Cancer Pathways Targeted by Berberine: Role of microRNAs
- Authors: Ali M.1, Mishra D.1, Singh R.1
-
Affiliations:
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University
- Issue: Vol 31, No 32 (2024)
- Pages: 5178-5198
- Section: Anti-Infectives and Infectious Diseases
- URL: https://medjrf.com/0929-8673/article/view/645045
- DOI: https://doi.org/10.2174/0109298673275121231228124031
- ID: 645045
Cite item
Full Text
Abstract
:Cancer is a complex and heterogeneous malignant disease. Due to its multifactorial nature, including progressive changes in genetic, epigenetic, transcript, and protein levels, conventional therapeutics fail to save cancer patients. Evidence indicates that dysregulation of microRNA (miRNA) expression plays a crucial role in tumorigenesis, metastasis, cell proliferation, differentiation, metabolism, and signaling pathways. Moreover, miRNAs can be used as diagnostic and prognostic markers and therapeutic targets in cancer. Berberine, a naturally occurring plant alkaloid, has a wide spectrum of biological activities in different types of cancers. Inhibition of cell proliferation, metastasis, migration, invasion, and angiogenesis, as well as induction of cell cycle arrest and apoptosis in cancer cells, is reported by berberine. Recent studies suggested that berberine regulates many oncogenic and tumor suppressor miRNAs implicated in different phases of cancer. This review discussed how berberine inhibits cancer growth and propagation and regulates miRNAs in cancer cells. And how berberine-mediated miRNA regulation changes the landscape of transcripts and proteins that promote or suppress cancer progression. Overall, the underlying molecular pathways altered by berberine and miRNA influencing the tumor pathophysiology will enhance our understanding to combat the malignancy.
Keywords
About the authors
Mansoor Ali
Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University
Email: info@benthamscience.net
Deepali Mishra
Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University
Email: info@benthamscience.net
Rana Singh
Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University
Author for correspondence.
Email: info@benthamscience.net
References
- Pipitò, L.; Illingworth, T.A.; Deganutti, G. Targeting hPKM2 in cancer: A bio isosteric approach for ligand design. Comput. Biol. Med., 2023, 158, 106852. doi: 10.1016/j.compbiomed.2023.106852 PMID: 37044047
- Tompa, A.; Major, J.; Jakab, M.G. Application of UV-Induced Unscheduled DNA-Synthesis Measurements in Human Genotoxicological Risk Assessment; In InTech eBooks, 2011. doi: 10.5772/21021
- Margiana, R.; Markov, A.; Zekiy, A.O.; Hamza, M.U.; Al-Dabbagh, K.A.; Al-Zubaidi, S.H.; Hameed, N.M.; Ahmad, I.; Sivaraman, R.; Kzar, H.H.; Al-Gazally, M.E.; Mustafa, Y.F.; Siahmansouri, H. Clinical application of mesenchymal stem cell in regenerative medicine: A narrative review. Stem Cell Res. Ther., 2022, 13(1), 366. doi: 10.1186/s13287-022-03054-0 PMID: 35902958
- Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; Fluge, Ø.; Pergamenschikov, A.; Williams, C.; Zhu, S.X.; Lønning, P.E.; Børresen-Dale, A.L.; Brown, P.O.; Botstein, D. Molecular portraits of human breast tumours. Nature, 2000, 406(6797), 747-752. doi: 10.1038/35021093 PMID: 10963602
- Mustafa, Y.F. Harmful free radicals in aging: A narrative review of their detrimental effects on health. Indian J. Clin. Biochem., 2023, 1-14. doi: 10.1007/s12291-023-01147-y
- Sørlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Thorsen, T.; Quist, H.; Matese, J.C.; Brown, P.O.; Botstein, D.; Lønning, P.E.; Børresen-Dale, A.L. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci., 2001, 98(19), 10869-10874. doi: 10.1073/pnas.191367098 PMID: 11553815
- Craig, W.J. Nutrition concerns and health effects of vegetarian diets. Nutr. Clin. Pract., 2010, 25(6), 613-620. doi: 10.1177/0884533610385707 PMID: 21139125
- Ranjan, A.; Ramachandran, S.; Gupta, N.; Kaushik, I.; Wright, S.; Srivastava, S.; Das, H.; Srivastava, S.; Prasad, S.; Srivastava, S.K. Role of phytochemicals in cancer prevention. Int. J. Mol. Sci., 2019, 20(20), 4981. doi: 10.3390/ijms20204981 PMID: 31600949
- Mustafa, Y.F.; Ismael, R.N.; Jebir, R.M. Natural coumarins from two cultivars of watermelon seeds as biosafe anticancer agents, an algorithm for their isolation and evaluation. J. Mol. Struct., 2024, 1295, 136644. doi: 10.1016/j.molstruc.2023.136644
- Zhong, X.D.; Chen, L.J.; Xu, X.Y.; Liu, Y.J.; Tao, F.; Zhu, M.H.; Li, C.Y.; Zhao, D.; Yang, G.J.; Chen, J. Berberine as a potential agent for breast cancer therapy. Front. Oncol., 2022, 12, 993775. doi: 10.3389/fonc.2022.993775 PMID: 36119505
- Rauf, A.; Abu-Izneid, T.; Khalil, A.A.; Imran, M.; Shah, Z.A.; Emran, T.B.; Mitra, S.; Khan, Z.; Alhumaydhi, F.A.; Aljohani, A.S.M.; Khan, I.; Rahman, M.M.; Jeandet, P.; Gondal, T.A. Berberine as a potential anticancer agent: A comprehensive review. Molecules, 2021, 26(23), 7368. doi: 10.3390/molecules26237368 PMID: 34885950
- Aghanoori, M.R.; Mirzaei, B.; Tavallaei, M. MiRNA molecular profiles in human medical conditions: Connecting lung cancer and lung development phenomena. Asian Pac. J. Cancer Prev., 2014, 15(22), 9557-9565. doi: 10.7314/APJCP.2014.15.22.9557 PMID: 25520067
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5), 843-854. doi: 10.1016/0092-8674(93)90529-Y PMID: 8252621
- OBrien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol., 2018, 9, 402. doi: 10.3389/fendo.2018.00402 PMID: 30123182
- Cheng, C.W.; Chen, P.M.; Hsieh, Y.H.; Weng, C.C.; Chang, C.W.; Yao, C.C.; Hu, L.Y.; Wu, P.E.; Shen, C.Y. Foxo3a-mediated overexpression of microRNA-622 suppresses tumor metastasis by repressing hypoxia-inducible factor-1α in erk-responsive lung cancer. Oncotarget, 2015, 6(42), 44222-44238. doi: 10.18632/oncotarget.5826 PMID: 26528854
- Hammond, S.M. An overview of microRNAs. Adv. Drug Deliv. Rev., 2015, 87, 3-14. doi: 10.1016/j.addr.2015.05.001 PMID: 25979468
- Huang, L.; Guo, Z.; Wang, F.; Fu, L. KRAS mutation: From undruggable to druggable in cancer. Signal Transduct. Target. Ther., 2021, 6(1), 386. doi: 10.1038/s41392-021-00780-4 PMID: 34776511
- Mokhlis, H.A.; Bayraktar, R.; Kabil, N.N.; Caner, A.; Kahraman, N.; Rodríguez-Aguayo, C.; Zambalde, E.P.; Sheng, J.; Karagoz, K.; Kanlikilicer, P.; Abdel Aziz, A.A.H.; Abdelghany, T.M.; Ashour, A.A.; Wong, S.; Gatza, M.L.; Calin, G.A.; López-Berestein, G.; Özpolat, B. The modulatory role of microRNA-873 in the progression of KRAS-driven cancers. Mol. Ther. Nucleic Acids, 2019, 14, 301-317. doi: 10.1016/j.omtn.2018.11.019 PMID: 30654191
- Warowicka, A.; Nawrot, R.; Goździcka-Józefiak, A. Antiviral activity of berberine. Arch. Virol., 2020, 165(9), 1935-1945. doi: 10.1007/s00705-020-04706-3 PMID: 32594322
- Wang, K.; Zhang, C.; Bao, J.; Jia, X.; Liang, Y.; Wang, X.; Chen, M.; Su, H.; Li, P.; Wan, J.B.; He, C. Synergistic chemopreventive effects of curcumin and berberine on human breast cancer cells through induction of apoptosis and autophagic cell death. Sci. Rep., 2016, 6(1), 26064. doi: 10.1038/srep26064 PMID: 27263652
- Ma, J.; Chan, C.C.; Huang, W.C.; Kuo, M.L. Berberine inhibits pro-inflammatory cytokine-induced IL-6 and CCL11 production via modulation of STAT6 pathway in human bronchial epithelial cells. Int. J. Med. Sci., 2020, 17(10), 1464-1473. doi: 10.7150/ijms.45400 PMID: 32624703
- Gu, W.; Zhang, M.; Gao, F.; Niu, Y.; Sun, L.; Xia, H.; Li, W.; Zhang, Y.; Guo, Z.; Du, G. Berberine regulates PADI4-related macrophage function to prevent lung cancer. Int. Immunopharmacol., 2022, 110, 108965. doi: 10.1016/j.intimp.2022.108965 PMID: 35764017
- Guo, P.; Cai, C.; Wu, X.; Fan, X.; Huang, W.; Zhou, J.; Wu, Q.; Huang, Y.; Zhao, W.; Zhang, F.; Wang, Q.; Zhang, Y.; Fang, J. An insight into the molecular mechanism of berberine towards multiple cancer types through systems pharmacology. Front. Pharmacol., 2019, 10, 857. doi: 10.3389/fphar.2019.00857 PMID: 31447670
- Karnam, K.C.; Ellutla, M.; Bodduluru, L.N.; Kasala, E.R.; Uppulapu, S.K.; Kalyankumarraju, M.; Lahkar, M. Preventive effect of berberine against DMBA-induced breast cancer in female Sprague Dawley rats. Biomed. Pharmacother., 2017, 92, 207-214. doi: 10.1016/j.biopha.2017.05.069 PMID: 28544934
- Cao, H.; Song, S.; Zhang, H.; Zhang, Y.; Qu, R.; Yang, B.; Jing, Y.; Hu, T.; Yan, F.; Wang, B. Chemopreventive effects of berberine on intestinal tumor development in Apc min/+mice. BMC Gastroenterol., 2013, 13(1), 163. doi: 10.1186/1471-230X-13-163 PMID: 24279644
- He, B.; Yang, Q.; Mu, Y.; Zhou, L.; Liu, Y.; Zhou, Q.; He, B. Berberine inhibits the proliferation of colon cancer cells by inactivating Wnt/β-catenin signaling. Int. J. Oncol., 2012, 41(1), 292-298. doi: 10.3892/ijo.2012.1423 PMID: 22469784
- Zhu, Y.; Xie, N.; Chai, Y.; Nie, Y.; Liu, K.; Liu, Y.; Yang, Y.; Su, J.; Zhang, C. Apoptosis induction, a sharp edge of berberine to exert anti-cancer effects, focus on breast, lung, and liver cancer. Front. Pharmacol., 2022, 13, 803717. doi: 10.3389/fphar.2022.803717 PMID: 35153781
- Ni, L.; Li, Z.; Ren, H.; Kong, L.; Chen, X.; Xiong, M.; Zhang, X.; Ning, B.; Li, J. Berberine inhibits non-small cell lung cancer cell growth through repressing DNA repair and replication rather than through apoptosis. Clin. Exp. Pharmacol. Physiol., 2022, 49(1), 134-144. doi: 10.1111/1440-1681.13582 PMID: 34448246
- Jain, V.; Singh, M.P.; Amaravadi, R.K. Recent advances in targeting autophagy in cancer. Trends Pharmacol. Sci., 2023, 44(5), 290-302. doi: 10.1016/j.tips.2023.02.003 PMID: 36931971
- Wang, Y.; Liu, Y.; Du, X.; Ma, H.; Yao, J. The anti-cancer mechanisms of berberine: A review. Cancer Manag. Res., 2020, 12, 695-702. doi: 10.2147/CMAR.S242329 PMID: 32099466
- Li, G.; Zhang, C.; Liang, W.; Zhang, Y.; Shen, Y.; Tian, X. Berberine regulates the Notch1/PTEN/PI3K/AKT/mTOR pathway and acts synergistically with 17-AAG and SAHA in SW480 colon cancer cells. Pharm. Biol., 2021, 59(1), 21-30. doi: 10.1080/13880209.2020.1865407 PMID: 33417512
- Liu, Y.; Hua, W.; Li, Y.; Xian, X.; Zhao, Z.; Liu, C.; Zou, J.; Li, J.; Fang, X.; Zhu, Y. Berberine suppresses colon cancer cell proliferation by inhibiting the SCAP/SREBP-1 signaling pathway-mediated lipogenesis. Biochem. Pharmacol., 2020, 174, 113776. doi: 10.1016/j.bcp.2019.113776 PMID: 31874145
- El Khalki, L.; Maire, V.; Dubois, T.; Zyad, A. Berberine impairs the survival of triple negative breast cancer cells: cellular and molecular analyses. Molecules, 2020, 25(3), 506. doi: 10.3390/molecules25030506 PMID: 31991634
- Tak, J.; Sabarwal, A.; Shyanti, R.K.; Singh, R.P. Berberine enhances posttranslational protein stability of p21/cip1 in breast cancer cells via down-regulation of Akt. Mol. Cell. Biochem., 2019, 458(1-2), 49-59. doi: 10.1007/s11010-019-03529-4 PMID: 30911957
- Sakaguchi, M.; Kitaguchi, D.; Morinami, S.; Kurashiki, Y.; Hashida, H.; Miyata, S.; Yamaguchi, M.; Sakai, M.; Murata, N.; Tanaka, S. Berberine-induced nucleolar stress response in a human breast cancer cell line. Biochem. Biophys. Res. Commun., 2020, 528(1), 227-233. doi: 10.1016/j.bbrc.2020.05.020 PMID: 32475643
- Yao, M.; Fan, X.; Yuan, B.; Takagi, N.; Liu, S.; Han, X.; Ren, J.; Liu, J. Berberine inhibits NLRP3 Inflammasome pathway in human triple-negative breast cancer MDA-MB-231 cell. BMC Complement. Altern. Med., 2019, 19(1), 216. doi: 10.1186/s12906-019-2615-4 PMID: 31412862
- Zhang, C.; Sheng, J.; Li, G.; Zhao, L.; Wang, Y.; Yang, W.; Yao, X.; Sun, L.; Zhang, Z.; Cui, R. Effects of berberine and its derivatives on cancer: A systems pharmacology review. Front. Pharmacol., 2020, 10, 1461. doi: 10.3389/fphar.2019.01461 PMID: 32009943
- Park, K.S.; Kim, J.B.; Bae, J.; Park, S.Y.; Jee, H.G.; Lee, K.E.; Youn, Y.K. Berberine inhibited the growth of thyroid cancer cell lines 8505C and TPC1. Yonsei Med. J., 2012, 53(2), 346-351. doi: 10.3349/ymj.2012.53.2.346 PMID: 22318822
- Liu, J.; Luo, X.; Guo, R.; Jing, W.; Lü, H. Cell metabolomics reveals berberine-inhibited pancreatic cancer cell viability and metastasis by regulating citrate metabolism. J. Proteome Res., 2020, 19(9), 3825-3836. doi: 10.1021/acs.jproteome.0c00394 PMID: 32692565
- Tian, W.; Hao, H.; Chu, M.; Gong, J.; Li, W.; Fang, Y.; Zhang, J.; Zhang, C.; Huang, Y.; Pei, F.; Duan, L. Berberine suppresses lung metastasis of cancer via inhibiting endothelial transforming growth factor beta receptor 1. Front. Pharmacol., 2022, 13, 917827. doi: 10.3389/fphar.2022.917827 PMID: 35784732
- Qian, K.; Tang, C.; Chen, L.; Zheng, S.; Zhao, Y.; Ma, L.; Xu, L.; Fan, L.; Yu, J.; Tan, H.; Sun, Y.; Shen, L.; Lu, Y.; Liu, Q.; Liu, Y.; Xiong, Y. Berberine reverses breast cancer multidrug resistance based on fluorescence pharmacokinetics in vitro and in vivo. ACS Omega, 2021, 6(16), 10645-10654. doi: 10.1021/acsomega.0c06288 PMID: 34056218
- Walcher, L.; Kistenmacher, A.K.; Suo, H.; Kitte, R.; Dluczek, S.; Strauß, A.; Blaudszun, A.R.; Yevsa, T.; Fricke, S.; Kossatz-Boehlert, U. Cancer stem cellsorigins and biomarkers: Perspectives for targeted personalized therapies. Front. Immunol., 2020, 11, 1280. doi: 10.3389/fimmu.2020.01280 PMID: 32849491
- Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer, 2005, 5(4), 275-284. doi: 10.1038/nrc1590 PMID: 15803154
- Singh, A.; Settleman, J. EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene, 2010, 29(34), 4741-4751. doi: 10.1038/onc.2010.215 PMID: 20531305
- Zhao, Z.; Zeng, J.; Guo, Q.; Pu, K.; Yang, Y.; Chen, N.; Zhang, G.; Zhao, M.; Zheng, Q.; Tang, J.; Hu, Q. Berberine suppresses stemness and tumorigenicity of colorectal cancer stem-like cells by inhibiting m6A methylation. Front. Oncol., 2021, 11, 775418. doi: 10.3389/fonc.2021.775418 PMID: 34869024
- Aravindan, N.; Jain, D.; Somasundaram, D.B.; Herman, S.; Aravindan, S. Cancer stem cells in neuroblastoma therapy resistance. Cancer Drug Resist., 2019, 2(4), 948-967. doi: 10.20517/cdr.2019.72 PMID: 31867574
- Cognetti, F.; Bazzichetto, C.; Falcone, I.; Ferretti, G.; Cognetti, F.; Milella, M.; Ciuffreda, L. Colorectal cancer stem cells properties and features: Evidence of interleukin-8 involvement. Cancer Drug Resist., 2019, 2(4), 968-979. doi: 10.20517/cdr.2019.56
- Naveen, C.R.; Gaikwad, S.; Agrawal-Rajput, R. Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cells. Phytomedicine, 2016, 23(7), 736-744. doi: 10.1016/j.phymed.2016.03.013 PMID: 27235712
- Faller, M.; Guo, F. MicroRNA biogenesis: Theres more than one way to skin a cat. Biochim. Biophys. Acta. Gene Regul. Mech., 2008, 1779(11), 663-667. doi: 10.1016/j.bbagrm.2008.08.005 PMID: 18778799
- Lee, Y.; Kim, M.; Han, J.; Yeom, K.H.; Lee, S.; Baek, S.H.; Kim, V.N. MicroRNA genes are transcribed by RNA polymerase II. EMBO J., 2004, 23(20), 4051-4060. doi: 10.1038/sj.emboj.7600385 PMID: 15372072
- Macfarlane, L.A.; Murphy, P.R. MicroRNA: Biogenesis, function and role in cancer. Curr. Genomics, 2010, 11(7), 537-561. doi: 10.2174/138920210793175895 PMID: 21532838
- Gregory, R.I.; Yan, K.; Amuthan, G.; Chendrimada, T.; Doratotaj, B.; Cooch, N.; Shiekhattar, R. The Microprocessor complex mediates the genesis of microRNAs. Nature, 2004, 432(7014), 235-240. doi: 10.1038/nature03120 PMID: 15531877
- Okamura, K.; Hagen, J.W.; Duan, H.; Tyler, D.M.; Lai, E.C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell, 2007, 130(1), 89-100. doi: 10.1016/j.cell.2007.06.028 PMID: 17599402
- Liu, J.; Zhou, F.; Guan, Y.; Meng, F.; Zhao, Z.; Su, Q.; Bao, W.; Wang, X.; Zhao, J.; Huo, Z.; Zhang, L.; Zhou, S.; Chen, Y.; Wang, X. The biogenesis of miRNAs and their role in the development of amyotrophic lateral sclerosis. Cells, 2022, 11(3), 572. doi: 10.3390/cells11030572 PMID: 35159383
- Nakanishi, K. Anatomy of RISC : how do small RNAS and chaperones activate Argonaute proteins? Wiley Interdiscip. Rev. RNA, 2016, 7(5), 637-660. doi: 10.1002/wrna.1356 PMID: 27184117
- Wang, Z.; Li, Y.; Kong, D.; Ahmad, A.; Banerjee, S.; Sarkar, F.H. Cross-talk between miRNA and Notch signaling pathways in tumor development and progression. Cancer Lett., 2010, 292(2), 141-148. doi: 10.1016/j.canlet.2009.11.012 PMID: 20022691
- Abolfathi, H.; Arabi, M.; Sheikhpour, M. A literature review of microRNA and gene signaling pathways involved in the apoptosis pathway of lung cancer. Respir. Res., 2023, 24(1), 55. doi: 10.1186/s12931-023-02366-w PMID: 36800962
- Zhan, M.N.; Yu, X.T.; Tang, J.; Zhou, C.X.; Wang, C.L.; Yin, Q.Q.; Gong, X.F.; He, M.; He, J.R.; Chen, G.Q.; Zhao, Q. MicroRNA-494 inhibits breast cancer progression by directly targeting PAK1. Cell Death Dis., 2017, 8(1), e2529. doi: 10.1038/cddis.2016.440 PMID: 28055013
- Hy, L.; Yy, Z.; Bl, Z.; Fz, F. H, Y.; Hy, Z.; Zhou, B. miR-21 regulates the proliferation and apoptosis of ovarian cancer cells through PTEN/PI3K/AKT. PubMed, 2019, 23(10), 4149-4155. doi: 10.26355/eurrev_201905_17917
- Zhou, H.; Liu, H.; Jiang, M.; Zhang, S.; Chen, J.; Fan, X. Targeting MicroRNA-21 suppresses gastric cancer cell proliferation and migration via PTEN/Akt signaling axis. Cell Transplant., 2019, 28(3), 306-317. doi: 10.1177/0963689719825573 PMID: 30700111
- Egorova, O.; Lau, H.H.C.; McGraphery, K.; Sheng, Y. Mdm2 and MdmX RING domains play distinct roles in the regulation of p53 responses: A comparative study of Mdm2 and MdmX RING Domains in U2OS Cells. Int. J. Mol. Sci., 2020, 21(4), 1309. doi: 10.3390/ijms21041309 PMID: 32075226
- Li, H.; Wang, Z.; Jiang, M.; Fang, R.; Shi, H.; Shen, Y.; Cai, X.; Liu, Q.; Ye, K.; Fan, S.; Zhang, W.; Ye, L. The oncoprotein HBXIP promotes human breast cancer growth through down-regulating p53 via miR-18b/MDM2 and pAKT/MDM2 pathways. Acta Pharmacol. Sin., 2018, 39(11), 1787-1796. doi: 10.1038/s41401-018-0034-6 PMID: 30181579
- Lessard, L.; Stuible, M.; Tremblay, M.L. The two faces of PTP1B in cancer. Biochim. Biophys. Acta. Proteins Proteomics, 2010, 1804(3), 613-619. doi: 10.1016/j.bbapap.2009.09.018 PMID: 19782770
- Xu, X.; Tao, Y.; Niu, Y.; Wang, Z.; Zhang, C.; Yu, Y.; Ma, L. miR-125a-5p inhibits tumorigenesis in hepatocellular carcinoma. Aging, 2019, 11(18), 7639-7662. doi: 10.18632/aging.102276 PMID: 31527306
- Charalambous, M.P.; Lightfoot, T.; Speirs, V.; Horgan, K.; Gooderham, N.J. Expression of COX-2, NF-κB-p65, NF-κB-p50 and IKKα in malignant and adjacent normal human colorectal tissue. Br. J. Cancer, 2009, 101(1), 106-115. doi: 10.1038/sj.bjc.6605120 PMID: 19513071
- Li, B.; Lü, Y.; Yu, L.; Han, X.; Wang, H.; Mao, J.; Shen, J.; Wang, B.; Tang, J.; Li, C.; Song, B. miR-221/222 promote cancer stem-like cell properties and tumor growth of breast cancer via targeting PTEN and sustained Akt/NF-κB/COX-2 activation. Chem. Biol. Interact., 2017, 277, 33-42. doi: 10.1016/j.cbi.2017.08.014 PMID: 28844858
- Minami, A.; Nakanishi, A.; Ogura, Y.; Kitagishi, Y.; Matsuda, S. Connection between tumor suppressor BRCA1 and PTEN in damaged DNA repair. Front. Oncol., 2014, 4, 318. doi: 10.3389/fonc.2014.00318 PMID: 25426449
- Chehade, R.; Pettapiece-Phillips, R.; Salmena, L.; Kotlyar, M.; Juriica, I.; Narod, S.A.; Akbari, M.R.; Kotsopoulos, J. Reduced BRCA1 transcript levels in freshly isolated blood leukocytes from BRCA1 mutation carriers is mutation specific. Breast Cancer Res., 2016, 18(1), 87. doi: 10.1186/s13058-016-0739-8 PMID: 27534398
- Matamala, N.; Vargas, M.T.; González-Cámpora, R.; Arias, J.I.; Menéndez, P.; Andrés-León, E.; Yanowsky, K.; Llaneza-Folgueras, A.; Miñambres, R.; Martínez-Delgado, B.; Benítez, J. MicroRNA deregulation in triple negative breast cancer reveals a role of miR-498 in regulating BRCA1 expression. Oncotarget, 2016, 7(15), 20068-20079. doi: 10.18632/oncotarget.7705 PMID: 26933805
- Kazanets, A.; Shorstova, T.; Hilmi, K.; Marques, M.; Witcher, M. Epigenetic silencing of tumor suppressor genes: Paradigms, puzzles, and potential. Biochim. Biophys. Acta Rev. Cancer, 2016, 1865(2), 275-288. doi: 10.1016/j.bbcan.2016.04.001 PMID: 27085853
- Zhang, H.; Sun, P.; Wang, Y-L.; Yu, X.F.; Tong, J.J. MiR-214 promotes proliferation and inhibits apoptosis of oral cancer cells through MAPK/ERK signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(7), 3710-3716. PMID: 32329847
- Saxton, R.A.; Sabatini, D.M. mTOR signaling in growth, metabolism, and disease. Cell, 2017, 168(6), 960-976. doi: 10.1016/j.cell.2017.02.004 PMID: 28283069
- Razaviyan, J.; Hadavi, R.; Tavakoli, R.; Kamani, F.; Paknejad, M.; Mohammadi-Yeganeh, S. Expression of miRNAs targeting mTOR and S6K1 genes of mTOR signaling pathway including miR-96, miR-557, and miR-3182 in triple-negative breast cancer. Appl. Biochem. Biotechnol., 2018, 186(4), 1074-1089. doi: 10.1007/s12010-018-2773-8 PMID: 29862445
- Chang, D.L.F.; Wei, W.; Yu, Z.P.; Qin, C.K. miR-152-5p inhibits proliferation and induces apoptosis of liver cancer cells by up-regulating FOXO expression. Pharmazie, 2017, 72(6), 338-343. doi: 10.1691/ph.2017.7406 PMID: 29442022
- Yeh, T.C.; Huang, T.T.; Yeh, T.S.; Chen, Y.R.; Hsu, K.W.; Yin, P.H.; Lee, H.C.; Tseng, L.M. miR-151-3p Targets TWIST1 to repress migration of human breast cancer cells. PLoS One, 2016, 11(12), e0168171. doi: 10.1371/journal.pone.0168171 PMID: 27930738
- Pastorino, R.; Sassano, M.; Danilo Tiziano, F.; Giraldi, L.; Amore, R.; Arzani, D.; Abiusi, E.; Ahrens, W.; Vilches, L.A.; Canova, C.; Healy, C.M.; Holcátová, I.; Lagiou, P.; Polesel, J.; Popović, M.; Nygård, S.; Cadoni, G.; Znaor, A.; Boffetta, P.; Matsuo, K.; Oze, I.; Brennan, P.; Boccia, S. Plasma miR-151-3p as a candidate diagnostic biomarker for head and neck cancer: A cross-sectional study within the inhance consortium. Cancer Epidemiol. Biomarkers Prev., 2022, 31(12), 2237-2243. doi: 10.1158/1055-9965.EPI-22-0376 PMID: 36126276
- MacDonald, B.T.; Tamai, K.; He, X. Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Dev. Cell, 2009, 17(1), 9-26. doi: 10.1016/j.devcel.2009.06.016 PMID: 19619488
- Tan, Z.; Zheng, H.; Liu, X.; Zhang, W.; Zhu, J.; Wu, G.; Cao, L.; Song, J.; Wu, S.; Song, L.; Li, J. MicroRNA-1229 overexpression promotes cell proliferation and tumorigenicity and activates Wnt/β-catenin signaling in breast cancer. Oncotarget, 2016, 7(17), 24076-24087. doi: 10.18632/oncotarget.8119 PMID: 26992223
- Ge, S.; Wang, D.; Kong, Q.; Gao, W.; Sun, J. Function of miR-152 as a tumor suppressor in human breast cancer by targeting PIK3CA. Oncol. Res., 2017, 25(8), 1363-1371. doi: 10.3727/096504017X14878536973557 PMID: 28247844
- Guo, Y.; Ying, L.; Tian, Y.; Yang, P.; Zhu, Y.; Wang, Z.; Qiu, F.; Lin, J. miR-144 downregulation increases bladder cancer cell proliferation by targeting EZH 2 and regulating Wnt signaling. FEBS J., 2013, 280(18), 4531-4538. doi: 10.1111/febs.12417 PMID: 23815091
- Sheng, S.; Xie, L.; Wu, Y.; Ding, M.; Zhang, T.; Wang, X. MiR-144 inhibits growth and metastasis in colon cancer by down-regulating SMAD4. Biosci. Rep., 2019, 39(3), BSR20181895. doi: 10.1042/BSR20181895 PMID: 30745456
- Li, B.; Ding, C.M.; Li, Y.X.; Peng, J.C.; Geng, N.; Qin, W.W. MicroRNA-145 inhibits migration and induces apoptosis in human non-small cell lung cancer cells through regulation of the EGFR/PI3K/AKT signaling pathway. Oncol. Rep., 2018, 40(5), 2944-2954. doi: 10.3892/or.2018.6666 PMID: 30226581
- Phuah, N.H.; Nagoor, N.H. Regulation of microRNAs by natural agents: New strategies in cancer therapies. BioMed Res. Int., 2014, 2014, 1-17. doi: 10.1155/2014/804510 PMID: 25254214
- Zheng, F.; Li, J.; Ma, C.; Tang, X.; Tang, Q.; Wu, J.; Chai, X.; Xie, J.; Yang, X.; Hann, S.S. Novel regulation of miR-34a-5p and HOTAIR by the combination of berberine and gefitinib leading to inhibition of EMT in human lung cancer. J. Cell. Mol. Med., 2020, 24(10), 5578-5592. doi: 10.1111/jcmm.15214 PMID: 32248643
- Chen, Q.; Shi, J.; Ding, Z.; Xia, Q.; Zheng, T.; Ren, Y.; Li, M.; Fan, L. Berberine induces apoptosis in non-small-cell lung cancer cells by upregulating miR-19a targeting tissue factor. Cancer Manag. Res., 2019, 11, 9005-9015. doi: 10.2147/CMAR.S207677 PMID: 31695492
- Chen, S.; Li, P.; Li, J.; Wang, Y.; Du, Y.; Chen, X.; Zang, W.; Wang, H.; Chu, H.; Zhao, G.; Zhang, G. MiR-144 inhibits proliferation and induces apoptosis and autophagy in lung cancer cells by targeting TIGAR. Cell. Physiol. Biochem., 2015, 35(3), 997-1007. doi: 10.1159/000369755 PMID: 25660220
- Gao, Z.; Tan, C. Y.; Sha, R. Berberine promotes a549 cell apoptosis and autophagy via MIR-144. Natural Product Communications, 2022, 17(9) doi: 10.1177/1934578X221124752
- Zhu, C.; Li, J.; Hua, Y.; Wang, J.; Wang, K.; Sun, J. Berberine inhibits the expression of sct through mir-214-3p stimulation in breast cancer cells. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-13. doi: 10.1155/2020/2817147 PMID: 33312221
- Lo, S.N.; Wang, C.W.; Chen, Y.S.; Huang, C.C.; Wu, T.S.; Li, L.A.; Lee, I.J.; Ueng, Y.F. Berberine activates aryl hydrocarbon receptor but suppresses CYP1A1 induction through miR-21-3p stimulation in MCF-7 breast cancer cells. Molecules, 2017, 22(11), 1847. doi: 10.3390/molecules22111847 PMID: 29143794
- Hashemi- Niasari, F.; Rabbani-Chadegani, A.; Razmi, M.; Fallah, S. Synergy of theophylline reduces necrotic effect of berberine, induces cell cycle arrest and PARP, HMGB1, Bcl-2 family mediated apoptosis in MDA-MB-231 breast cancer cells. Biomed. Pharmacother., 2018, 106, 858-867. doi: 10.1016/j.biopha.2018.07.019 PMID: 30119256
- Ebeid, S. A.; Moneim, N. a. A. E.; Ghoneim, H.; El-Benhawy, S. A.; Ismail, S. E. Combination of doxorubicin and berberine generated synergistic anticancer effect on breast cancer cells through down-regulation of NANOG and MIRNA-21 gene expression. DOAJ, 2020, 11(3), 273-285. doi: 10.30476/mejc.2019.81277.0
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers, 2021, 7(1), 6. doi: 10.1038/s41572-020-00240-3 PMID: 33479224
- Li, C.H.; Tang, S.C.; Wong, C.H.; Wang, Y.; Jiang, J.; Chen, Y. Berberine induces miR-373 expression in hepatocytes to inactivate hepatic steatosis associated AKT-S6 kinase pathway. Eur. J. Pharmacol., 2018, 825, 107-118. doi: 10.1016/j.ejphar.2018.02.035 PMID: 29477657
- Chen, J.; Wu, F.X.; Luo, H.L.; Liu, J-J.; Luo, T.; Bai, T.; Li, L.Q.; Fan, X.H. Berberine upregulates miR-22-3p to suppress hepatocellular carcinoma cell proliferation by targeting Sp1. Am. J. Transl. Res., 2016, 8(11), 4932-4941. PMID: 27904693
- Wei, S.; Zhang, M.; Yu, Y.; Lan, X.; Yao, F.; Yan, X.; Chen, L.; Hatch, G.M. Berberine attenuates development of the hepatic gluconeogenesis and lipid metabolism disorder in type 2 diabetic mice and in palmitate-incubated HepG2 cells through suppression of the HNF-4α miR122 pathway. PLoS One, 2016, 11(3), e0152097. doi: 10.1371/journal.pone.0152097 PMID: 27011261
- Wang, N.; Zhu, M.; Wang, X.; Tan, H.Y.; Tsao, S.; Feng, Y. Berberine-induced tumor suppressor p53 up-regulation gets involved in the regulatory network of MIR-23a in hepatocellular carcinoma. Biochim. Biophys. Acta. Gene Regul. Mech., 2014, 1839(9), 849-857. doi: 10.1016/j.bbagrm.2014.05.027 PMID: 24942805
- Lo, T.F.; Tsai, W.C.; Chen, S.T. MicroRNA-21-3p, a berberine-induced miRNA, directly down-regulates human methionine adenosyltransferases 2A and 2B and inhibits hepatoma cell growth. PLoS One, 2013, 8(9), e75628. doi: 10.1371/journal.pone.0075628 PMID: 24098708
- Hong, Y.; Ye, M.; Wang, F.; Fang, J.; Wang, C.; Luo, J.; Liu, J.; Liu, J.; Liu, L.; Zhao, Q.; Chang, Y. MiR-21-3p promotes hepatocellular carcinoma progression via SMAD7/YAP1 regulation. Front. Oncol., 2021, 11, 642030. doi: 10.3389/fonc.2021.642030 PMID: 33763375
- Yan, S.; Chang, J.; Hao, X.; Liu, J.; Tan, X.; Geng, Z.; Wang, Z. Berberine regulates short-chain fatty acid metabolism and alleviates the colitis-associated colorectal tumorigenesis through remodeling intestinal flora. Phytomedicine, 2022, 102, 154217. doi: 10.1016/j.phymed.2022.154217 PMID: 35660350
- Lü, Y.; Han, B.; Yu, H.; Cui, Z.; Li, Z.; Wang, J. Berberine regulates the microRNA-21-ITGΒ4-PDCD4 axis and inhibits colon cancer viability. Oncol. Lett., 2018, 15(4), 5971-5976. doi: 10.3892/ol.2018.7997 PMID: 29564000
- Huang, C.; Liu, H.; Gong, X.L.; Wu, L.Y.; Wen, B. Effect of evodiamine and berberine on the interaction between DNMTs and target microRNAs during malignant transformation of the colon by TGF-β1. Oncol. Rep., 2017, 37(3), 1637-1645. doi: 10.3892/or.2017.5379 PMID: 28098901
- Wen, B.; Huang, C.; Wu, L.; Liu, H. Effect of evodiamine and berberine on miR-429 as an oncogene in human colorectal cancer. OncoTargets Ther., 2016, 9, 4121-4127. doi: 10.2147/OTT.S104729 PMID: 27462166
- Ling, Q.; Fang, J.; Zhai, C.; Huang, W.; Chen, Y.; Zhou, T.; Liu, Y.; Fang, X. Berberine induces SOCS1 pathway to reprogram the M1 polarization of macrophages via miR-1555p in colitis-associated colorectal cancer. Eur. J. Pharmacol., 2023, 949, 175724. doi: 10.1016/j.ejphar.2023.175724 PMID: 37059377
- Lee, K.H.; Lin, F.C.; Hsu, T.I.; Lin, J.T.; Guo, J.H.; Tsai, C.H.; Lee, Y.C.; Lee, Y.C.; Chen, C.L.; Hsiao, M.; Lu, P.J. MicroRNA-296-5p (miR-296-5p) functions as a tumor suppressor in prostate cancer by directly targeting Pin1. Biochim. Biophys. Acta Mol. Cell Res., 2014, 1843(9), 2055-2066. doi: 10.1016/j.bbamcr.2014.06.001 PMID: 24915000
- Hallajzadeh, J.; Maleki Dana, P.; Mobini, M.; Asemi, Z.; Mansournia, M.A.; Sharifi, M.; Yousefi, B. Targeting of oncogenic signaling pathways by berberine for treatment of colorectal cancer. Med. Oncol., 2020, 37(6), 49. doi: 10.1007/s12032-020-01367-9 PMID: 32303850
- Jiang, Z.; Zhang, Y.; Zhang, Y.; Jia, Z.; Zhang, Z.; Yang, J. Cancer derived exosomes induce macrophages immunosuppressive polarization to promote bladder cancer progression. Cell Commun. Signal., 2021, 19(1), 93. doi: 10.1186/s12964-021-00768-1 PMID: 34521440
- Chen, C.L.; Cen, L.; Kohout, J.; Hutzen, B.; Chan, C.; Hsieh, F.C.; Loy, A.; Huang, V.; Cheng, G.; Lin, J. Signal transducer and activator of transcription 3 activation is associated with bladder cancer cell growth and survival. Mol. Cancer, 2008, 7(1), 78. doi: 10.1186/1476-4598-7-78 PMID: 18939995
- Qureshy, Z.; Johnson, D.E.; Grandis, J.R. Targeting the JAK/STAT pathway in solid tumors. J. Cancer Metastasis Treat., 2020, 2020, 27. doi: 10.20517/2394-4722.2020.58 PMID: 33521321
- Xia, Y.; Chen, S.; Cui, J.; Wang, Y.; Liu, X.; Shen, Y.; Gong, L.; Jiang, X.; Wang, W.; Zhu, Y.; Sun, S.; Li, J.; Zou, Y.; Shi, B. Berberine suppresses bladder cancer cell proliferation by inhibiting JAK1-STAT3 signaling via upregulation of miR-17-5p. Biochem. Pharmacol., 2021, 188, 114575. doi: 10.1016/j.bcp.2021.114575 PMID: 33887260
- Cardona-Mendoza, A.; Olivares-Niño, G.; Díaz-Báez, D.; Lafaurie, G.I.; Perdomo, S.J. Chemopreventive and anti-tumor potential of natural products in oral cancer. Nutr. Cancer, 2022, 74(3), 779-795. doi: 10.1080/01635581.2021.1931698 PMID: 34100309
- Solomon, M.C.; Radhakrishnan, R.A. MicroRNAs The vibrant performers in the oral cancer scenario. Jpn. Dent. Sci. Rev., 2020, 56(1), 85-89. doi: 10.1016/j.jdsr.2020.04.001 PMID: 32612717
- Zheng, G.; Li, N.; Jia, X.; Peng, C.; Luo, L.; Deng, Y.; Yin, J.; Song, Y.; Líu, H.; Lu, M.; Zhang, Z.; Gu, Y.; He, Z. MYCN-mediated miR-21 overexpression enhances chemo-resistance via targeting CADM1 in tongue cancer. J. Mol. Med., 2016, 94(10), 1129-1141. doi: 10.1007/s00109-016-1417-0 PMID: 27055844
- Lin, C.Y.; Hsieh, P.L.; Liao, Y.W.; Peng, C.Y.; Lu, M.Y.; Yang, C.H.; Yu, C.C.; Liu, C.M. Berberine-targeted miR-21 chemosensitizes oral carcinomas stem cells. Oncotarget, 2017, 8(46), 80900-80908. doi: 10.18632/oncotarget.20723 PMID: 29113353
- Aleissa, M.S.; AL-Zharani, M.; Alneghery, L.M.; Aleissa, A.M. Berberine enhances the sensitivity of radiotherapy in ovarian cancer cell line (SKOV-3). Saudi Pharm. J., 2023, 31(1), 110-118. doi: 10.1016/j.jsps.2022.11.009 PMID: 36685297
- Liberti, M.V.; Locasale, J.W. The warburg effect: How does it benefit cancer cells? Trends Biochem. Sci., 2016, 41(3), 211-218. doi: 10.1016/j.tibs.2015.12.001 PMID: 26778478
- Xu, X.D.; Shao, S.X.; Jiang, H.P.; Cao, Y.W.; Wang, Y.H.; Yang, X.C.; Wang, Y.L.; Wang, X.S.; Niu, H.T. Warburg effect or reverse Warburg effect? A review of cancer metabolism. Oncol. Res. Treat., 2015, 38(3), 117-122. doi: 10.1159/000375435 PMID: 25792083
- Li, J.; Zou, Y.; Pei, M.; Zhang, Y.; Jiang, Y. Berberine inhibits the Warburg effect through TET3/miR-145/HK2 pathways in ovarian cancer cells. J. Cancer, 2021, 12(1), 207-216. doi: 10.7150/jca.48896 PMID: 33391417
- Chen, Q.; Qin, R.; Fang, Y.; Li, H. Berberine sensitizes human ovarian cancer cells to cisplatin through miR-93/PTEN/Akt signaling pathway. Cell. Physiol. Biochem., 2015, 36(3), 956-965. doi: 10.1159/000430270 PMID: 26087719
- Li, J.; Zhang, S.; Wu, L.; Pei, M.; Jiang, Y. Berberine inhibited metastasis through miR-145/MMP16 axis in vitro. J. Ovarian Res., 2021, 14(1), 4. doi: 10.1186/s13048-020-00752-2 PMID: 33407764
- Matsuhashi, S.; Manirujjaman, M.; Hamajima, H.; Ozaki, I. Control mechanisms of the tumor suppressor PDCD4: Expression and functions. Int. J. Mol. Sci., 2019, 20(9), 2304. doi: 10.3390/ijms20092304 PMID: 31075975
- Liu, S.; Fang, Y.; Shen, H.; Xu, W.; Li, H. Berberine sensitizes ovarian cancer cells to cisplatin through miR-21/PDCD4 axis. Acta Biochim. Biophys. Sin., 2013, 45(9), 756-762. doi: 10.1093/abbs/gmt075 PMID: 23824073
- Liu, Q.; Tang, J.; Chen, S.; Hu, S.; Shen, C.; Xiang, J.; Chen, N.; Wang, J.; Ma, X.; Zhang, Y.; Zeng, J. Berberine for gastric cancer prevention and treatment: Multi-step actions on the Correas cascade underlie its therapeutic effects. Pharmacol. Res., 2022, 184, 106440. doi: 10.1016/j.phrs.2022.106440 PMID: 36108874
- Li, X.; Ren, C.; Huang, A.; Zhao, Y.; Wang, L.; Shen, H.; Gao, C.; Chen, B.; Zhu, T.; Xiong, J.; Zhu, D.; Huang, Y.; Ding, J.; Yuan, Z.; Ding, W.; Wang, H. PIBF1 regulates multiple gene expression via impeding long-range chromatin interaction to drive the malignant transformation of HPV16 integration epithelial cells. J. Adv. Res., 2023, 585, 1-20. doi: 10.1016/j.jare.2023.04.015 PMID: 37182685
- Sasaki, T.; Kuniyasu, H. Significance of AKT in gastric cancer (Review). Int. J. Oncol., 2014, 45(6), 2187-2192. doi: 10.3892/ijo.2014.2678 PMID: 25270272
- You, H.Y.; Xie, X.M.; Zhang, W.J.; Zhu, H.L.; Jiang, F.Z. Berberine modulates cisplatin sensitivity of human gastric cancer cells by upregulation of miR-203. In vitro Cell. Dev. Biol. Anim., 2016, 52(8), 857-863. doi: 10.1007/s11626-016-0044-y PMID: 27142767
- Calvani, M.; Subbiani, A.; Bruno, G.; Favre, C. Beta-Blockers and berberine: A possible dual approach to contrast neuroblastoma growth and progression. Oxid. Med. Cell. Longev., 2020, 2020, 1-11. doi: 10.1155/2020/7534693 PMID: 32855766
- Dong, X.; Nao, J. Relationship between the therapeutic potential of various plant-derived bioactive compounds and their related microRNAs in neurological disorders. Phytomedicine, 2023, 108, 154501. doi: 10.1016/j.phymed.2022.154501 PMID: 36368284
- Li, X.; Su, Y.; Li, N.; Zhang, F.R.; Zhang, N. Berberine attenuates MPP+-induced neuronal injury by regulating LINC00943/miR-142-5p/KPNA4/NF-κB pathway in SK-N-SH cells. Neurochem. Res., 2021, 46(12), 3286-3300. doi: 10.1007/s11064-021-03431-w PMID: 34427876
- Abdelmaksoud, N.M.; El-Mahdy, H.A.; Ismail, A.; Elsakka, E.G.E.; El-Husseiny, A.A.; Khidr, E.G.; Ali, E.M.; Rashed, M.H.; El-Demerdash, F.E.S.; Doghish, A.S. The role of miRNAs in the pathogenesis and therapeutic resistance of endometrial cancer: A spotlight on the convergence of signaling pathways. Pathol. Res. Pract., 2023, 244, 154411. doi: 10.1016/j.prp.2023.154411 PMID: 36921547
- Kim, W.R.; Park, E.G.; Lee, D.H.; Lee, Y.J.; Bae, W.H.; Kim, H.S. The tumorigenic role of circular RNA-MicroRNA axis in cancer. Int. J. Mol. Sci., 2023, 24(3), 3050. doi: 10.3390/ijms24033050 PMID: 36769372
- Liang, H.; Liu, Y.; Fu, L.; Li, L.; Gong, N. Berberine inhibits the development of endometrial cancer through circ_ZNF608/miR-377-3p/COX2 axis. Autoimmunity, 2022, 55(7), 485-495. doi: 10.1080/08916934.2021.2010050 PMID: 35876160
- Yarla, N.S.; Bishayee, A.; Sethi, G.; Reddanna, P.; Kalle, A.M.; Dhananjaya, B.L.; Dowluru, K.S.V.G.K.; Chintala, R.; Duddukuri, G.R. Targeting arachidonic acid pathway by natural products for cancer prevention and therapy. Semin. Cancer Biol., 2016, 40-41, 48-81. doi: 10.1016/j.semcancer.2016.02.001 PMID: 26853158
- Wang, Y.; Zhang, S. Berberine suppresses growth and metastasis of endometrial cancer cells via miR-101/COX-2. Biomed. Pharmacother., 2018, 103, 1287-1293. doi: 10.1016/j.biopha.2018.04.161 PMID: 29864910
- Yin, Z.; Yang, J.; Ning, R.; Liu, Y.; Feng, M.; Gu, C.; Fei, J.; Li, Y. Signal pathways, diseases, and functions associated with the miR-19a/92a cluster and the use of berberine to modulate the expression of this cluster in multiple myeloma cells. J. Biochem. Mol. Toxicol., 2018, 32(6), e22057. doi: 10.1002/jbt.22057 PMID: 29687521
- Gu, C.; Li, T.; Yin, Z.; Chen, S.; Fei, J.; Shen, J.; Zhang, Y. Integrative analysis of signaling pathways and diseases associated with the miR-106b/25 cluster and their function study in berb erine-induced multiple myeloma cells. Funct. Integr. Genomics, 2017, 17(2-3), 253-262. doi: 10.1007/s10142-016-0519-7 PMID: 27647143
- Hu, H.; Li, K.; Wang, X.; Liu, Y.; Lu, Z.; Dong, R.; Guo, H.; Zhang, M. Set9, NF-κB, and microRNA-21 mediate berberine-induced apoptosis of human multiple myeloma cells. Acta Pharmacol. Sin., 2013, 34(1), 157-166. doi: 10.1038/aps.2012.161 PMID: 23247593
- Feng, M.; Luo, X.; Gu, C.; Li, Y.; Zhu, X.; Fei, J. Systematic analysis of berberine-induced signaling pathway between miRNA clusters and mRNAs and identification of mir-99a-125b cluster function by seed-targeting inhibitors in multiple myeloma cells. RNA Biol., 2015, 12(1), 82-91. doi: 10.1080/15476286.2015.1017219 PMID: 25826415
- Luo, X.; Gu, J.; Zhu, R.; Feng, M.; Zhu, X.; Li, Y.; Fei, J. Integrative analysis of differential miRNA and functional study of miR-21 by seed-targeting inhibition in multiple myeloma cells in response to berberine. BMC Syst. Biol., 2014, 8(1), 82. doi: 10.1186/1752-0509-8-82 PMID: 25000828
- Letaiová, S.; Jantová, S.; Čipák, L.; Múčková, M. Berberineantiproliferative activity in vitro and induction of apoptosis/necrosis of the U937 and B16 cells. Cancer Lett., 2006, 239(2), 254-262. doi: 10.1016/j.canlet.2005.08.024 PMID: 16229943
- Căruntu, A.; Căruntu, C. Recent advances in oral squamous cell carcinoma. J. Clin. Med., 2022, 11(21), 6406. doi: 10.3390/jcm11216406 PMID: 36362637
- Li, L.; Li, X.; Huang, X.; Jiang, W.; Liu, L.; Hou, C.; Yang, Y.; Zhang, L.; Zhang, X.; Ye, L.; Yuan, J.; Li, G.; Sun, H.; Mao, L. Synergistic anticancer effects of nanocarrier loaded with berberine and miR-122. Biosci. Rep., 2018, 38(3), BSR20180311. doi: 10.1042/BSR20180311 PMID: 29769413
- Ali, M.; Bamezai, R.N.K.; Singh, R.P. Invasive breast cancer: miR-24-2 targets genes associated with survival and sensitizes MDA-MB-231 cells to berberine. OMICS, 2023, 27(9), 409-420. doi: 10.1089/omi.2023.0092 PMID: 37669117
Supplementary files
