Role of Circular RNAs in Prostate Cancer


Дәйексөз келтіру

Толық мәтін

Аннотация

Objectives:This study aims to summarize the current literature to demonstrate the importance of circular RNAs (circRNAs) in multiple aspects of prostate cancer (PCa) occurrence, progression, and treatment resistance and explore the potential role in therapeutic strategies aimed at targeting this molecule in PCa.

Methods:The relevant literature from PubMed and Medline databases is reviewed in this article.

Results:Non-coding RNA has been proven to play a vital role in regulating tumor progression. Among them, circular RNA plays a more unique role due to its nonlinear structure. Lots of circRNAs were found to be differentially expressed in PCa and regulate cell signaling pathways by regulating particular gene expressions. Recent studies have demonstrated that circRNAs are associated with the chemoresistance of urinary tumors, suggesting that circRNAs might be a novel therapeutic target and a marker for therapeutic response and prognosis assessment.

Conclusion:The potential crosstalk of circRNAs modifications in PCa development, therapy, and regulation of tumor metabolism is portrayed in this review. However, more preclinical and clinical trials of this targeted strategy are necessary for the treatment of urinary tumors.

Авторлар туралы

Feng Chen

, The First Clinical Medical College of Lanzhou University

Email: info@benthamscience.net

Fa Zhang

Department of Urology, Gansu Provincial Hospital

Email: info@benthamscience.net

Yong-Qiang Liu

, The First Clinical Medical College of Lanzhou University

Email: info@benthamscience.net

Yu-Fang Leng

, The First Clinical Medical College of Lanzhou University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34. doi: 10.3322/caac.21551 PMID: 30620402
  2. Denmeade, S.R.; Isaacs, J.T. A history of prostate cancer treatment. Nat. Rev. Cancer, 2002, 2(5), 389-396. doi: 10.1038/nrc801 PMID: 12044015
  3. Perner, S.; Cronauer, M.V.; Schrader, A.J.; Klocker, H.; Culig, Z.; Baniahmad, A. Adaptive responses of androgen receptor signaling in castration-resistant prostate cancer. Oncotarget, 2015, 6(34), 35542-35555. doi: 10.18632/oncotarget.4689 PMID: 26325261
  4. Risk, M.; Corman, J.M. The role of immunotherapy in prostate cancer: An overview of current approaches in development. Rev. Urol., 2009, 11(1), 16-27. PMID: 19390671
  5. Sanger, H.L.; Klotz, G.; Riesner, D.; Gross, H.J.; Kleinschmidt, A.K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl. Acad. Sci., 1976, 73(11), 3852-3856. doi: 10.1073/pnas.73.11.3852 PMID: 1069269
  6. Wu, D.P.; Zhao, Y.D.; Yan, Q.Q.; Liu, L.L.; Wei, Y.S.; Huang, J.L. Circular RNAS : Emerging players in brain aging and neurodegenerative diseases. J. Pathol., 2023, 259(1), 1-9. doi: 10.1002/path.6021 PMID: 36264226
  7. Liu, Z.; Zhou, Y.; Xia, J. CircRNAs: Key molecules in the prevention and treatment of ischemic stroke. Biomed. Pharmacother., 2022, 156, 113845. doi: 10.1016/j.biopha.2022.113845 PMID: 36244267
  8. Bagheri Moghaddam, M.; Maleki, M.; Oveisee, M.; Bagheri, M.M.; Arabian, M.; Malakootian, M. Circular RNAs: New players in cardiomyopathy. Genes, 2022, 13(9), 1537. doi: 10.3390/genes13091537 PMID: 36140705
  9. Zhou, X.; Lin, J.; Wang, F.; Chen, X.; Zhang, Y.; Hu, Z.; Jin, X. Circular RNA-regulated autophagy is involved in cancer progression. Front. Cell Dev. Biol., 2022, 10, 961983. doi: 10.3389/fcell.2022.961983 PMID: 36187468
  10. Salzman, J.; Gawad, C.; Wang, P.L.; Lacayo, N.; Brown, P.O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One, 2012, 7(2), e30733. doi: 10.1371/journal.pone.0030733 PMID: 22319583
  11. Zhang, Y.; Zhang, X.O.; Chen, T.; Xiang, J.F.; Yin, Q.F.; Xing, Y.H.; Zhu, S.; Yang, L.; Chen, L.L. Circular intronic long noncoding RNAs. Mol. Cell, 2013, 51(6), 792-806. doi: 10.1016/j.molcel.2013.08.017 PMID: 24035497
  12. Li, X.; Yang, L.; Chen, L.L. The biogenesis, functions, and challenges of circular RNAs. Mol. Cell, 2018, 71(3), 428-442. doi: 10.1016/j.molcel.2018.06.034 PMID: 30057200
  13. Salzman, J. Circular RNA expression: Its potential regulation and function. Trends Genet., 2016, 32(5), 309-316. doi: 10.1016/j.tig.2016.03.002 PMID: 27050930
  14. Dori, M.; Bicciato, S. Integration of bioinformatic predictions and experimental data to identify circRNA-miRNA associations. Genes, 2019, 10(9), 642. doi: 10.3390/genes10090642 PMID: 31450634
  15. Yu, T.; Wang, Y.; Fan, Y.; Fang, N.; Wang, T.; Xu, T.; Shu, Y. CircRNAs in cancer metabolism: A review. J. Hematol. Oncol., 2019, 12(1), 90. doi: 10.1186/s13045-019-0776-8 PMID: 31484561
  16. Patop, I.L.; Wüst, S.; Kadener, S. Past, present, and future of circ RNAs. EMBO J., 2019, 38(16), e100836. doi: 10.15252/embj.2018100836 PMID: 31343080
  17. Liang, D.; Wilusz, J.E. Short intronic repeat sequences facilitate circular RNA production. Genes Dev., 2014, 28(20), 2233-2247. doi: 10.1101/gad.251926.114 PMID: 25281217
  18. Lu, Z.; Filonov, G.S.; Noto, J.J.; Schmidt, C.A.; Hatkevich, T.L.; Wen, Y.; Jaffrey, S.R.; Matera, A.G. Metazoan tRNA introns generate stable circular RNAs in vivo. RNA, 2015, 21(9), 1554-1565. doi: 10.1261/rna.052944.115 PMID: 26194134
  19. Verduci, L.; Strano, S.; Yarden, Y.; Blandino, G. The circ RNA –micro RNA code: Emerging implications for cancer diagnosis and treatment. Mol. Oncol., 2019, 13(4), 669-680. doi: 10.1002/1878-0261.12468 PMID: 30719845
  20. Yin, Y.; Long, J.; He, Q.; Li, Y.; Liao, Y.; He, P.; Zhu, W. Emerging roles of circRNA in formation and progression of cancer. J. Cancer, 2019, 10(21), 5015-5021. doi: 10.7150/jca.30828 PMID: 31602252
  21. Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet., 2019, 20(11), 675-691. doi: 10.1038/s41576-019-0158-7 PMID: 31395983
  22. Jeck, W.R.; Sorrentino, J.A.; Wang, K.; Slevin, M.K.; Burd, C.E.; Liu, J.; Marzluff, W.F.; Sharpless, N.E. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 2013, 19(2), 141-157. doi: 10.1261/rna.035667.112 PMID: 23249747
  23. Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; Loewer, A.; Ziebold, U.; Landthaler, M.; Kocks, C.; le Noble, F.; Rajewsky, N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441), 333-338. doi: 10.1038/nature11928 PMID: 23446348
  24. Liang, D.; Tatomer, D.C.; Luo, Z.; Wu, H.; Yang, L.; Chen, L.L.; Cherry, S.; Wilusz, J.E. The output of protein- coding genes shifts to circular RNAs when the Pre-mRNA processing machinery is limiting. Mol. Cell, 2017, 68(5), 940-954.e3. doi: 10.1016/j.molcel.2017.10.034 PMID: 29174924
  25. Fei, T.; Chen, Y.; Xiao, T.; Li, W.; Cato, L.; Zhang, P.; Cotter, M.B.; Bowden, M.; Lis, R.T.; Zhao, S.G.; Wu, Q.; Feng, F.Y.; Loda, M.; He, H.H.; Liu, X.S.; Brown, M. Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing. Proc. Natl. Acad. Sci., 2017, 114(26), E5207-E5215. doi: 10.1073/pnas.1617467114 PMID: 28611215
  26. Conn, S.J.; Pillman, K.A.; Toubia, J.; Conn, V.M.; Salmanidis, M.; Phillips, C.A.; Roslan, S.; Schreiber, A.W.; Gregory, P.A.; Goodall, G.J. The RNA binding protein quaking regulates formation of circRNAs. Cell, 2015, 160(6), 1125-1134. doi: 10.1016/j.cell.2015.02.014 PMID: 25768908
  27. Kong, Z.; Wan, X.; Zhang, Y.; Zhang, P.; Zhang, Y.; Zhang, X.; Qi, X.; Wu, H.; Huang, J.; Li, Y. Androgen-responsive circular RNA circSMARCA5 is up-regulated and promotes cell proliferation in prostate cancer. Biochem. Biophys. Res. Commun., 2017, 493(3), 1217-1223. doi: 10.1016/j.bbrc.2017.07.162 PMID: 28765045
  28. Yang, Z.; Qu, C.B.; Zhang, Y.; Zhang, W.F.; Wang, D.D.; Gao, C.C.; Ma, L.; Chen, J.S.; Liu, K.L.; Zheng, B.; Zhang, X.H.; Zhang, M.L.; Wang, X.L.; Wen, J.K.; Li, W. Dysregulation of p53-RBM25-mediated circAMOTL1L biogenesis contributes to prostate cancer progression through the circAMOTL1L-miR-193a-5p-Pcdha pathway. Oncogene, 2019, 38(14), 2516-2532. doi: 10.1038/s41388-018-0602-8 PMID: 30531834
  29. Greene, J.; Baird, A.M.; Casey, O.; Brady, L.; Blackshields, G.; Lim, M.; O’Brien, O.; Gray, S.G.; McDermott, R.; Finn, S.P. Circular RNAs are differentially expressed in prostate cancer and are potentially associated with resistance to enzalutamide. Sci. Rep., 2019, 9(1), 10739. doi: 10.1038/s41598-019-47189-2 PMID: 31341219
  30. Shen, L.; Pelletier, J. General and target-specific DExD/H RNA helicases in eukaryotic translation initiation. Int J Mol Sci, 2020, 21(12) doi: 10.3390/ijms21124402
  31. Song, Z.; Zhuo, Z.; Ma, Z.; Hou, C.; Chen, G.; Xu, G. Hsa_Circ_0001206 is downregulated and inhibits cell proliferation, migration and invasion in prostate cancer. Artif Cells Nanomed Biotechnol, 2019, 47(1), 2449-2464. doi: 10.1080/21691401.2019.1626866
  32. Chen, W.; Cen, S.; Zhou, X.; Yang, T.; Wu, K.; Zou, L.; Luo, J.; Li, C.; Lv, D.; Mao, X. Circular RNA CircNOLC1, Upregulated by NF-KappaB, promotes the progression of prostate cancer via miR-647/PAQR4 Axis. Front. Cell Dev. Biol., 2021, 8, 624764. doi: 10.3389/fcell.2020.624764 PMID: 33490086
  33. Chen, D.; Lu, X.; Yang, F.; Xing, N. Circular RNA circHIPK3 promotes cell proliferation and invasion of prostate cancer by sponging miR-193a-3p and regulating MCL1 expression. Cancer Manag. Res., 2019, 11, 1415-1423. doi: 10.2147/CMAR.S190669 PMID: 30863152
  34. Liu, F.; Fan, Y.; Ou, L.; Li, T.; Fan, J.; Duan, L.; Yang, J.; Luo, C.; Wu, X. CircHIPK3 facilitates the G2/M transition in prostate cancer cells by sponging miR-338-3p. OncoTargets Ther., 2020, 13, 4545-4558. doi: 10.2147/OTT.S242482 PMID: 32547085
  35. Liu, D.C.; Song, L.L.; Li, X.Z.; Liang, Q.; Zhang, Z.G.; Han, C.H. Circular RNA circHIPK3 modulates prostate cancer progression via targeting miR-448/MTDH signaling. Clin. Transl. Oncol., 2021, 23(12), 2497-2506. doi: 10.1007/s12094-021-02650-5 PMID: 34142340
  36. Dong, C.; Fan, B.; Ren, Z.; Liu, B.; Wang, Y. Expression of concern issued: CircSMARCA5 facilitates the progression of prostate cancer through miR-432/PDCD10 axis. Cancer Biother. Radiopharm., 2021, 36(1), 70-83. doi: 10.1089/cbr.2019.3490 PMID: 32407167
  37. Xie, T.; Fu, D.; Li, Z.; Lv, D.; Song, X.L.; Yu, Y.; Wang, C.; Li, K.; Zhai, B.; Wu, J.; Feng, N.H.; Zhao, S.C. CircSMARCC1 facilitates tumor progression by disrupting the crosstalk between prostate cancer cells and tumor-associated macrophages via miR-1322/CCL20/CCR6 signaling. Mol. Cancer, 2022, 21(1), 173. doi: 10.1186/s12943-022-01630-9 PMID: 36045408
  38. Kong, Z.; Wan, X.; Lu, Y.; Zhang, Y.; Huang, Y.; Xu, Y.; Liu, Y.; Zhao, P.; Xiang, X.; Li, L.; Li, Y. Circular RNA circFOXO3 promotes prostate cancer progression through sponging miR-29a-3p. J. Cell. Mol. Med., 2020, 24(1), 799-813. doi: 10.1111/jcmm.14791 PMID: 31733095
  39. He, T.; Tao, W.; Zhang, L.L.; Wang, B.Y.; Li, K.; Lu, H.M.; Tang, G.J.; He, Y.D.; Li, L.Y. CircSCAF8 promotes growth and metastasis of prostate cancer through the circSCAF8-miR-140-3p/miR-335-LIF pathway. Cell Death Dis., 2022, 13(6), 517. doi: 10.1038/s41419-022-04913-7 PMID: 35654787
  40. Yan, Z.; Xiao, Y.; Chen, Y.; Luo, G. Screening and identification of epithelial-to-mesenchymal transition-related circRNA and miRNA in prostate cancer. Pathol. Res. Pract., 2020, 216(2), 152784. doi: 10.1016/j.prp.2019.152784 PMID: 31882179
  41. Li, T.; Sun, X.; Chen, L. Exosome circ_0044516 promotes prostate cancer cell proliferation and metastasis as a potential biomarker. J. Cell. Biochem., 2020, 121(3), 2118-2126. doi: 10.1002/jcb.28239 PMID: 31625175
  42. Yin, H.; Qin, H.; Yang, L.; Chen, M.; Yang, Y.; Zhang, W.; Hao, J.; Lu, Q.; Shi, J.; Zhuang, J.; Qiu, X.; Guo, H. circCYP24A1 promotes docetaxel resistance in prostate cancer by upregulating ALDH1A3. Biomark. Res., 2022, 10(1), 48. doi: 10.1186/s40364-022-00393-1 PMID: 35831872
  43. Zheng, Y.; Li, J.; Chen, C.; Lin, Z.; Liu, J.; Lin, F. Extracellular vesicle-derived circ_SLC19A1 promotes prostate cancer cell growth and invasion through the miR-497/septin 2 pathway. Cell Biol. Int., 2020, 44(4), 1037-1045. doi: 10.1002/cbin.11303 PMID: 31903637
  44. Dai, Y.; Li, D.; Chen, X.; Tan, X.; Gu, J.; Chen, M.; Zhang, X. Circular RNA myosin light chain kinase (MYLK) promotes prostate cancer progression through modulating Mir-29a expression. Med. Sci. Monit., 2018, 24, 3462-3471. doi: 10.12659/MSM.908009 PMID: 29798970
  45. Wang, X.; Wang, R.; Wu, Z.; Bai, P. Circular RNA ITCH suppressed prostate cancer progression by increasing HOXB13 expression via spongy miR-17-5p. Cancer Cell Int., 2019, 19(1), 328. doi: 10.1186/s12935-019-0994-8 PMID: 31827402
  46. Yuan, Y.; Chen, X.; Huang, E. Upregulation of circular RNA itchy E3 ubiquitin protein ligase inhibits cell proliferation and promotes cell apoptosis through targeting MiR-197 in prostate cancer. Technol. Cancer Res. Treat., 2019, 18 doi: 10.1177/1533033819886867 PMID: 31694481
  47. Huang, C.; Deng, H.; Wang, Y.; Jiang, H.; Xu, R.; Zhu, X.; Huang, Z.; Zhao, X. Circular RNA circABCC4 as the ceRNA of miR-1182 facilitates prostate cancer progression by promoting FOXP4 expression. J. Cell. Mol. Med., 2019, 23(9), 6112-6119. doi: 10.1111/jcmm.14477 PMID: 31270953
  48. Wang, S.; Chao, F.; Zhang, C.; Han, D.; Xu, G.; Chen, G. Circular RNA circPFKP promotes cell proliferation by activating IMPDH2 in prostate cancer. Cancer Lett., 2022, 524, 109-120. doi: 10.1016/j.canlet.2021.10.021 PMID: 34673127
  49. Feng, Y.; Yang, Y.; Zhao, X.; Fan, Y.; Zhou, L.; Rong, J.; Yu, Y. Circular RNA circ0005276 promotes the proliferation and migration of prostate cancer cells by interacting with FUS to transcriptionally activate XIAP. Cell Death Dis., 2019, 10(11), 792. doi: 10.1038/s41419-019-2028-9 PMID: 31624242
  50. Si-Tu, J.; Cai, Y.; Feng, T.; Yang, D.; Yuan, S.; Yang, X.; He, S.; Li, Z.; Wang, Y.; Tang, Y.; Ye, C.; Li, Z. Upregulated circular RNA circ-102004 that promotes cell proliferation in prostate cancer. Int. J. Biol. Macromol., 2019, 122, 1235-1243. doi: 10.1016/j.ijbiomac.2018.09.076 PMID: 30219508
  51. Shan, G.; Shao, B.; Liu, Q.; Zeng, Y.; Fu, C.; Chen, A.; Chen, Q. circFMN2 sponges miR-1238 to Promote the expression of LIM-Homeobox gene 2 in prostate cancer cells. Mol. Ther. Nucleic Acids, 2020, 21, 133-146. doi: 10.1016/j.omtn.2020.05.008 PMID: 32526477
  52. Jin, C.; Zhao, W.; Zhang, Z.; Liu, W. Silencing circular RNA circZNF609 restrains growth, migration and invasion by up-regulating microRNA-186-5p in prostate cancer. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3350-3358. doi: 10.1080/21691401.2019.1648281 PMID: 31387394
  53. Zhang, Y.; Shi, Z.; Li, Z.; Wang, X.; Zheng, P.; Li, H. Circ_0057553/miR-515-5p regulates prostate cancer cell proliferation, apoptosis, migration, invasion and aerobic glycolysis by targeting YES1. OncoTargets Ther., 2020, 13, 11289-11299. doi: 10.2147/OTT.S272294 PMID: 33177837
  54. Li, P.; Wang, Z.; Li, S.; Wang, L. Circ_0006404 accelerates prostate cancer progression through regulating miR-1299/CFL2 signaling. OncoTargets Ther., 2021, 14, 83-95. doi: 10.2147/OTT.S277831 PMID: 33442268
  55. Li, Q.; Wang, W.; Zhang, M.; Sun, W.; Shi, W.; Li, F. Circular RNA circ-0016068 promotes the growth, migration, and invasion of prostate cancer cells by regulating the miR-330-3p/BMI-1 axis as a competing endogenous RNA. Front. Cell Dev. Biol., 2020, 8, 827. doi: 10.3389/fcell.2020.00827 PMID: 32984325
  56. Jiang, H.; Lv, D.J.; Song, X.L.; Wang, C.; Yu, Y.Z.; Zhao, S.C. Upregulated circZMIZ1 promotes the proliferation of prostate cancer cells and is a valuable marker in plasma. Neoplasma, 2020, 67(1), 68-77. doi: 10.4149/neo_2019_190213N116 PMID: 31686520
  57. Mao, Y.; Li, W.; Hua, B.; Gu, X.; Pan, W.; Chen, Q.; Xu, B.; Lu, C.; Wang, Z. Circular RNA_PDHX promotes the proliferation and invasion of prostate cancer by sponging MiR-378a-3p. Front. Cell Dev. Biol., 2021, 8, 602707. doi: 10.3389/fcell.2020.602707 PMID: 33634097
  58. Chen, J.; Xie, Q.; Miao, W.; Fan, J.; Zhou, X.; Li, M. CircPDHX promotes prostate cancer cell progression in vitro and tumor growth in vivo via miR-497-5p/ACSL1 axis. Biochem. Biophys. Res. Commun., 2022, 620, 35-41. doi: 10.1016/j.bbrc.2022.06.012 PMID: 35777132
  59. Deng, Z.H.; Yu, G.S.; Deng, K.L.; Feng, Z.H.; Huang, Q.; Pan, B.; Deng, J.Z. Hsa_circ_0088233 alleviates proliferation, migration, and invasion of prostate cancer by targeting hsa-miR-185-3p. Front. Cell Dev. Biol., 2020, 8, 528155. doi: 10.3389/fcell.2020.528155 PMID: 33195183
  60. Shi, J.; Liu, C.; Chen, C.; Guo, K.; Tang, Z.; Luo, Y.; Chen, L.; Su, Y.; Xu, K. Circular RNA circMBOAT2 promotes prostate cancer progression via a miR-1271-5p/mTOR axis. Aging, 2020, 12(13), 13255-13280. doi: 10.18632/aging.103432 PMID: 32645691
  61. Wang, P.; Zhang, L.; Yin, S.; Xu, Y.; Tai, S.; Zhang, L.; Liang, C. Hsa_circ_0062019 promotes the proliferation, migration, and invasion of prostate cancer cells via the miR-195-5p/HMGA2 axis. Acta Biochim. Biophys. Sin., 2021, 53(7), 815-822. doi: 10.1093/abbs/gmab058 PMID: 33978716
  62. Zeng, L.; Liu, Y.; Yang, N.; Zhang, T.; Xie, H. Hsa_circRNA_100146 promotes prostate cancer progression by upregulating TRIP13 via sponging miR-615-5p. Front. Mol. Biosci., 2021, 8, 693477. doi: 10.3389/fmolb.2021.693477 PMID: 34307457
  63. Yu, Y.Z.; Lv, D.J.; Wang, C.; Song, X.L.; Xie, T.; Wang, T.; Li, Z.M.; Guo, J.D.; Fu, D.J.; Li, K.J.; Wu, D.L.; Chan, F.L.; Feng, N.H.; Chen, Z.S.; Zhao, S.C. Hsa_circ_0003258 promotes prostate cancer metastasis by complexing with IGF2BP3 and sponging miR-653-5p. Mol. Cancer, 2022, 21(1), 12. doi: 10.1186/s12943-021-01480-x PMID: 34986849
  64. Weng, X.D.; Yan, T.; Liu, C.L. Circular RNA_LARP4 inhibits cell migration and invasion of prostate cancer by targeting FOXO3A. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(10), 5303-5309. From NLM.. doi: 10.26355/eurrev_202005_21312 PMID: 32495863
  65. Zhang, Y.; Liu, F.; Feng, Y.; Xu, X.; Wang, Y.; Zhu, S.; Dong, J.; Zhao, S.; Xu, B.; Feng, N. CircRNA circ_0006156 inhibits the metastasis of prostate cancer by blocking the ubiquitination of S100A9. Cancer Gene Ther., 2022, 29(11), 1731-1741. doi: 10.1038/s41417-022-00492-z PMID: 35760899
  66. Retracted : CircSMAD2 governs migration and epithelial–mesenchymal transition by inhibiting microRNA-9. J. Cell. Biochem., 2021, 122(9), 1253. doi: 10.1002/jcb.29638 PMID: 31886568
  67. Hu, Y.; Guo, B. Circ-MTO1 correlates with favorable prognosis and inhibits cell proliferation, invasion as well as miR-17-5p expression in prostate cancer. J. Clin. Lab. Anal., 2020, 34(3), e23086. doi: 10.1002/jcla.23086 PMID: 31713278
  68. Zheng, Y.; Chen, C.; Lin, Z.; Li, J.; Liu, J.; Lin, F.; Zhou, X. Circ_KATNAL1 regulates prostate cancer cell growth and invasiveness through the miR-145-3p/WISP1 pathway. Biochem. Cell Biol., 2020, 98(3), 396-404. doi: 10.1139/bcb-2019-0211 PMID: 31800303
  69. Xiang, Z.; Xu, C.; Wu, G.; Liu, B.; Wu, D. CircRNA-UCK2 increased TET1 inhibits proliferation and invasion of prostate cancer cells via sponge miRNA-767-5p. Open Med., 2019, 14(1), 833-842. doi: 10.1515/med-2019-0097 PMID: 31844675
  70. Wu, G.; Sun, Y.; Xiang, Z.; Wang, K.; Liu, B.; Xiao, G.; Niu, Y.; Wu, D.; Chang, C. Preclinical study using circular RNA 17 and micro RNA 181c-5p to suppress the enzalutamide-resistant prostate cancer progression. Cell Death Dis., 2019, 10(2), 37. doi: 10.1038/s41419-018-1048-1 PMID: 30674872
  71. Sha, J.; Xia, L.; Han, Q.; Chi, C.; Zhu, Y.; Pan, J.; Huang, Y.; Xia, W.; Dong, B.; Xue, W.; Yang, C. Downregulation of circ-TRPS1 suppressed prostatic cancer prognoses by regulating miR-124-3p/EZH2 axis-mediated stemness. Am. J. Cancer Res., 2020, 10(12), 4372-4385. doi: 10.21203/rs.3.rs-48783/v1 PMID: 33415005
  72. Xia, H.Y.; Liu, C.D.; Liang, W.; Huo, X.Y.; Wei, X.W. Circ_0004417 inhibits the progression of prostate cancer through sponging miR-1228. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(3), 1274-1281. From NLM.. doi: 10.26355/eurrev_202102_24831 PMID: 33629297
  73. Jin, C.; Zhao, W.; Zhang, Z.; Liu, W. RETRACTED: CircLMTK2 acts as a tumor suppressor in prostate cancer viaregulating the expression of microRNA-183. Life Sci., 2020, 241, 117097. doi: 10.1016/j.lfs.2019.117097 PMID: 31760099
  74. He, H.; Li, J.; Luo, M.; Wei, Q. Inhibitory role of circRNA_100395 in the proliferation and metastasis of prostate cancer cells. J. Int. Med. Res., 2021, 49(2) doi: 10.1177/0300060521992215 PMID: 33641485
  75. Zhang, S.; Zhang, X.; Chen, G.; Zheng, X.; Zhu, X.; Shan, L. Hsa_circ_0007494 suppresses prostate cancer progression via miR-616/PTEN axis. Exp. Cell Res., 2020, 395(2), 112233. doi: 10.1016/j.yexcr.2020.112233 PMID: 32810511
  76. Nan, C.; Wang, Y.; Yang, S.; Chen, Y. circCRKL suppresses the progression of prostate cancer cells by regulating the miR-141/KLF5 axis. Pathol. Res. Pract., 2020, 216(11), 153182. doi: 10.1016/j.prp.2020.153182 PMID: 32919302
  77. Lin, Q.; Cai, J.; Wang, Q.Q. The significance of circular RNA DDX17 in prostate cancer. BioMed Res. Int., 2020, 2020, 1-16. doi: 10.1155/2020/1878431 PMID: 32904557
  78. Huang, E.; Chen, X.; Yuan, Y. Downregulated circular RNA itchy E3 ubiquitin protein ligase correlates with advanced pathologic T stage, high lymph node metastasis risk and poor survivals in prostate cancer patients. Cancer Biomark., 2019, 26(1), 41-50. doi: 10.3233/CBM-182111 PMID: 31306101
  79. Luo, J.; Li, Y.; Zheng, W.; Xie, N.; Shi, Y.; Long, Z.; Xie, L.; Fazli, L.; Zhang, D.; Gleave, M.; Dong, X. Characterization of a prostate- and prostate cancer-specific circular RNA encoded by the androgen receptor gene. Mol. Ther. Nucleic Acids, 2019, 18, 916-926. doi: 10.1016/j.omtn.2019.10.015 PMID: 31760376
  80. Dai, X.; Chen, X.; Chen, W.; Ou, Y.; Chen, Y.; Wu, S.; Zhou, Q.; Yang, C.; Zhang, L.; Jiang, H. CircDHRS3 inhibits prostate cancer cell proliferation and metastasis through the circDHRS3/miR-421/MEIS2 axis. Epigenetics, 2023, 18(1), 2178802. doi: 10.1080/15592294.2023.2178802 PMID: 36840946
  81. Gao, F.; Xu, Q.; Tang, Z.; Zhang, N.; Huang, Y.; Li, Z.; Dai, Y.; Yu, Q.; Zhu, J. Exosomes derived from myeloid-derived suppressor cells facilitate castration-resistant prostate cancer progression via S100A9/circMID1/miR-506-3p/MID1. J. Transl. Med., 2022, 20(1), 346. doi: 10.1186/s12967-022-03494-5 PMID: 35918733
  82. Mo, C.; Huang, B.; Zhuang, J.; Jiang, S.; Guo, S.; Mao, X. LncRNA nuclear-enriched abundant transcript 1 shuttled by prostate cancer cells-secreted exosomes initiates osteoblastic phenotypes in the bone metastatic microenvironment via miR-205-5p/runt-related transcription factor 2/splicing factor proline- and glutamine-rich/polypyrimidine tract-binding protein 2 axis. Clin. Transl. Med., 2021, 11(8), e493. doi: 10.1002/ctm2.493 PMID: 34459124
  83. Wang, Q.; Liu, J.; Zeng, J.; Yang, Z.; Ran, F.; Wu, L.; Yang, G.; Mei, Q.; Wang, X.; Chen, Q. Determination of miRNA derived from exosomes of prostate cancer via toehold-aided cyclic amplification combined with HRP enzyme catalysis and magnetic nanoparticles. Anal. Biochem., 2021, 630, 114336. doi: 10.1016/j.ab.2021.114336 PMID: 34400146
  84. Wang, S.; Su, W.; Zhong, C.; Yang, T.; Chen, W.; Chen, G.; Liu, Z.; Wu, K.; Zhong, W.; Li, B.; Mao, X.; Lu, J. An Eight-CircRNA assessment model for predicting biochemical recurrence in prostate cancer. Front. Cell Dev. Biol., 2020, 8, 599494. doi: 10.3389/fcell.2020.599494 PMID: 33363156
  85. Zhang, B.; Zhang, M.; Yang, Y.; Li, Q.; Yu, J.; Zhu, S.; Niu, Y.; Shang, Z. Targeting KDM4A-AS1 represses AR/AR-Vs deubiquitination and enhances enzalutamide response in CRPC. Oncogene, 2022, 41(3), 387-399. doi: 10.1038/s41388-021-02103-x PMID: 34759344
  86. Wu, Y. Circ_0044516 enriches the level of SARM1 as a miR-330-5p sponge to regulate cell malignant behaviors and tumorigenesis of prostate cancer. Biochem. Genet., 2022, 60(4), 1346-1361. doi: 10.1007/s10528-021-10160-w PMID: 34993722
  87. Chikamatsu, S.; Shiota, M.; Yamada, S.; Blas, L.; Matsumoto, T.; Kashiwagi, E.; Inokuchi, J.; Shiga, K.; Yokomizo, A.; Eto, M. Prognostic significance of risk stratification in CHAARTED and LATITUDE studies among Japanese men with castration-resistant prostate cancer. Prostate Int., 2022, 10(1), 7-13. doi: 10.1016/j.prnil.2022.01.001 PMID: 35229000
  88. Huang, J.; Lin, B.; Li, B. Anti-androgen receptor therapies in prostate cancer: A brief update and perspective. Front. Oncol., 2022, 12, 865350. doi: 10.3389/fonc.2022.865350 PMID: 35372068
  89. Uemura, H.; Kobayashi, K.; Yokomizo, A.; Hinotsu, S.; Horie, S.; Kakehi, Y.; Naito, S.; Nonomura, N.; Ogawa, O.; Oya, M.; Suzuki, K.; Saito, A.; Uno, S.; Akaza, H. Enzalutamide + androgen deprivation therapy (ADT) versus flutamide + ADT in Japanese men with castration-resistant prostate cancer: AFTERCAB study. BJUI Compass, 2022, 3(1), 26-36. doi: 10.1002/bco2.103 PMID: 35475157
  90. Chen, L.; Sun, Y.; Tang, M.; Wu, D.; Xiang, Z.; Huang, C.P.; You, B.; Xie, D.; Ye, Q.; Yu, D.; Chang, C. High- dose-androgen-induced autophagic cell death to suppress the Enzalutamide-resistant prostate cancer growth via altering the circRNA-BCL2/miRNA-198/AMBRA1 signaling. Cell Death Discov., 2022, 8(1), 128. doi: 10.1038/s41420-022-00898-6 PMID: 35318303
  91. Lim, M.C.J.; Baird, A.M.; Greene, J.; McNevin, C.; Ronan, K.; Podlesniy, P.; Sheils, O.; Gray, S.G.; McDermott, R.S.; Finn, S.P. hsa_circ_0001275 is one of a number of circRNAs dysregulated in enzalutamide resistant prostate cancer and confers enzalutamide resistance in vitro. Cancers, 2021, 13(24), 6383. doi: 10.3390/cancers13246383 PMID: 34945002
  92. Jiang, X.; Guo, S.; Wang, S.; Zhang, Y.; Chen, H.; Wang, Y.; Liu, R.; Niu, Y.; Xu, Y. EIF4A3-induced circARHGAP29 promotes aerobic glycolysis in docetaxel-resistant prostate cancer through IGF2BP2/c-Myc/LDHA signaling. Cancer Res., 2022, 82(5), 831-845. doi: 10.1158/0008-5472.CAN-21-2988 PMID: 34965937
  93. Shen, Z.; Zhou, L.; Zhang, C.; Xu, J. Reduction of circular RNA Foxo3 promotes prostate cancer progression and chemoresistance to docetaxel. Cancer Lett., 2020, 468, 88-101. doi: 10.1016/j.canlet.2019.10.006 PMID: 31593800
  94. Tan, X.; Song, X.; Fan, B.; Li, M.; Zhang, A.; Pei, L. Exosomal circRNA Scm-like with four malignant brain tumor domains 2 (circ-SFMBT2) enhances the docetaxel resistance of prostate cancer via the microRNA-136-5p/tribbles homolog 1 pathway. Anticancer Drugs, 2022, 33(9), 871-882. doi: 10.1097/CAD.0000000000001365 PMID: 36136987
  95. Cai, F.; Li, J.; Zhang, J.; Huang, S. Knockdown of Circ_CCNB2 sensitizes prostate cancer to radiation through repressing autophagy by the miR-30b-5p/KIF18A axis. Cancer Biother. Radiopharm., 2022, 37(6), 480-493. doi: 10.1089/cbr.2019.3538 PMID: 32716640
  96. Li, H.; Zhi, Y.; Ma, C.; Shen, Q.; Sun, F.; Cai, C. Circ_0062020 knockdown strengthens the radiosensitivity of prostate cancer cells. Cancer Manag. Res., 2020, 12, 11701-11712. doi: 10.2147/CMAR.S273826 PMID: 33235500
  97. Gao, Y.; Liu, J.; Huan, J.; Che, F. Downregulation of circular RNA hsa_circ_0000735 boosts prostate cancer sensitivity to docetaxel via sponging miR-7. Cancer Cell Int., 2020, 20(1), 334. doi: 10.1186/s12935-020-01421-6 PMID: 32714093
  98. Kamran, S.C.; D’Amico, A.V. Radiation therapy for prostate cancer. Hematol. Oncol. Clin. North Am., 2020, 34(1), 45-69. doi: 10.1016/j.hoc.2019.08.017 PMID: 31739952
  99. Ghadjar, P.; Fiorino, C.; Munck af Rosenschöld, P.; Pinkawa, M.; Zilli, T.; van der Heide, U.A. ESTRO ACROP consensus guideline on the use of image guided radiation therapy for localized prostate cancer. Radiother. Oncol., 2019, 141, 5-13. doi: 10.1016/j.radonc.2019.08.027 PMID: 31668515
  100. Mariados, N.; Sylvester, J.; Shah, D.; Karsh, L.; Hudes, R.; Beyer, D.; Kurtzman, S.; Bogart, J.; Hsi, R.A.; Kos, M.; Ellis, R.; Logsdon, M.; Zimberg, S.; Forsythe, K.; Zhang, H.; Soffen, E.; Francke, P.; Mantz, C.; Rossi, P.; DeWeese, T.; Hamstra, D.A.; Bosch, W.; Gay, H.; Michalski, J. Hydrogel spacer prospective multicenter randomized controlled pivotal trial: Dosimetric and clinical effects of perirectal spacer application in men undergoing prostate image guided intensity modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys., 2015, 92(5), 971-977. doi: 10.1016/j.ijrobp.2015.04.030 PMID: 26054865
  101. Chen, Y.Y.; Luo, L.P.; Deng, K.C. Circular RNA LPAR3 targets JPT1 via microRNA-513b-5p to facilitate glycolytic activation but repress prostate cancer radiosensitivity. Acta Biochim. Pol., 2023, 70(1), 153-162. doi: 10.18388/abp.2020_6379 PMID: 36929708
  102. Yu, T.; Du, H.; Sun, C. Circ-ABCC4 contributes to prostate cancer progression and radioresistance by mediating miR-1253/SOX4 cascade. Anticancer Drugs, 2023, 34(1), 155-165. doi: 10.1097/CAD.0000000000001361 PMID: 36539368
  103. Antonarakis, E.S.; Lu, C.; Wang, H.; Luber, B.; Nakazawa, M.; Roeser, J.C.; Chen, Y.; Mohammad, T.A.; Chen, Y.; Fedor, H.L.; Lotan, T.L.; Zheng, Q.; De Marzo, A.M.; Isaacs, J.T.; Isaacs, W.B.; Nadal, R.; Paller, C.J.; Denmeade, S.R.; Carducci, M.A.; Eisenberger, M.A.; Luo, J. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med., 2014, 371(11), 1028-1038. doi: 10.1056/NEJMoa1315815 PMID: 25184630
  104. Kohli, M.; Ho, Y.; Hillman, D.W.; Van Etten, J.L.; Henzler, C.; Yang, R.; Sperger, J.M.; Li, Y.; Tseng, E.; Hon, T.; Clark, T.; Tan, W.; Carlson, R.E.; Wang, L.; Sicotte, H.; Thai, H.; Jimenez, R.; Huang, H.; Vedell, P.T.; Eckloff, B.W.; Quevedo, J.F.; Pitot, H.C.; Costello, B.A.; Jen, J.; Wieben, E.D.; Silverstein, K.A.T.; Lang, J.M.; Wang, L.; Dehm, S.M. Androgen receptor variant AR-V9 is coexpressed with AR-V7 in prostate cancer metastases and predicts abiraterone resistance. Clin. Cancer Res., 2017, 23(16), 4704-4715. doi: 10.1158/1078-0432.CCR-17-0017 PMID: 28473535
  105. Duffy, M.J. Biomarkers for prostate cancer: prostate-specific antigen and beyond. Clin. Chem. Lab. Med. (CCLM), 2020, 58(3), 326-339. doi: 10.1515/cclm-2019-0693 PMID: 31714881
  106. Liao, Y.; Liu, Y.; Xia, X.; Shao, Z.; Huang, C.; He, J.; Jiang, L.; Tang, D.; Liu, J.; Huang, H. Targeting GRP78-dependent AR-V7 protein degradation overcomes castration-resistance in prostate cancer therapy. Theranostics, 2020, 10(8), 3366-3381. doi: 10.7150/thno.41849 PMID: 32206096
  107. Scher, H.I.; Lu, D.; Schreiber, N.A.; Louw, J.; Graf, R.P.; Vargas, H.A.; Johnson, A.; Jendrisak, A.; Bambury, R.; Danila, D.; McLaughlin, B.; Wahl, J.; Greene, S.B.; Heller, G.; Marrinucci, D.; Fleisher, M.; Dittamore, R. Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol., 2016, 2(11), 1441-1449. doi: 10.1001/jamaoncol.2016.1828 PMID: 27262168
  108. Fabian, M.R.; Sonenberg, N.; Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem., 2010, 79(1), 351-379. doi: 10.1146/annurev-biochem-060308-103103 PMID: 20533884
  109. Qi, X.; Zhang, D.H.; Wu, N.; Xiao, J.H.; Wang, X.; Ma, W. ceRNA in cancer: possible functions and clinical implications. J. Med. Genet., 2015, 52(10), 710-718. doi: 10.1136/jmedgenet-2015-103334 PMID: 26358722
  110. Karreth, F.A.; Pandolfi, P.P. ceRNA cross-talk in cancer: When ce-bling rivalries go awry. Cancer Discov., 2013, 3(10), 1113-1121. doi: 10.1158/2159-8290.CD-13-0202 PMID: 24072616
  111. Zhang, F.; Lin, F.; Xu, Z.; Huang, Z. Circular RNA ITCH promotes extracellular matrix degradation via activating Wnt/β-catenin signaling in intervertebral disc degeneration. Aging, 2021, 13(10), 14185-14197. doi: 10.18632/aging.203036 PMID: 34015763
  112. Wang, J.Q.; Mao, L. The ERK pathway: Molecular mechanisms and treatment of depression. Mol. Neurobiol., 2019, 56(9), 6197-6205. doi: 10.1007/s12035-019-1524-3 PMID: 30737641
  113. Samatar, A.A.; Poulikakos, P.I. Targeting RAS–ERK signalling in cancer: Promises and challenges. Nat. Rev. Drug Discov., 2014, 13(12), 928-942. doi: 10.1038/nrd4281 PMID: 25435214
  114. Maik-Rachline, G.; Hacohen-Lev-Ran, A.; Seger, R. Nuclear ERK: Mechanism of translocation, substrates, and role in cancer. Int. J. Mol. Sci., 2019, 20(5), 1194. doi: 10.3390/ijms20051194 PMID: 30857244
  115. Cagnol, S.; Chambard, J.C. ERK and cell death: Mechanisms of ERK-induced cell death - apoptosis, autophagy and senescence. FEBS J., 2010, 277(1), 2-21. doi: 10.1111/j.1742-4658.2009.07366.x PMID: 19843174
  116. Xia, P.; Xu, X.Y. PI3K/Akt/mTOR signaling pathway in cancer stem cells: From basic research to clinical application. Am. J. Cancer Res., 2015, 5(5), 1602-1609. PMID: 26175931
  117. Xu, Z.; Han, X.; Ou, D.; Liu, T.; Li, Z.; Jiang, G.; Liu, J.; Zhang, J. Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy. Appl. Microbiol. Biotechnol., 2020, 104(2), 575-587. doi: 10.1007/s00253-019-10257-8 PMID: 31832711
  118. Ding, L.; Lin, Y.; Chen, X.; Wang, R.; Lu, H.; Wang, H.; Luo, W.; Lu, Z.; Xia, L.; Zhou, X.; Li, G.; Cheng, S. circPHF16 suppresses prostate cancer metastasis via modulating miR-581/RNF128/Wnt/β-catenin pathway. Cell. Signal., 2023, 102, 110557. doi: 10.1016/j.cellsig.2022.110557 PMID: 36503162
  119. Pastushenko, I.; Blanpain, C. EMT transition states during tumor progression and metastasis. Trends Cell Biol., 2019, 29(3), 212-226. doi: 10.1016/j.tcb.2018.12.001 PMID: 30594349
  120. Singh, M.; Yelle, N.; Venugopal, C.; Singh, S.K. EMT: Mechanisms and therapeutic implications. Pharmacol. Ther., 2018, 182, 80-94. doi: 10.1016/j.pharmthera.2017.08.009 PMID: 28834698
  121. Stemmler, M.P.; Eccles, R.L.; Brabletz, S.; Brabletz, T. Non-redundant functions of EMT transcription factors. Nat. Cell Biol., 2019, 21(1), 102-112. doi: 10.1038/s41556-018-0196-y PMID: 30602760
  122. Santamaria, P.G.; Moreno-Bueno, G.; Portillo, F.; Cano, A. EMT: Present and future in clinical oncology. Mol. Oncol., 2017, 11(7), 718-738. doi: 10.1002/1878-0261.12091 PMID: 28590039
  123. Chaffer, C.L.; San Juan, B.P.; Lim, E.; Weinberg, R.A. EMT, cell plasticity and metastasis. Cancer Metastasis Rev., 2016, 35(4), 645-654. doi: 10.1007/s10555-016-9648-7 PMID: 27878502
  124. Xie, X.; Sun, F.K.; Huang, X.; Wang, C.H.; Dai, J.; Zhao, J.P.; Fang, C.; He, W. A circular RNA, circSMARCA5, inhibits prostate cancer proliferative, migrative, and invasive capabilities via the miR-181b-5p/miR-17-3p-TIMP3 axis. Aging, 2021, 13(15), 19908-19919. doi: 10.18632/aging.203408 PMID: 34390329

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024