Discovery of Pyroptosis-inducing Drugs and Antineoplastic Activity based on the ROS/ER Stress/Pyroptosis Axis


Citar

Texto integral

Resumo

Background:Pyroptosis, a cell death process triggered by chemotherapy drugs, has emerged as a highly promising mechanism for combating tumors in recent years. As the lead of new drugs, natural products play an important role in the discovery of anticancer drugs. Compared to other natural products, the medicine food homologous natural products (MFHNP) exhibit a superior safety profile. Among a series of MFHNP molecular skeletons, this study found that only benzylideneacetophenone (1) could induce cancer cell pyroptosis. However, the anti-cancer activity of 1 remains to be improved.

Aims:This study aimed to find a pyroptosis inducer with highly effective antitumor activity by modifying the chalcone structure.

Methods:To examine the effect of the Michael receptor in compound 1 on the induction of pyroptosis, several analogs were synthesized by modifying the Michael acceptor. Subsequently, the anticancer activity was tested by MTT assay, and morphological indications of pyroptosis were observed in human lung carcinoma NCI-H460 and human ovarian cancer CP-70 cell lines. Furthermore, to improve the activity of the chalcone skeleton, the anticancer group 3,4,5- trimethoxyphenyl was incorporated into the phenyl ring. Subsequently, compounds 2-22 were designed, synthesized, and screened in human lung cancer cells (NCI-H460, H1975, and A549). Additionally, a quantitative structure-activity relationship (QSAR) model was established using the eXtreme Gradient Boosting (XGBoost) machine learning library to identify the pharmacophore. Furthermore, both in vitro and in vivo experiments were conducted to investigate the molecular mechanisms of pyroptosis induced by the active compound.

Results:α, β-unsaturated ketone was the functional group of the chalcone skeleton and played a pivotal role in inducing cancer cell pyroptosis. QSAR models showed that the regression coefficients (R2) were 0.992 (A549 cells), 0.990 (NCI-H460 cells), and 0.998 (H1975 cells). Among these compounds, compound 7 was selected to be the active compound. Moreover, compound 7 was found to induce pyroptosis in lung cancer cells by upregulating the expression of CHOP by increasing the ROS level. Furthermore, it effectively suppressed the growth of lung cancer xenograft tumors.

Conclusion:Compound 7 exhibits antineoplastic activity by regulating the ROS/ER stress/pyroptosis axis and is a kind of promising pyroptosis inducer.

Sobre autores

Xin Gan

Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University

Email: info@benthamscience.net

Jingwen Xie

School of Pharmaceutical Sciences, Wenzhou Medical University

Email: info@benthamscience.net

Zhaojun Dong

School of Pharmaceutical Sciences, Wenzhou Medical University

Email: info@benthamscience.net

Yuna Wu

The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University

Email: info@benthamscience.net

Xiaoqing Zeng

School of Pharmaceutical Sciences, Wenzhou Medical University

Email: info@benthamscience.net

Zhenzhen Yang

School of Pharmaceutical Sciences, Wenzhou Medical University

Email: info@benthamscience.net

Bo Liu

, The First affiliated hospital of Wenzhou Medical University

Email: info@benthamscience.net

Min Zhu

School of Pharmaceutical Sciences, Wenzhou Medical University

Email: info@benthamscience.net

Bozhen Wang

School of Pharmaceutical Sciences, Wenzhou Medical University

Email: info@benthamscience.net

Wulan Li

, The First affiliated hospital of Wenzhou Medical University

Email: info@benthamscience.net

Ledan Wang

Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University

Email: info@benthamscience.net

Huajie Zhang

School of Pharmaceutical Sciences, Wenzhou Medical University

Autor responsável pela correspondência
Email: info@benthamscience.net

Jianzhang Wu

Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University

Autor responsável pela correspondência
Email: info@benthamscience.net

Yue Hu

Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Dholaria, B.; Hammond, W.; Shreders, A.; Lou, Y. Emerging therapeutic agents for lung cancer. J. Hematol. Oncol., 2016, 9(1), 138-152. doi: 10.1186/s13045-016-0365-z PMID: 27938382
  2. Romano, S.; Fonseca, N.; Simões, S.; Gonçalves, J.; Moreira, J.N. Nucleolin-based targeting strategies for cancer therapy: from targeted drug delivery to cytotoxic ligands. Drug Discov. Today, 2019, 24(10), 1985-2001. doi: 10.1016/j.drudis.2019.06.018 PMID: 31271738
  3. Singh, M.; Jadhav, H.R. Targeting non-small cell lung cancer with small-molecule EGFR tyrosine kinase inhibitors. Drug Discov. Today, 2018, 23(3), 745-753. doi: 10.1016/j.drudis.2017.10.004 PMID: 29031620
  4. Rahman, A.; White, R.M. Cytotoxic anticancer agents and renal impairment study: the challenge remains. J. Clin. Oncol., 2006, 24(4), 533-536. doi: 10.1200/JCO.2005.03.8299 PMID: 16391294
  5. Schimmel, K.J.M.; Richel, D.J.; van den Brink, R.B.A.; Guchelaar, H.J. Cardiotoxicity of cytotoxic drugs. Cancer Treat. Rev., 2004, 30(2), 181-191. doi: 10.1016/j.ctrv.2003.07.003 PMID: 15023436
  6. Weathers, S.P.S.; Gilbert, M.R. Toward personalized targeted therapeutics: An overview. Neurotherapeutics, 2017, 14(2), 256-264. doi: 10.1007/s13311-016-0496-5 PMID: 27995437
  7. Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810. doi: 10.1021/acs.chemrev.7b00020 PMID: 28488435
  8. Bergsbaken, T.; Fink, S.L.; Cookson, B.T. Pyroptosis: Host cell death and inflammation. Nat. Rev. Microbiol., 2009, 7(2), 99-109. doi: 10.1038/nrmicro2070 PMID: 19148178
  9. Wu, J.; Li, J.; Cai, Y.; Pan, Y.; Ye, F.; Zhang, Y.; Zhao, Y.; Yang, S.; Li, X.; Liang, G. Evaluation and discovery of novel synthetic chalcone derivatives as anti-inflammatory agents. J. Med. Chem., 2011, 54(23), 8110-8123. doi: 10.1021/jm200946h PMID: 21988173
  10. Wu, J.Z.; Cheng, C.C.; Shen, L.L.; Wang, Z.K.; Wu, S.B.; Li, W.L.; Chen, S.H.; Zhou, R.P.; Qiu, P.H. Synthetic chalcones with potent antioxidant ability on H2O2-induced apoptosis in PC12 cells. Int. J. Mol. Sci., 2014, 15(10), 18525-18539. doi: 10.3390/ijms151018525 PMID: 25318055
  11. Nik, M.E.; Momtazi-Borojeni, A.A.; Zamani, P.; Navashenaq, J.G.; Iranshahi, M.; Jaafari, M.R.; Malaekeh-Nikouei, B. Targeted-nanoliposomal combretastatin A4 (CA-4) as an efficient antivascular candidate in the metastatic cancer treatment. J. Cell. Physiol., 2019, 234(9), 14721-14733. doi: 10.1002/jcp.28230 PMID: 30697744
  12. Sansalone, L.; Veliz, E.; Myrthil, N.; Stathias, V.; Walters, W.; Torrens, I.; Schürer, S.; Vanni, S.; Leblanc, R.; Graham, R. Novel curcumin inspired bis-chalcone promotes endoplasmic reticulum stress and glioblastoma neurosphere cell death. Cancers, 2019, 11(3), 357-374. doi: 10.3390/cancers11030357 PMID: 30871215
  13. Rahimifard, M.; Jalalimanesh, N.; Movahed, M.A.; Hadjighassem, M.; Pourahmad Jaktaji, R.; Bagheri, Z.; Pourahmad, J.; Zarghi, A. Antiproliferative activity of new derivatives of pyrazino1,2- a benzimidazole: Integrated cell-based assay and computational studies with divalent magnesium, iron, and copper ions. J. Biochem. Mol. Toxicol., 2022, 36(10), e23155. doi: 10.1002/jbt.23155 PMID: 35791688
  14. Adams, D.J.; Dai, M.; Pellegrino, G.; Wagner, B.K.; Stern, A.M.; Shamji, A.F.; Schreiber, S.L. Synthesis, cellular evaluation, and mechanism of action of piperlongumine analogs. Proc. Natl. Acad. Sci., 2012, 109(38), 15115-15120. doi: 10.1073/pnas.1212802109 PMID: 22949699
  15. Secci, D.; Bolasco, A.; Chimenti, P.; Carradori, S. The state of the art of pyrazole derivatives as monoamine oxidase inhibitors and antidepressant/anticonvulsant agents. Curr. Med. Chem., 2011, 18(33), 5114-5144. doi: 10.2174/092986711797636090 PMID: 22050759
  16. Cousins, D.L.; Fricero, P.; Kopf, K.P.M.; McColl, E.J.; Czechtizky, W.; Lim, Y.H.; Harrity, J.P.A. Pyrimidin-6-yl trifluoroborate salts as versatile templates for heterocycle synthesis. Angew. Chem. Int. Ed., 2021, 60(17), 9412-9415. doi: 10.1002/anie.202101297 PMID: 33570831
  17. La Regina, G.; Bai, R.; Coluccia, A.; Famiglini, V.; Passacantilli, S.; Naccarato, V.; Ortar, G.; Mazzoccoli, C.; Ruggieri, V.; Agriesti, F.; Piccoli, C.; Tataranni, T.; Nalli, M.; Brancale, A.; Vultaggio, S.; Mercurio, C.; Varasi, M.; Saponaro, C.; Sergio, S.; Maffia, M.; Coluccia, A.M.L.; Hamel, E.; Silvestri, R. 3-Aroyl-1,4-diarylpyrroles inhibit chronic myeloid leukemia cell growth through an interaction with tubulin. ACS Med. Chem. Lett., 2017, 8(5), 521-526. doi: 10.1021/acsmedchemlett.7b00022 PMID: 28523104
  18. Qin, X.; Yao Lee, M.W.; Zhou, J.S. Asymmetric hydroarylation of enones via nickel-catalyzed 5- endo-trig cyclization. Org. Lett., 2019, 21(15), 5990-5994. doi: 10.1021/acs.orglett.9b02130 PMID: 31339044
  19. Puxeddu, M.; Shen, H.; Bai, R.; Coluccia, A.; Nalli, M.; Mazzoccoli, C.; Da Pozzo, E.; Cavallini, C.; Martini, C.; Orlando, V.; Biagioni, S.; Mazzoni, C.; Coluccia, A.M.L.; Hamel, E.; Liu, T.; Silvestri, R.; La Regina, G. Structure-activity relationship studies and in vitro and in vivo anticancer activity of novel 3-aroyl-1,4-diarylpyrroles against solid tumors and hematological malignancies. Eur. J. Med. Chem., 2020, 185, 111828. doi: 10.1016/j.ejmech.2019.111828 PMID: 31727471
  20. Johnson, M.; Younglove, B.; Lee, L.; LeBlanc, R.; Holt, H., Jr; Hills, P.; Mackay, H.; Brown, T.; Mooberry, S.L.; Lee, M. Design, synthesis, and biological testing of pyrazoline derivatives of combretastatin-A4. Bioorg. Med. Chem. Lett., 2007, 17(21), 5897-5901. doi: 10.1016/j.bmcl.2007.07.105 PMID: 17827004
  21. Pathak, V.; Maurya, H.K.; Sharma, S.; Srivastava, K.K.; Gupta, A. Synthesis and biological evaluation of substituted 4,6-diarylpyrimidines and 3,5-diphenyl-4,5-dihydro-1H-pyrazoles as anti-tubercular agents. Bioorg. Med. Chem. Lett., 2014, 24(13), 2892-2896. doi: 10.1016/j.bmcl.2014.04.094 PMID: 24835631
  22. Mansouri, K.; Cariello, N.F.; Korotcov, A.; Tkachenko, V.; Grulke, C.M.; Sprankle, C.S.; Allen, D.; Casey, W.M.; Kleinstreuer, N.C.; Williams, A.J. Open-source QSAR models for pKa prediction using multiple machine learning approaches. J. Cheminform., 2019, 11(1), 60. doi: 10.1186/s13321-019-0384-1 PMID: 33430972
  23. Heller, L.; Schwarz, S.; Perl, V.; Köwitsch, A.; Siewert, B.; Csuk, R. Incorporation of a Michael acceptor enhances the antitumor activity of triterpenoic acids. Eur. J. Med. Chem., 2015, 101, 391-399. doi: 10.1016/j.ejmech.2015.07.004 PMID: 26177446
  24. Rana, S.; Blowers, E.C.; Tebbe, C.; Contreras, J.I.; Radhakrishnan, P.; Kizhake, S.; Zhou, T.; Rajule, R.N.; Arnst, J.L.; Munkarah, A.R.; Rattan, R.; Natarajan, A. Isatin derived spirocyclic analogues with α-methylene-γ-butyrolactone as anticancer agents: A structure–activity relationship study. J. Med. Chem., 2016, 59(10), 5121-5127. doi: 10.1021/acs.jmedchem.6b00400 PMID: 27077228
  25. Gao, J.; Fan, M.; Peng, S.; Zhang, M.; Xiang, G.; Li, X.; Guo, W.; Sun, Y.; Wu, X.; Wu, X.; Liang, G.; Shen, Y.; Xu, Q. Small-molecule RL71-triggered excessive autophagic cell death as a potential therapeutic strategy in triple-negative breast cancer. Cell Death Dis., 2017, 8(9), e3049. doi: 10.1038/cddis.2017.444 PMID: 28906486
  26. Wu, J.; Wu, S.; Shi, L.; Zhang, S.; Ren, J.; Yao, S.; Yun, D.; Huang, L.; Wang, J.; Li, W.; Wu, X.; Qiu, P.; Liang, G. Design, synthesis, and evaluation of asymmetric EF24 analogues as potential anti-cancer agents for lung cancer. Eur. J. Med. Chem., 2017, 125, 1321-1331. doi: 10.1016/j.ejmech.2016.10.027 PMID: 27886548
  27. Yu, J.; Li, S.; Qi, J.; Chen, Z.; Wu, Y.; Guo, J.; Wang, K.; Sun, X.; Zheng, J. Cleavage of GSDME by caspase-3 determines lobaplatin-induced pyroptosis in colon cancer cells. Cell Death Dis., 2019, 10(3), 193-213. doi: 10.1038/s41419-019-1441-4 PMID: 30804337
  28. Chio, I.I.C.; Tuveson, D.A. ROS in cancer: The burning question. Trends Mol. Med., 2017, 23(5), 411-429. doi: 10.1016/j.molmed.2017.03.004 PMID: 28427863
  29. Cubillos-Ruiz, J.R.; Mohamed, E.; Rodriguez, P.C. Unfolding anti-tumor immunity: ER stress responses sculpt tolerogenic myeloid cells in cancer. J. Immunother. Cancer, 2017, 5(1), 5-15. doi: 10.1186/s40425-016-0203-4 PMID: 28105371
  30. Cao, Y.; Trillo-Tinoco, J.; Sierra, R.A.; Anadon, C.; Dai, W.; Mohamed, E.; Cen, L.; Costich, T.L.; Magliocco, A.; Marchion, D.; Klar, R.; Michel, S.; Jaschinski, F.; Reich, R.R.; Mehrotra, S.; Cubillos-Ruiz, J.R.; Munn, D.H.; Conejo-Garcia, J.R.; Rodriguez, P.C. ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nat. Commun., 2019, 10(1), 1280-1295. doi: 10.1038/s41467-019-09263-1 PMID: 30894532
  31. Li, Y.; Guo, Y.; Tang, J.; Jiang, J.; Chen, Z. New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim. Biophys. Sin., 2014, 46(8), 629-640. doi: 10.1093/abbs/gmu048 PMID: 25016584
  32. Yang, J.R.; Yao, F.H.; Zhang, J.G.; Ji, Z.Y.; Li, K.L.; Zhan, J.; Tong, Y.N.; Lin, L.R.; He, Y.N. Ischemia-reperfusion induces renal tubule pyroptosis via the CHOP-caspase-11 pathway. Am. J. Physiol. Renal Physiol., 2014, 306(1), F75-F84. doi: 10.1152/ajprenal.00117.2013 PMID: 24133119
  33. Jiang, C.; Jiang, L.; Li, Q.; Liu, X.; Zhang, T.; Dong, L.; Liu, T.; Liu, L.; Hu, G.; Sun, X.; Jiang, L. Acrolein induces NLRP3 inflammasome-mediated pyroptosis and suppresses migration via ROS-dependent autophagy in vascular endothelial cells. Toxicology, 2018, 410, 26-40. doi: 10.1016/j.tox.2018.09.002 PMID: 30205151
  34. Tan, C.C.; Zhang, J.G.; Tan, M.S.; Chen, H.; Meng, D.W.; Jiang, T.; Meng, X.F.; Li, Y.; Sun, Z.; Li, M.M.; Yu, J.T.; Tan, L. NLRP1 inflammasome is activated in patients with medial temporal lobe epilepsy and contributes to neuronal pyroptosis in amygdala kindling-induced rat model. J. Neuroinflammation, 2015, 12(1), 18-30. doi: 10.1186/s12974-014-0233-0 PMID: 25626361
  35. Tan, M-S.; Tan, L.; Jiang, T.; Zhu, X-C.; Wang, H-F.; Jia, C-D.; Yu, J-T. Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer’s disease. Cell Death Dis., 2014, 5(8), e1382. doi: 10.1038/cddis.2014.348 PMID: 25144717
  36. Wang, Y.; Gao, W.; Shi, X.; Ding, J.; Liu, W.; He, H.; Wang, K.; Shao, F. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature, 2017, 547(7661), 99-103. doi: 10.1038/nature22393 PMID: 28459430
  37. Zhu, X.; Wu, T.; Chi, Y.; Ge, Y.; Wu, B.; Zhou, M.; Zhu, F.; Ji, M.; Cui, L. Pyroptosis induced by enterovirus A71 infection in cultured human neuroblastoma cells. Virology, 2018, 521, 69-76. doi: 10.1016/j.virol.2018.05.025 PMID: 29886343
  38. Phang, C.W.; Karsani, S.A.; Sethi, G.; Abd Malek, S.N. Flavokawain C inhibits cell cycle and promotes apoptosis, associated with endoplasmic reticulum stress and regulation of MAPKs and Akt signaling pathways in HCT 116 human colon carcinoma cells. PLoS One, 2016, 11(2), e0148775. doi: 10.1371/journal.pone.0148775 PMID: 26859847
  39. Wang, J.; Qi, Q.; Zhou, W.; Feng, Z.; Huang, B.; Chen, A.; Zhang, D.; Li, W.; Zhang, Q.; Jiang, Z.; Bjerkvig, R.; Prestegarden, L.; Thorsen, F.; Wang, X.; Li, X.; Wang, J. Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress induced autophagy. Autophagy, 2018, 14(11), 2007-2022. doi: 10.1080/15548627.2018.1501133 PMID: 30025493
  40. Ouyang, Y.; Li, J.; Chen, X.; Fu, X.; Sun, S.; Wu, Q. Chalcone derivatives: Role in anticancer therapy. Biomolecules, 2021, 11(6), 894-930. doi: 10.3390/biom11060894 PMID: 34208562
  41. Wang, C.; Chang, J.; Yang, S.; Shi, L.; Zhang, Y.; Liu, W.; Meng, J.; Zeng, J.; Zhang, R.; Xing, D. Advances in antitumor research of CA-4 analogs carrying quinoline scaffold. Front Chem., 2022, 10, 1040333. doi: 10.3389/fchem.2022.1040333 PMID: 36385996
  42. Huang, L.; Liu, M.; Man, S.; Ma, D.; Feng, D.; Sun, Z.; Guan, Q.; Zuo, D.; Wu, Y.; Zhang, W.; Bao, K. Design, synthesis and bio-evaluation of novel 2-aryl-4-(3,4,5-trimethoxy-benzoyl)-5-substituted-1,2,3-triazoles as the tubulin polymerization inhibitors. Eur. J. Med. Chem., 2020, 186, 111846. doi: 10.1016/j.ejmech.2019.111846 PMID: 31740055
  43. Miglioranza Scavuzzi, B.; Holoshitz, J. Endoplasmic reticulum stress, oxidative stress, and rheumatic diseases. Antioxidants, 2022, 11(7), 1306-1325. doi: 10.3390/antiox11071306 PMID: 35883795
  44. Cantoni, O.; Zito, E.; Guidarelli, A.; Fiorani, M.; Ghezzi, P. Mitochondrial ROS, ER stress, and Nrf2 crosstalk in the regulation of mitochondrial apoptosis induced by arsenite. Antioxidants, 2022, 11(5), 1034-1049. doi: 10.3390/antiox11051034 PMID: 35624898

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024