Role of Circular RNAs in Prostate Cancer
- Авторлар: Chen F.1, Zhang F.2, Liu Y.1, Leng Y.1
-
Мекемелер:
- , The First Clinical Medical College of Lanzhou University
- Department of Urology, Gansu Provincial Hospital
- Шығарылым: Том 31, № 29 (2024)
- Беттер: 4640-4656
- Бөлім: Anti-Infectives and Infectious Diseases
- URL: https://medjrf.com/0929-8673/article/view/645005
- DOI: https://doi.org/10.2174/0929867330666230531095850
- ID: 645005
Дәйексөз келтіру
Толық мәтін
Аннотация
Objectives:This study aims to summarize the current literature to demonstrate the importance of circular RNAs (circRNAs) in multiple aspects of prostate cancer (PCa) occurrence, progression, and treatment resistance and explore the potential role in therapeutic strategies aimed at targeting this molecule in PCa.
Methods:The relevant literature from PubMed and Medline databases is reviewed in this article.
Results:Non-coding RNA has been proven to play a vital role in regulating tumor progression. Among them, circular RNA plays a more unique role due to its nonlinear structure. Lots of circRNAs were found to be differentially expressed in PCa and regulate cell signaling pathways by regulating particular gene expressions. Recent studies have demonstrated that circRNAs are associated with the chemoresistance of urinary tumors, suggesting that circRNAs might be a novel therapeutic target and a marker for therapeutic response and prognosis assessment.
Conclusion:The potential crosstalk of circRNAs modifications in PCa development, therapy, and regulation of tumor metabolism is portrayed in this review. However, more preclinical and clinical trials of this targeted strategy are necessary for the treatment of urinary tumors.
Авторлар туралы
Feng Chen
, The First Clinical Medical College of Lanzhou University
Email: info@benthamscience.net
Fa Zhang
Department of Urology, Gansu Provincial Hospital
Email: info@benthamscience.net
Yong-Qiang Liu
, The First Clinical Medical College of Lanzhou University
Email: info@benthamscience.net
Yu-Fang Leng
, The First Clinical Medical College of Lanzhou University
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Әдебиет тізімі
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34. doi: 10.3322/caac.21551 PMID: 30620402
- Denmeade, S.R.; Isaacs, J.T. A history of prostate cancer treatment. Nat. Rev. Cancer, 2002, 2(5), 389-396. doi: 10.1038/nrc801 PMID: 12044015
- Perner, S.; Cronauer, M.V.; Schrader, A.J.; Klocker, H.; Culig, Z.; Baniahmad, A. Adaptive responses of androgen receptor signaling in castration-resistant prostate cancer. Oncotarget, 2015, 6(34), 35542-35555. doi: 10.18632/oncotarget.4689 PMID: 26325261
- Risk, M.; Corman, J.M. The role of immunotherapy in prostate cancer: An overview of current approaches in development. Rev. Urol., 2009, 11(1), 16-27. PMID: 19390671
- Sanger, H.L.; Klotz, G.; Riesner, D.; Gross, H.J.; Kleinschmidt, A.K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl. Acad. Sci., 1976, 73(11), 3852-3856. doi: 10.1073/pnas.73.11.3852 PMID: 1069269
- Wu, D.P.; Zhao, Y.D.; Yan, Q.Q.; Liu, L.L.; Wei, Y.S.; Huang, J.L. Circular RNAS : Emerging players in brain aging and neurodegenerative diseases. J. Pathol., 2023, 259(1), 1-9. doi: 10.1002/path.6021 PMID: 36264226
- Liu, Z.; Zhou, Y.; Xia, J. CircRNAs: Key molecules in the prevention and treatment of ischemic stroke. Biomed. Pharmacother., 2022, 156, 113845. doi: 10.1016/j.biopha.2022.113845 PMID: 36244267
- Bagheri Moghaddam, M.; Maleki, M.; Oveisee, M.; Bagheri, M.M.; Arabian, M.; Malakootian, M. Circular RNAs: New players in cardiomyopathy. Genes, 2022, 13(9), 1537. doi: 10.3390/genes13091537 PMID: 36140705
- Zhou, X.; Lin, J.; Wang, F.; Chen, X.; Zhang, Y.; Hu, Z.; Jin, X. Circular RNA-regulated autophagy is involved in cancer progression. Front. Cell Dev. Biol., 2022, 10, 961983. doi: 10.3389/fcell.2022.961983 PMID: 36187468
- Salzman, J.; Gawad, C.; Wang, P.L.; Lacayo, N.; Brown, P.O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One, 2012, 7(2), e30733. doi: 10.1371/journal.pone.0030733 PMID: 22319583
- Zhang, Y.; Zhang, X.O.; Chen, T.; Xiang, J.F.; Yin, Q.F.; Xing, Y.H.; Zhu, S.; Yang, L.; Chen, L.L. Circular intronic long noncoding RNAs. Mol. Cell, 2013, 51(6), 792-806. doi: 10.1016/j.molcel.2013.08.017 PMID: 24035497
- Li, X.; Yang, L.; Chen, L.L. The biogenesis, functions, and challenges of circular RNAs. Mol. Cell, 2018, 71(3), 428-442. doi: 10.1016/j.molcel.2018.06.034 PMID: 30057200
- Salzman, J. Circular RNA expression: Its potential regulation and function. Trends Genet., 2016, 32(5), 309-316. doi: 10.1016/j.tig.2016.03.002 PMID: 27050930
- Dori, M.; Bicciato, S. Integration of bioinformatic predictions and experimental data to identify circRNA-miRNA associations. Genes, 2019, 10(9), 642. doi: 10.3390/genes10090642 PMID: 31450634
- Yu, T.; Wang, Y.; Fan, Y.; Fang, N.; Wang, T.; Xu, T.; Shu, Y. CircRNAs in cancer metabolism: A review. J. Hematol. Oncol., 2019, 12(1), 90. doi: 10.1186/s13045-019-0776-8 PMID: 31484561
- Patop, I.L.; Wüst, S.; Kadener, S. Past, present, and future of circ RNAs. EMBO J., 2019, 38(16), e100836. doi: 10.15252/embj.2018100836 PMID: 31343080
- Liang, D.; Wilusz, J.E. Short intronic repeat sequences facilitate circular RNA production. Genes Dev., 2014, 28(20), 2233-2247. doi: 10.1101/gad.251926.114 PMID: 25281217
- Lu, Z.; Filonov, G.S.; Noto, J.J.; Schmidt, C.A.; Hatkevich, T.L.; Wen, Y.; Jaffrey, S.R.; Matera, A.G. Metazoan tRNA introns generate stable circular RNAs in vivo. RNA, 2015, 21(9), 1554-1565. doi: 10.1261/rna.052944.115 PMID: 26194134
- Verduci, L.; Strano, S.; Yarden, Y.; Blandino, G. The circ RNA micro RNA code: Emerging implications for cancer diagnosis and treatment. Mol. Oncol., 2019, 13(4), 669-680. doi: 10.1002/1878-0261.12468 PMID: 30719845
- Yin, Y.; Long, J.; He, Q.; Li, Y.; Liao, Y.; He, P.; Zhu, W. Emerging roles of circRNA in formation and progression of cancer. J. Cancer, 2019, 10(21), 5015-5021. doi: 10.7150/jca.30828 PMID: 31602252
- Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet., 2019, 20(11), 675-691. doi: 10.1038/s41576-019-0158-7 PMID: 31395983
- Jeck, W.R.; Sorrentino, J.A.; Wang, K.; Slevin, M.K.; Burd, C.E.; Liu, J.; Marzluff, W.F.; Sharpless, N.E. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 2013, 19(2), 141-157. doi: 10.1261/rna.035667.112 PMID: 23249747
- Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; Loewer, A.; Ziebold, U.; Landthaler, M.; Kocks, C.; le Noble, F.; Rajewsky, N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441), 333-338. doi: 10.1038/nature11928 PMID: 23446348
- Liang, D.; Tatomer, D.C.; Luo, Z.; Wu, H.; Yang, L.; Chen, L.L.; Cherry, S.; Wilusz, J.E. The output of protein- coding genes shifts to circular RNAs when the Pre-mRNA processing machinery is limiting. Mol. Cell, 2017, 68(5), 940-954.e3. doi: 10.1016/j.molcel.2017.10.034 PMID: 29174924
- Fei, T.; Chen, Y.; Xiao, T.; Li, W.; Cato, L.; Zhang, P.; Cotter, M.B.; Bowden, M.; Lis, R.T.; Zhao, S.G.; Wu, Q.; Feng, F.Y.; Loda, M.; He, H.H.; Liu, X.S.; Brown, M. Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing. Proc. Natl. Acad. Sci., 2017, 114(26), E5207-E5215. doi: 10.1073/pnas.1617467114 PMID: 28611215
- Conn, S.J.; Pillman, K.A.; Toubia, J.; Conn, V.M.; Salmanidis, M.; Phillips, C.A.; Roslan, S.; Schreiber, A.W.; Gregory, P.A.; Goodall, G.J. The RNA binding protein quaking regulates formation of circRNAs. Cell, 2015, 160(6), 1125-1134. doi: 10.1016/j.cell.2015.02.014 PMID: 25768908
- Kong, Z.; Wan, X.; Zhang, Y.; Zhang, P.; Zhang, Y.; Zhang, X.; Qi, X.; Wu, H.; Huang, J.; Li, Y. Androgen-responsive circular RNA circSMARCA5 is up-regulated and promotes cell proliferation in prostate cancer. Biochem. Biophys. Res. Commun., 2017, 493(3), 1217-1223. doi: 10.1016/j.bbrc.2017.07.162 PMID: 28765045
- Yang, Z.; Qu, C.B.; Zhang, Y.; Zhang, W.F.; Wang, D.D.; Gao, C.C.; Ma, L.; Chen, J.S.; Liu, K.L.; Zheng, B.; Zhang, X.H.; Zhang, M.L.; Wang, X.L.; Wen, J.K.; Li, W. Dysregulation of p53-RBM25-mediated circAMOTL1L biogenesis contributes to prostate cancer progression through the circAMOTL1L-miR-193a-5p-Pcdha pathway. Oncogene, 2019, 38(14), 2516-2532. doi: 10.1038/s41388-018-0602-8 PMID: 30531834
- Greene, J.; Baird, A.M.; Casey, O.; Brady, L.; Blackshields, G.; Lim, M.; OBrien, O.; Gray, S.G.; McDermott, R.; Finn, S.P. Circular RNAs are differentially expressed in prostate cancer and are potentially associated with resistance to enzalutamide. Sci. Rep., 2019, 9(1), 10739. doi: 10.1038/s41598-019-47189-2 PMID: 31341219
- Shen, L.; Pelletier, J. General and target-specific DExD/H RNA helicases in eukaryotic translation initiation. Int J Mol Sci, 2020, 21(12) doi: 10.3390/ijms21124402
- Song, Z.; Zhuo, Z.; Ma, Z.; Hou, C.; Chen, G.; Xu, G. Hsa_Circ_0001206 is downregulated and inhibits cell proliferation, migration and invasion in prostate cancer. Artif Cells Nanomed Biotechnol, 2019, 47(1), 2449-2464. doi: 10.1080/21691401.2019.1626866
- Chen, W.; Cen, S.; Zhou, X.; Yang, T.; Wu, K.; Zou, L.; Luo, J.; Li, C.; Lv, D.; Mao, X. Circular RNA CircNOLC1, Upregulated by NF-KappaB, promotes the progression of prostate cancer via miR-647/PAQR4 Axis. Front. Cell Dev. Biol., 2021, 8, 624764. doi: 10.3389/fcell.2020.624764 PMID: 33490086
- Chen, D.; Lu, X.; Yang, F.; Xing, N. Circular RNA circHIPK3 promotes cell proliferation and invasion of prostate cancer by sponging miR-193a-3p and regulating MCL1 expression. Cancer Manag. Res., 2019, 11, 1415-1423. doi: 10.2147/CMAR.S190669 PMID: 30863152
- Liu, F.; Fan, Y.; Ou, L.; Li, T.; Fan, J.; Duan, L.; Yang, J.; Luo, C.; Wu, X. CircHIPK3 facilitates the G2/M transition in prostate cancer cells by sponging miR-338-3p. OncoTargets Ther., 2020, 13, 4545-4558. doi: 10.2147/OTT.S242482 PMID: 32547085
- Liu, D.C.; Song, L.L.; Li, X.Z.; Liang, Q.; Zhang, Z.G.; Han, C.H. Circular RNA circHIPK3 modulates prostate cancer progression via targeting miR-448/MTDH signaling. Clin. Transl. Oncol., 2021, 23(12), 2497-2506. doi: 10.1007/s12094-021-02650-5 PMID: 34142340
- Dong, C.; Fan, B.; Ren, Z.; Liu, B.; Wang, Y. Expression of concern issued: CircSMARCA5 facilitates the progression of prostate cancer through miR-432/PDCD10 axis. Cancer Biother. Radiopharm., 2021, 36(1), 70-83. doi: 10.1089/cbr.2019.3490 PMID: 32407167
- Xie, T.; Fu, D.; Li, Z.; Lv, D.; Song, X.L.; Yu, Y.; Wang, C.; Li, K.; Zhai, B.; Wu, J.; Feng, N.H.; Zhao, S.C. CircSMARCC1 facilitates tumor progression by disrupting the crosstalk between prostate cancer cells and tumor-associated macrophages via miR-1322/CCL20/CCR6 signaling. Mol. Cancer, 2022, 21(1), 173. doi: 10.1186/s12943-022-01630-9 PMID: 36045408
- Kong, Z.; Wan, X.; Lu, Y.; Zhang, Y.; Huang, Y.; Xu, Y.; Liu, Y.; Zhao, P.; Xiang, X.; Li, L.; Li, Y. Circular RNA circFOXO3 promotes prostate cancer progression through sponging miR-29a-3p. J. Cell. Mol. Med., 2020, 24(1), 799-813. doi: 10.1111/jcmm.14791 PMID: 31733095
- He, T.; Tao, W.; Zhang, L.L.; Wang, B.Y.; Li, K.; Lu, H.M.; Tang, G.J.; He, Y.D.; Li, L.Y. CircSCAF8 promotes growth and metastasis of prostate cancer through the circSCAF8-miR-140-3p/miR-335-LIF pathway. Cell Death Dis., 2022, 13(6), 517. doi: 10.1038/s41419-022-04913-7 PMID: 35654787
- Yan, Z.; Xiao, Y.; Chen, Y.; Luo, G. Screening and identification of epithelial-to-mesenchymal transition-related circRNA and miRNA in prostate cancer. Pathol. Res. Pract., 2020, 216(2), 152784. doi: 10.1016/j.prp.2019.152784 PMID: 31882179
- Li, T.; Sun, X.; Chen, L. Exosome circ_0044516 promotes prostate cancer cell proliferation and metastasis as a potential biomarker. J. Cell. Biochem., 2020, 121(3), 2118-2126. doi: 10.1002/jcb.28239 PMID: 31625175
- Yin, H.; Qin, H.; Yang, L.; Chen, M.; Yang, Y.; Zhang, W.; Hao, J.; Lu, Q.; Shi, J.; Zhuang, J.; Qiu, X.; Guo, H. circCYP24A1 promotes docetaxel resistance in prostate cancer by upregulating ALDH1A3. Biomark. Res., 2022, 10(1), 48. doi: 10.1186/s40364-022-00393-1 PMID: 35831872
- Zheng, Y.; Li, J.; Chen, C.; Lin, Z.; Liu, J.; Lin, F. Extracellular vesicle-derived circ_SLC19A1 promotes prostate cancer cell growth and invasion through the miR-497/septin 2 pathway. Cell Biol. Int., 2020, 44(4), 1037-1045. doi: 10.1002/cbin.11303 PMID: 31903637
- Dai, Y.; Li, D.; Chen, X.; Tan, X.; Gu, J.; Chen, M.; Zhang, X. Circular RNA myosin light chain kinase (MYLK) promotes prostate cancer progression through modulating Mir-29a expression. Med. Sci. Monit., 2018, 24, 3462-3471. doi: 10.12659/MSM.908009 PMID: 29798970
- Wang, X.; Wang, R.; Wu, Z.; Bai, P. Circular RNA ITCH suppressed prostate cancer progression by increasing HOXB13 expression via spongy miR-17-5p. Cancer Cell Int., 2019, 19(1), 328. doi: 10.1186/s12935-019-0994-8 PMID: 31827402
- Yuan, Y.; Chen, X.; Huang, E. Upregulation of circular RNA itchy E3 ubiquitin protein ligase inhibits cell proliferation and promotes cell apoptosis through targeting MiR-197 in prostate cancer. Technol. Cancer Res. Treat., 2019, 18 doi: 10.1177/1533033819886867 PMID: 31694481
- Huang, C.; Deng, H.; Wang, Y.; Jiang, H.; Xu, R.; Zhu, X.; Huang, Z.; Zhao, X. Circular RNA circABCC4 as the ceRNA of miR-1182 facilitates prostate cancer progression by promoting FOXP4 expression. J. Cell. Mol. Med., 2019, 23(9), 6112-6119. doi: 10.1111/jcmm.14477 PMID: 31270953
- Wang, S.; Chao, F.; Zhang, C.; Han, D.; Xu, G.; Chen, G. Circular RNA circPFKP promotes cell proliferation by activating IMPDH2 in prostate cancer. Cancer Lett., 2022, 524, 109-120. doi: 10.1016/j.canlet.2021.10.021 PMID: 34673127
- Feng, Y.; Yang, Y.; Zhao, X.; Fan, Y.; Zhou, L.; Rong, J.; Yu, Y. Circular RNA circ0005276 promotes the proliferation and migration of prostate cancer cells by interacting with FUS to transcriptionally activate XIAP. Cell Death Dis., 2019, 10(11), 792. doi: 10.1038/s41419-019-2028-9 PMID: 31624242
- Si-Tu, J.; Cai, Y.; Feng, T.; Yang, D.; Yuan, S.; Yang, X.; He, S.; Li, Z.; Wang, Y.; Tang, Y.; Ye, C.; Li, Z. Upregulated circular RNA circ-102004 that promotes cell proliferation in prostate cancer. Int. J. Biol. Macromol., 2019, 122, 1235-1243. doi: 10.1016/j.ijbiomac.2018.09.076 PMID: 30219508
- Shan, G.; Shao, B.; Liu, Q.; Zeng, Y.; Fu, C.; Chen, A.; Chen, Q. circFMN2 sponges miR-1238 to Promote the expression of LIM-Homeobox gene 2 in prostate cancer cells. Mol. Ther. Nucleic Acids, 2020, 21, 133-146. doi: 10.1016/j.omtn.2020.05.008 PMID: 32526477
- Jin, C.; Zhao, W.; Zhang, Z.; Liu, W. Silencing circular RNA circZNF609 restrains growth, migration and invasion by up-regulating microRNA-186-5p in prostate cancer. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3350-3358. doi: 10.1080/21691401.2019.1648281 PMID: 31387394
- Zhang, Y.; Shi, Z.; Li, Z.; Wang, X.; Zheng, P.; Li, H. Circ_0057553/miR-515-5p regulates prostate cancer cell proliferation, apoptosis, migration, invasion and aerobic glycolysis by targeting YES1. OncoTargets Ther., 2020, 13, 11289-11299. doi: 10.2147/OTT.S272294 PMID: 33177837
- Li, P.; Wang, Z.; Li, S.; Wang, L. Circ_0006404 accelerates prostate cancer progression through regulating miR-1299/CFL2 signaling. OncoTargets Ther., 2021, 14, 83-95. doi: 10.2147/OTT.S277831 PMID: 33442268
- Li, Q.; Wang, W.; Zhang, M.; Sun, W.; Shi, W.; Li, F. Circular RNA circ-0016068 promotes the growth, migration, and invasion of prostate cancer cells by regulating the miR-330-3p/BMI-1 axis as a competing endogenous RNA. Front. Cell Dev. Biol., 2020, 8, 827. doi: 10.3389/fcell.2020.00827 PMID: 32984325
- Jiang, H.; Lv, D.J.; Song, X.L.; Wang, C.; Yu, Y.Z.; Zhao, S.C. Upregulated circZMIZ1 promotes the proliferation of prostate cancer cells and is a valuable marker in plasma. Neoplasma, 2020, 67(1), 68-77. doi: 10.4149/neo_2019_190213N116 PMID: 31686520
- Mao, Y.; Li, W.; Hua, B.; Gu, X.; Pan, W.; Chen, Q.; Xu, B.; Lu, C.; Wang, Z. Circular RNA_PDHX promotes the proliferation and invasion of prostate cancer by sponging MiR-378a-3p. Front. Cell Dev. Biol., 2021, 8, 602707. doi: 10.3389/fcell.2020.602707 PMID: 33634097
- Chen, J.; Xie, Q.; Miao, W.; Fan, J.; Zhou, X.; Li, M. CircPDHX promotes prostate cancer cell progression in vitro and tumor growth in vivo via miR-497-5p/ACSL1 axis. Biochem. Biophys. Res. Commun., 2022, 620, 35-41. doi: 10.1016/j.bbrc.2022.06.012 PMID: 35777132
- Deng, Z.H.; Yu, G.S.; Deng, K.L.; Feng, Z.H.; Huang, Q.; Pan, B.; Deng, J.Z. Hsa_circ_0088233 alleviates proliferation, migration, and invasion of prostate cancer by targeting hsa-miR-185-3p. Front. Cell Dev. Biol., 2020, 8, 528155. doi: 10.3389/fcell.2020.528155 PMID: 33195183
- Shi, J.; Liu, C.; Chen, C.; Guo, K.; Tang, Z.; Luo, Y.; Chen, L.; Su, Y.; Xu, K. Circular RNA circMBOAT2 promotes prostate cancer progression via a miR-1271-5p/mTOR axis. Aging, 2020, 12(13), 13255-13280. doi: 10.18632/aging.103432 PMID: 32645691
- Wang, P.; Zhang, L.; Yin, S.; Xu, Y.; Tai, S.; Zhang, L.; Liang, C. Hsa_circ_0062019 promotes the proliferation, migration, and invasion of prostate cancer cells via the miR-195-5p/HMGA2 axis. Acta Biochim. Biophys. Sin., 2021, 53(7), 815-822. doi: 10.1093/abbs/gmab058 PMID: 33978716
- Zeng, L.; Liu, Y.; Yang, N.; Zhang, T.; Xie, H. Hsa_circRNA_100146 promotes prostate cancer progression by upregulating TRIP13 via sponging miR-615-5p. Front. Mol. Biosci., 2021, 8, 693477. doi: 10.3389/fmolb.2021.693477 PMID: 34307457
- Yu, Y.Z.; Lv, D.J.; Wang, C.; Song, X.L.; Xie, T.; Wang, T.; Li, Z.M.; Guo, J.D.; Fu, D.J.; Li, K.J.; Wu, D.L.; Chan, F.L.; Feng, N.H.; Chen, Z.S.; Zhao, S.C. Hsa_circ_0003258 promotes prostate cancer metastasis by complexing with IGF2BP3 and sponging miR-653-5p. Mol. Cancer, 2022, 21(1), 12. doi: 10.1186/s12943-021-01480-x PMID: 34986849
- Weng, X.D.; Yan, T.; Liu, C.L. Circular RNA_LARP4 inhibits cell migration and invasion of prostate cancer by targeting FOXO3A. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(10), 5303-5309. From NLM.. doi: 10.26355/eurrev_202005_21312 PMID: 32495863
- Zhang, Y.; Liu, F.; Feng, Y.; Xu, X.; Wang, Y.; Zhu, S.; Dong, J.; Zhao, S.; Xu, B.; Feng, N. CircRNA circ_0006156 inhibits the metastasis of prostate cancer by blocking the ubiquitination of S100A9. Cancer Gene Ther., 2022, 29(11), 1731-1741. doi: 10.1038/s41417-022-00492-z PMID: 35760899
- Retracted : CircSMAD2 governs migration and epithelialmesenchymal transition by inhibiting microRNA-9. J. Cell. Biochem., 2021, 122(9), 1253. doi: 10.1002/jcb.29638 PMID: 31886568
- Hu, Y.; Guo, B. Circ-MTO1 correlates with favorable prognosis and inhibits cell proliferation, invasion as well as miR-17-5p expression in prostate cancer. J. Clin. Lab. Anal., 2020, 34(3), e23086. doi: 10.1002/jcla.23086 PMID: 31713278
- Zheng, Y.; Chen, C.; Lin, Z.; Li, J.; Liu, J.; Lin, F.; Zhou, X. Circ_KATNAL1 regulates prostate cancer cell growth and invasiveness through the miR-145-3p/WISP1 pathway. Biochem. Cell Biol., 2020, 98(3), 396-404. doi: 10.1139/bcb-2019-0211 PMID: 31800303
- Xiang, Z.; Xu, C.; Wu, G.; Liu, B.; Wu, D. CircRNA-UCK2 increased TET1 inhibits proliferation and invasion of prostate cancer cells via sponge miRNA-767-5p. Open Med., 2019, 14(1), 833-842. doi: 10.1515/med-2019-0097 PMID: 31844675
- Wu, G.; Sun, Y.; Xiang, Z.; Wang, K.; Liu, B.; Xiao, G.; Niu, Y.; Wu, D.; Chang, C. Preclinical study using circular RNA 17 and micro RNA 181c-5p to suppress the enzalutamide-resistant prostate cancer progression. Cell Death Dis., 2019, 10(2), 37. doi: 10.1038/s41419-018-1048-1 PMID: 30674872
- Sha, J.; Xia, L.; Han, Q.; Chi, C.; Zhu, Y.; Pan, J.; Huang, Y.; Xia, W.; Dong, B.; Xue, W.; Yang, C. Downregulation of circ-TRPS1 suppressed prostatic cancer prognoses by regulating miR-124-3p/EZH2 axis-mediated stemness. Am. J. Cancer Res., 2020, 10(12), 4372-4385. doi: 10.21203/rs.3.rs-48783/v1 PMID: 33415005
- Xia, H.Y.; Liu, C.D.; Liang, W.; Huo, X.Y.; Wei, X.W. Circ_0004417 inhibits the progression of prostate cancer through sponging miR-1228. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(3), 1274-1281. From NLM.. doi: 10.26355/eurrev_202102_24831 PMID: 33629297
- Jin, C.; Zhao, W.; Zhang, Z.; Liu, W. RETRACTED: CircLMTK2 acts as a tumor suppressor in prostate cancer viaregulating the expression of microRNA-183. Life Sci., 2020, 241, 117097. doi: 10.1016/j.lfs.2019.117097 PMID: 31760099
- He, H.; Li, J.; Luo, M.; Wei, Q. Inhibitory role of circRNA_100395 in the proliferation and metastasis of prostate cancer cells. J. Int. Med. Res., 2021, 49(2) doi: 10.1177/0300060521992215 PMID: 33641485
- Zhang, S.; Zhang, X.; Chen, G.; Zheng, X.; Zhu, X.; Shan, L. Hsa_circ_0007494 suppresses prostate cancer progression via miR-616/PTEN axis. Exp. Cell Res., 2020, 395(2), 112233. doi: 10.1016/j.yexcr.2020.112233 PMID: 32810511
- Nan, C.; Wang, Y.; Yang, S.; Chen, Y. circCRKL suppresses the progression of prostate cancer cells by regulating the miR-141/KLF5 axis. Pathol. Res. Pract., 2020, 216(11), 153182. doi: 10.1016/j.prp.2020.153182 PMID: 32919302
- Lin, Q.; Cai, J.; Wang, Q.Q. The significance of circular RNA DDX17 in prostate cancer. BioMed Res. Int., 2020, 2020, 1-16. doi: 10.1155/2020/1878431 PMID: 32904557
- Huang, E.; Chen, X.; Yuan, Y. Downregulated circular RNA itchy E3 ubiquitin protein ligase correlates with advanced pathologic T stage, high lymph node metastasis risk and poor survivals in prostate cancer patients. Cancer Biomark., 2019, 26(1), 41-50. doi: 10.3233/CBM-182111 PMID: 31306101
- Luo, J.; Li, Y.; Zheng, W.; Xie, N.; Shi, Y.; Long, Z.; Xie, L.; Fazli, L.; Zhang, D.; Gleave, M.; Dong, X. Characterization of a prostate- and prostate cancer-specific circular RNA encoded by the androgen receptor gene. Mol. Ther. Nucleic Acids, 2019, 18, 916-926. doi: 10.1016/j.omtn.2019.10.015 PMID: 31760376
- Dai, X.; Chen, X.; Chen, W.; Ou, Y.; Chen, Y.; Wu, S.; Zhou, Q.; Yang, C.; Zhang, L.; Jiang, H. CircDHRS3 inhibits prostate cancer cell proliferation and metastasis through the circDHRS3/miR-421/MEIS2 axis. Epigenetics, 2023, 18(1), 2178802. doi: 10.1080/15592294.2023.2178802 PMID: 36840946
- Gao, F.; Xu, Q.; Tang, Z.; Zhang, N.; Huang, Y.; Li, Z.; Dai, Y.; Yu, Q.; Zhu, J. Exosomes derived from myeloid-derived suppressor cells facilitate castration-resistant prostate cancer progression via S100A9/circMID1/miR-506-3p/MID1. J. Transl. Med., 2022, 20(1), 346. doi: 10.1186/s12967-022-03494-5 PMID: 35918733
- Mo, C.; Huang, B.; Zhuang, J.; Jiang, S.; Guo, S.; Mao, X. LncRNA nuclear-enriched abundant transcript 1 shuttled by prostate cancer cells-secreted exosomes initiates osteoblastic phenotypes in the bone metastatic microenvironment via miR-205-5p/runt-related transcription factor 2/splicing factor proline- and glutamine-rich/polypyrimidine tract-binding protein 2 axis. Clin. Transl. Med., 2021, 11(8), e493. doi: 10.1002/ctm2.493 PMID: 34459124
- Wang, Q.; Liu, J.; Zeng, J.; Yang, Z.; Ran, F.; Wu, L.; Yang, G.; Mei, Q.; Wang, X.; Chen, Q. Determination of miRNA derived from exosomes of prostate cancer via toehold-aided cyclic amplification combined with HRP enzyme catalysis and magnetic nanoparticles. Anal. Biochem., 2021, 630, 114336. doi: 10.1016/j.ab.2021.114336 PMID: 34400146
- Wang, S.; Su, W.; Zhong, C.; Yang, T.; Chen, W.; Chen, G.; Liu, Z.; Wu, K.; Zhong, W.; Li, B.; Mao, X.; Lu, J. An Eight-CircRNA assessment model for predicting biochemical recurrence in prostate cancer. Front. Cell Dev. Biol., 2020, 8, 599494. doi: 10.3389/fcell.2020.599494 PMID: 33363156
- Zhang, B.; Zhang, M.; Yang, Y.; Li, Q.; Yu, J.; Zhu, S.; Niu, Y.; Shang, Z. Targeting KDM4A-AS1 represses AR/AR-Vs deubiquitination and enhances enzalutamide response in CRPC. Oncogene, 2022, 41(3), 387-399. doi: 10.1038/s41388-021-02103-x PMID: 34759344
- Wu, Y. Circ_0044516 enriches the level of SARM1 as a miR-330-5p sponge to regulate cell malignant behaviors and tumorigenesis of prostate cancer. Biochem. Genet., 2022, 60(4), 1346-1361. doi: 10.1007/s10528-021-10160-w PMID: 34993722
- Chikamatsu, S.; Shiota, M.; Yamada, S.; Blas, L.; Matsumoto, T.; Kashiwagi, E.; Inokuchi, J.; Shiga, K.; Yokomizo, A.; Eto, M. Prognostic significance of risk stratification in CHAARTED and LATITUDE studies among Japanese men with castration-resistant prostate cancer. Prostate Int., 2022, 10(1), 7-13. doi: 10.1016/j.prnil.2022.01.001 PMID: 35229000
- Huang, J.; Lin, B.; Li, B. Anti-androgen receptor therapies in prostate cancer: A brief update and perspective. Front. Oncol., 2022, 12, 865350. doi: 10.3389/fonc.2022.865350 PMID: 35372068
- Uemura, H.; Kobayashi, K.; Yokomizo, A.; Hinotsu, S.; Horie, S.; Kakehi, Y.; Naito, S.; Nonomura, N.; Ogawa, O.; Oya, M.; Suzuki, K.; Saito, A.; Uno, S.; Akaza, H. Enzalutamide + androgen deprivation therapy (ADT) versus flutamide + ADT in Japanese men with castration-resistant prostate cancer: AFTERCAB study. BJUI Compass, 2022, 3(1), 26-36. doi: 10.1002/bco2.103 PMID: 35475157
- Chen, L.; Sun, Y.; Tang, M.; Wu, D.; Xiang, Z.; Huang, C.P.; You, B.; Xie, D.; Ye, Q.; Yu, D.; Chang, C. High- dose-androgen-induced autophagic cell death to suppress the Enzalutamide-resistant prostate cancer growth via altering the circRNA-BCL2/miRNA-198/AMBRA1 signaling. Cell Death Discov., 2022, 8(1), 128. doi: 10.1038/s41420-022-00898-6 PMID: 35318303
- Lim, M.C.J.; Baird, A.M.; Greene, J.; McNevin, C.; Ronan, K.; Podlesniy, P.; Sheils, O.; Gray, S.G.; McDermott, R.S.; Finn, S.P. hsa_circ_0001275 is one of a number of circRNAs dysregulated in enzalutamide resistant prostate cancer and confers enzalutamide resistance in vitro. Cancers, 2021, 13(24), 6383. doi: 10.3390/cancers13246383 PMID: 34945002
- Jiang, X.; Guo, S.; Wang, S.; Zhang, Y.; Chen, H.; Wang, Y.; Liu, R.; Niu, Y.; Xu, Y. EIF4A3-induced circARHGAP29 promotes aerobic glycolysis in docetaxel-resistant prostate cancer through IGF2BP2/c-Myc/LDHA signaling. Cancer Res., 2022, 82(5), 831-845. doi: 10.1158/0008-5472.CAN-21-2988 PMID: 34965937
- Shen, Z.; Zhou, L.; Zhang, C.; Xu, J. Reduction of circular RNA Foxo3 promotes prostate cancer progression and chemoresistance to docetaxel. Cancer Lett., 2020, 468, 88-101. doi: 10.1016/j.canlet.2019.10.006 PMID: 31593800
- Tan, X.; Song, X.; Fan, B.; Li, M.; Zhang, A.; Pei, L. Exosomal circRNA Scm-like with four malignant brain tumor domains 2 (circ-SFMBT2) enhances the docetaxel resistance of prostate cancer via the microRNA-136-5p/tribbles homolog 1 pathway. Anticancer Drugs, 2022, 33(9), 871-882. doi: 10.1097/CAD.0000000000001365 PMID: 36136987
- Cai, F.; Li, J.; Zhang, J.; Huang, S. Knockdown of Circ_CCNB2 sensitizes prostate cancer to radiation through repressing autophagy by the miR-30b-5p/KIF18A axis. Cancer Biother. Radiopharm., 2022, 37(6), 480-493. doi: 10.1089/cbr.2019.3538 PMID: 32716640
- Li, H.; Zhi, Y.; Ma, C.; Shen, Q.; Sun, F.; Cai, C. Circ_0062020 knockdown strengthens the radiosensitivity of prostate cancer cells. Cancer Manag. Res., 2020, 12, 11701-11712. doi: 10.2147/CMAR.S273826 PMID: 33235500
- Gao, Y.; Liu, J.; Huan, J.; Che, F. Downregulation of circular RNA hsa_circ_0000735 boosts prostate cancer sensitivity to docetaxel via sponging miR-7. Cancer Cell Int., 2020, 20(1), 334. doi: 10.1186/s12935-020-01421-6 PMID: 32714093
- Kamran, S.C.; DAmico, A.V. Radiation therapy for prostate cancer. Hematol. Oncol. Clin. North Am., 2020, 34(1), 45-69. doi: 10.1016/j.hoc.2019.08.017 PMID: 31739952
- Ghadjar, P.; Fiorino, C.; Munck af Rosenschöld, P.; Pinkawa, M.; Zilli, T.; van der Heide, U.A. ESTRO ACROP consensus guideline on the use of image guided radiation therapy for localized prostate cancer. Radiother. Oncol., 2019, 141, 5-13. doi: 10.1016/j.radonc.2019.08.027 PMID: 31668515
- Mariados, N.; Sylvester, J.; Shah, D.; Karsh, L.; Hudes, R.; Beyer, D.; Kurtzman, S.; Bogart, J.; Hsi, R.A.; Kos, M.; Ellis, R.; Logsdon, M.; Zimberg, S.; Forsythe, K.; Zhang, H.; Soffen, E.; Francke, P.; Mantz, C.; Rossi, P.; DeWeese, T.; Hamstra, D.A.; Bosch, W.; Gay, H.; Michalski, J. Hydrogel spacer prospective multicenter randomized controlled pivotal trial: Dosimetric and clinical effects of perirectal spacer application in men undergoing prostate image guided intensity modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys., 2015, 92(5), 971-977. doi: 10.1016/j.ijrobp.2015.04.030 PMID: 26054865
- Chen, Y.Y.; Luo, L.P.; Deng, K.C. Circular RNA LPAR3 targets JPT1 via microRNA-513b-5p to facilitate glycolytic activation but repress prostate cancer radiosensitivity. Acta Biochim. Pol., 2023, 70(1), 153-162. doi: 10.18388/abp.2020_6379 PMID: 36929708
- Yu, T.; Du, H.; Sun, C. Circ-ABCC4 contributes to prostate cancer progression and radioresistance by mediating miR-1253/SOX4 cascade. Anticancer Drugs, 2023, 34(1), 155-165. doi: 10.1097/CAD.0000000000001361 PMID: 36539368
- Antonarakis, E.S.; Lu, C.; Wang, H.; Luber, B.; Nakazawa, M.; Roeser, J.C.; Chen, Y.; Mohammad, T.A.; Chen, Y.; Fedor, H.L.; Lotan, T.L.; Zheng, Q.; De Marzo, A.M.; Isaacs, J.T.; Isaacs, W.B.; Nadal, R.; Paller, C.J.; Denmeade, S.R.; Carducci, M.A.; Eisenberger, M.A.; Luo, J. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med., 2014, 371(11), 1028-1038. doi: 10.1056/NEJMoa1315815 PMID: 25184630
- Kohli, M.; Ho, Y.; Hillman, D.W.; Van Etten, J.L.; Henzler, C.; Yang, R.; Sperger, J.M.; Li, Y.; Tseng, E.; Hon, T.; Clark, T.; Tan, W.; Carlson, R.E.; Wang, L.; Sicotte, H.; Thai, H.; Jimenez, R.; Huang, H.; Vedell, P.T.; Eckloff, B.W.; Quevedo, J.F.; Pitot, H.C.; Costello, B.A.; Jen, J.; Wieben, E.D.; Silverstein, K.A.T.; Lang, J.M.; Wang, L.; Dehm, S.M. Androgen receptor variant AR-V9 is coexpressed with AR-V7 in prostate cancer metastases and predicts abiraterone resistance. Clin. Cancer Res., 2017, 23(16), 4704-4715. doi: 10.1158/1078-0432.CCR-17-0017 PMID: 28473535
- Duffy, M.J. Biomarkers for prostate cancer: prostate-specific antigen and beyond. Clin. Chem. Lab. Med. (CCLM), 2020, 58(3), 326-339. doi: 10.1515/cclm-2019-0693 PMID: 31714881
- Liao, Y.; Liu, Y.; Xia, X.; Shao, Z.; Huang, C.; He, J.; Jiang, L.; Tang, D.; Liu, J.; Huang, H. Targeting GRP78-dependent AR-V7 protein degradation overcomes castration-resistance in prostate cancer therapy. Theranostics, 2020, 10(8), 3366-3381. doi: 10.7150/thno.41849 PMID: 32206096
- Scher, H.I.; Lu, D.; Schreiber, N.A.; Louw, J.; Graf, R.P.; Vargas, H.A.; Johnson, A.; Jendrisak, A.; Bambury, R.; Danila, D.; McLaughlin, B.; Wahl, J.; Greene, S.B.; Heller, G.; Marrinucci, D.; Fleisher, M.; Dittamore, R. Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol., 2016, 2(11), 1441-1449. doi: 10.1001/jamaoncol.2016.1828 PMID: 27262168
- Fabian, M.R.; Sonenberg, N.; Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem., 2010, 79(1), 351-379. doi: 10.1146/annurev-biochem-060308-103103 PMID: 20533884
- Qi, X.; Zhang, D.H.; Wu, N.; Xiao, J.H.; Wang, X.; Ma, W. ceRNA in cancer: possible functions and clinical implications. J. Med. Genet., 2015, 52(10), 710-718. doi: 10.1136/jmedgenet-2015-103334 PMID: 26358722
- Karreth, F.A.; Pandolfi, P.P. ceRNA cross-talk in cancer: When ce-bling rivalries go awry. Cancer Discov., 2013, 3(10), 1113-1121. doi: 10.1158/2159-8290.CD-13-0202 PMID: 24072616
- Zhang, F.; Lin, F.; Xu, Z.; Huang, Z. Circular RNA ITCH promotes extracellular matrix degradation via activating Wnt/β-catenin signaling in intervertebral disc degeneration. Aging, 2021, 13(10), 14185-14197. doi: 10.18632/aging.203036 PMID: 34015763
- Wang, J.Q.; Mao, L. The ERK pathway: Molecular mechanisms and treatment of depression. Mol. Neurobiol., 2019, 56(9), 6197-6205. doi: 10.1007/s12035-019-1524-3 PMID: 30737641
- Samatar, A.A.; Poulikakos, P.I. Targeting RASERK signalling in cancer: Promises and challenges. Nat. Rev. Drug Discov., 2014, 13(12), 928-942. doi: 10.1038/nrd4281 PMID: 25435214
- Maik-Rachline, G.; Hacohen-Lev-Ran, A.; Seger, R. Nuclear ERK: Mechanism of translocation, substrates, and role in cancer. Int. J. Mol. Sci., 2019, 20(5), 1194. doi: 10.3390/ijms20051194 PMID: 30857244
- Cagnol, S.; Chambard, J.C. ERK and cell death: Mechanisms of ERK-induced cell death - apoptosis, autophagy and senescence. FEBS J., 2010, 277(1), 2-21. doi: 10.1111/j.1742-4658.2009.07366.x PMID: 19843174
- Xia, P.; Xu, X.Y. PI3K/Akt/mTOR signaling pathway in cancer stem cells: From basic research to clinical application. Am. J. Cancer Res., 2015, 5(5), 1602-1609. PMID: 26175931
- Xu, Z.; Han, X.; Ou, D.; Liu, T.; Li, Z.; Jiang, G.; Liu, J.; Zhang, J. Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy. Appl. Microbiol. Biotechnol., 2020, 104(2), 575-587. doi: 10.1007/s00253-019-10257-8 PMID: 31832711
- Ding, L.; Lin, Y.; Chen, X.; Wang, R.; Lu, H.; Wang, H.; Luo, W.; Lu, Z.; Xia, L.; Zhou, X.; Li, G.; Cheng, S. circPHF16 suppresses prostate cancer metastasis via modulating miR-581/RNF128/Wnt/β-catenin pathway. Cell. Signal., 2023, 102, 110557. doi: 10.1016/j.cellsig.2022.110557 PMID: 36503162
- Pastushenko, I.; Blanpain, C. EMT transition states during tumor progression and metastasis. Trends Cell Biol., 2019, 29(3), 212-226. doi: 10.1016/j.tcb.2018.12.001 PMID: 30594349
- Singh, M.; Yelle, N.; Venugopal, C.; Singh, S.K. EMT: Mechanisms and therapeutic implications. Pharmacol. Ther., 2018, 182, 80-94. doi: 10.1016/j.pharmthera.2017.08.009 PMID: 28834698
- Stemmler, M.P.; Eccles, R.L.; Brabletz, S.; Brabletz, T. Non-redundant functions of EMT transcription factors. Nat. Cell Biol., 2019, 21(1), 102-112. doi: 10.1038/s41556-018-0196-y PMID: 30602760
- Santamaria, P.G.; Moreno-Bueno, G.; Portillo, F.; Cano, A. EMT: Present and future in clinical oncology. Mol. Oncol., 2017, 11(7), 718-738. doi: 10.1002/1878-0261.12091 PMID: 28590039
- Chaffer, C.L.; San Juan, B.P.; Lim, E.; Weinberg, R.A. EMT, cell plasticity and metastasis. Cancer Metastasis Rev., 2016, 35(4), 645-654. doi: 10.1007/s10555-016-9648-7 PMID: 27878502
- Xie, X.; Sun, F.K.; Huang, X.; Wang, C.H.; Dai, J.; Zhao, J.P.; Fang, C.; He, W. A circular RNA, circSMARCA5, inhibits prostate cancer proliferative, migrative, and invasive capabilities via the miR-181b-5p/miR-17-3p-TIMP3 axis. Aging, 2021, 13(15), 19908-19919. doi: 10.18632/aging.203408 PMID: 34390329
Қосымша файлдар
