidative stress, mitochondrial dysfunction, inflammation, physical function, and aging hallmarks: A randomized clinical trial. J. Gerontol. A Biol. Sci. Med. Sci., 2023, 78(1), 75-89. doi: 10.1093/gerona/glac135 PMID: 35975308
  209. Pressman Md, P.; Bridge, W.J.; Zarka, M.H.; Hayes, A.W.; Clemens, R. Dietary γ-glutamylcysteine: Its impact on glutathione status and potential health outcomes. J. Diet. Suppl., 2022, 19(2), 259-270. doi: 10.1080/19390211.2020.1856266 PMID: 33307893
  210. Ansary, J.; Forbes-Hernández, T.Y.; Gil, E.; Cianciosi, D.; Zhang, J.; Elexpuru-Zabaleta, M.; Simal-Gandara, J.; Giampieri, F.; Battino, M. Potential health benefit of garlic based on human intervention studies: A brief overview. Antioxidants., 2020, 9(7), 619. doi: 10.3390/antiox9070619 PMID: 32679751
  211. Gasmi, A.; Gasmi Benahmed, A.; Shanaida, M.; Chirumbolo, S.; Menzel, A.; Anzar, W.; Arshad, M.; Cruz-Martins, N.; Lysiuk, R.; Beley, N.; Oliinyk, P.; Shanaida, V.; Denys, A.; Peana, M.; Bjørklund, G. Anticancer activity of broccoli, its organosulfur and polyphenolic compounds. Crit. Rev. Food Sci. Nutr., 2023, May 2, 1-19. doi: 10.1080/10408398.2023.2195493 PMID: 37129118
  212. Minich, D.M.; Brown, B.I. A review of dietary (Phyto)nutrients for glutathione support. Nutrients., 2019, 11(9), 2073. doi: 10.3390/nu11092073 PMID: 31484368
  213. Zhou, X.; He, L.; Wu, C.; Zhang, Y.; Wu, X.; Yin, Y. Serine alleviates oxidative stress via supporting glutathione synthesis and methionine cycle in mice. Mol. Nutr. Food Res., 2017, 61(11), 1700262. doi: 10.1002/mnfr.201700262 PMID: 28759161
  214. Zhou, X.; He, L.; Zuo, S.; Zhang, Y.; Wan, D.; Long, C.; Huang, P.; Wu, X.; Wu, C.; Liu, G.; Yin, Y. Serine prevented high-fat diet-induced oxidative stress by activating AMPK and epigenetically modulating the expression of glutathione synthesis-related genes. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(2), 488-498. doi: 10.1016/j.bbadis.2017.11.009 PMID: 29158183
  215. Zavorsky, G.S.; Kubow, S.; Grey, V.; Riverin, V.; Lands, L.C. An open-label dose–response study of lymphocyte glutathione levels in healthy men and women receiving pressurized whey protein isolate supplements. Int. J. Food Sci. Nutr., 2007, 58(6), 429-436. doi: 10.1080/09637480701253581 PMID: 17710587
  216. Tosukhowong, P.; Boonla, C.; Dissayabutra, T.; Kaewwilai, L.; Muensri, S.; Chotipanich, C.; Joutsa, J.; Rinne, J.; Bhidayasiri, R. Biochemical and clinical effects of Whey protein supplementation in Parkinson’s disease: A pilot study. J. Neurol. Sci., 2016, 367, 162-170. doi: 10.1016/j.jns.2016.05.056 PMID: 27423583
  217. Bhutto, A.; Morley, J.E. The clinical significance of gastrointestinal changes with aging. Curr. Opin. Clin. Nutr. Metab. Care, 2008, 11(5), 651-660. doi: 10.1097/MCO.0b013e32830b5d37 PMID: 18685464
  218. Corleto, V.D.; Festa, S.; Di Giulio, E.; Annibale, B. Proton pump inhibitor therapy and potential long-term harm. Curr. Opin. Endocrinol. Diabetes Obes., 2014, 21(1), 3-8. doi: 10.1097/MED.0000000000000031 PMID: 24310148
  219. Dvorshchenko, K.; Bernyk, O.; Dranytsyna, A.; Senin, S.; Ostapchenko, L. Influence of oxidative stress on the level of genes expression Tgfb1 and Hgf in rat liver upon long-term gastric hypochlorhydria and administration of multiprobiotic Symbiter. Ukr. Biokhim. Zh., 2014, 85, 114-123.
  220. Naito, Y.; Yoshikawa, T. Molecular and cellular mechanisms involved in Helicobacter pylori -induced inflammation and oxidative stress 1,2 1Guest Editor: Giuseppe Poli 2This article is part of a series of reviews on "Reactive Oxygen and Nitrogen in Inflammation." The full list of papers may be found on the homepage of the journal. Free Radic. Biol. Med., 2002, 33(3), 323-336. doi: 10.1016/S0891-5849(02)00868-7 PMID: 12126754
  221. Cavalcoli, F.; Zilli, A.; Conte, D.; Massironi, S. Micronutrient deficiencies in patients with chronic atrophic autoimmune gastritis: A review. World J. Gastroenterol., 2017, 23(4), 563-572. doi: 10.3748/wjg.v23.i4.563 PMID: 28216963
  222. Parcell, S. Sulfur in human nutrition and applications in medicine. Altern. Med. Rev., 2002, 7(1), 22-44. PMID: 11896744
  223. Jones, D.P.; Park, Y.; Gletsu-Miller, N.; Liang, Y.; Yu, T.; Accardi, C.J.; Ziegler, T.R. Dietary sulfur amino acid effects on fasting plasma cysteine/cystine redox potential in humans. Nutrition, 2011, 27(2), 199-205. doi: 10.1016/j.nut.2010.01.014 PMID: 20471805
  224. Eve, A.A.; Liu, X.; Wang, Y.; Miller, M.J.; Jeffery, E.H.; Madak-Erdogan, Z. Biomarkers of broccoli consumption: Implications for glutathione metabolism and liver health. Nutrients, 2020, 12(9), 2514. doi: 10.3390/nu12092514 PMID: 32825248
  225. Lu, S.C. Glutathione synthesis. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(5), 3143-3153. doi: 10.1016/j.bbagen.2012.09.008 PMID: 22995213
  226. Skvarc, D.R.; Dean, O.M.; Byrne, L.K.; Gray, L.; Lane, S.; Lewis, M.; Fernandes, B.S.; Berk, M.; Marriott, A. The effect of N-acetylcysteine (NAC) on human cognition – A systematic review. Neurosci. Biobehav. Rev., 2017, 78, 44-56. doi: 10.1016/j.neubiorev.2017.04.013 PMID: 28438466
  227. Lin, C.Y.; Wu, J.L.; Shih, T.S.; Tsai, P.J.; Sun, Y.M.; Ma, M.C.; Guo, Y.L. N-Acetyl-cysteine against noise-induced temporary threshold shift in male workers. Hear. Res., 2010, 269(1-2), 42-47. doi: 10.1016/j.heares.2010.07.005 PMID: 20638463
  228. McCarty, M.F.; O’Keefe, J.H.; DiNicolantonio, J.J. Dietary glycine is rate-limiting for glutathione synthesis and may have broad potential for health protection. Ochsner J., 2018, 18(1), 81-87. PMID: 29559876

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024