LncRNA PVT1 as a Novel Biomarker for Diabetes-related Complications

  • Авторлар: Qiu X.1, Chen J.2, Yang J.2, Hu J.3, Fan P.4, Yuan C.2
  • Мекемелер:
    1. Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Three Gorges University
    2. Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
    3. Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University,
    4. Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Three Gorges University,
  • Шығарылым: Том 31, № 6 (2024)
  • Беттер: 688-696
  • Бөлім: Anti-Infectives and Infectious Diseases
  • URL: https://medjrf.com/0929-8673/article/view/645173
  • DOI: https://doi.org/10.2174/0929867330666230210103447
  • ID: 645173

Дәйексөз келтіру

Толық мәтін

Аннотация

Diabetes is now afflicting an expanding population, and it has become a major source of concern for human health. Diabetes affects several organs and causes chronic damage and dysfunction. It is one of the three major diseases that are harmful to human health. Plasmacytoma variant translocation 1 is a member of long non-coding RNA. PVT1 expression profile abnormalities have been reported in diabetes mellitus and its consequences in recent years, suggesting that it may contribute to the disease's progression. Relevant literature from the authoritative database "PubMed" are retrieved and summarized in detail. Mounting evidence reveals that PVT1 has multiple functions. Through sponge miRNA, it can participate in a wide variety of signal pathways and regulate the expression of a target gene. More importantly, PVT1 is crucially implicated in the regulation of apoptosis, inflammation, and so on in different types of diabetes-related complications. PVT1 regulates the occurrence and progression of diabetes-related diseases. Collectively, PVT1 has the potential to be a useful diagnostic and therapeutic target for diabetes and its consequences.

Авторлар туралы

Xinyan Qiu

Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Three Gorges University

Email: info@benthamscience.net

Jinlan Chen

Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University

Email: info@benthamscience.net

Jingjie Yang

Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University

Email: info@benthamscience.net

Jiahui Hu

Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University,

Email: info@benthamscience.net

Peng Fan

Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Three Gorges University,

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Chengfu Yuan

Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Alberti, K.G.M.M.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation. Diabet. Med., 1998, 15(7), 539-553. doi: 10.1002/(SICI)1096-9136(199807)15:73.0.CO;2-S PMID: 9686693
  2. Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281. doi: 10.1016/j.diabres.2018.02.023 PMID: 29496507
  3. Barrett, J.C.; Clayton, D.G.; Concannon, P.; Akolkar, B.; Cooper, J.D.; Erlich, H.A.; Julier, C.; Morahan, G.; Nerup, J.; Nierras, C.; Plagnol, V.; Pociot, F.; Schuilenburg, H.; Smyth, D.J.; Stevens, H.; Todd, J.A.; Walker, N.M.; Rich, S.S. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat. Genet., 2009, 41(6), 703-707. doi: 10.1038/ng.381 PMID: 19430480
  4. Avwioroko, O.J.; Oyetunde, T.T.; Atanu, F.O.; Otuechere, C.A.; Anigboro, A.A.; Dairo, O.F.; Ejoh, A.S.; Ajibade, S.O.; Omorogie, M.O. Exploring the binding interactions of structurally diverse dichalcogenoimidodiphosphinate ligands with α-amylase: Spectroscopic approach coupled with molecular docking. Biochem. Biophys. Rep., 2020, 24, 100837. doi: 10.1016/j.bbrep.2020.100837 PMID: 33251341
  5. Cloete, L. Diabetes mellitus: An overview of the types, symptoms, complications and management. Nurs. Stand., 2022, 37(1), 61-66. doi: 10.7748/ns.2021.e11709
  6. Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol., 2018, 14(2), 88-98. doi: 10.1038/nrendo.2017.151 PMID: 29219149
  7. Viigimaa, M.; Sachinidis, A.; Toumpourleka, M.; Koutsampasopoulos, K.; Alliksoo, S.; Titma, T. Macrovascular complications of type 2 diabetes mellitus. Curr. Vasc. Pharmacol., 2020, 18(2), 110-116. doi: 10.2174/1570161117666190405165151 PMID: 30961498
  8. Damanik, J.; Yunir, E. Type 2 diabetes mellitus and cognitive impairment. Acta Med. Indones., 2021, 53(2), 213-220. PMID: 34251351
  9. DiMeglio, L.A.; Evans-Molina, C.; Oram, R.A. Type 1 diabetes. Lancet, 2018, 391(10138), 2449-2462. doi: 10.1016/S0140-6736(18)31320-5 PMID: 29916386
  10. DiStefano, J.K. The emerging role of long noncoding RNAs in human disease. Methods Mol. Biol., 2018, 1706, 91-110. doi: 10.1007/978-1-4939-7471-9_6 PMID: 29423795
  11. Yoon, J.H.; Kim, J.; Gorospe, M. Long noncoding RNA turnover. Biochimie, 2015, 117, 15-21. doi: 10.1016/j.biochi.2015.03.001 PMID: 25769416
  12. Kwok, Z.H.; Tay, Y. Long noncoding RNAs: lincs between human health and disease. Biochem. Soc. Trans., 2017, 45(3), 805-812. doi: 10.1042/BST20160376 PMID: 28620042
  13. Schmitz, S.U.; Grote, P.; Herrmann, B.G. Mechanisms of long noncoding RNA function in development and disease. Cell. Mol. Life Sci., 2016, 73(13), 2491-2509. doi: 10.1007/s00018-016-2174-5 PMID: 27007508
  14. Yuan, C.L.; Li, H.; Zhu, L.; Liu, Z.; Zhou, J.; Shu, Y. Aberrant expression of long noncoding RNA PVT1 and its diagnostic and prognostic significance in patients with gastric cancer. Neoplasma, 2016, 63(3), 442-449. doi: 10.4149/314_150825N45 PMID: 26925791
  15. Hanson, R.L.; Craig, D.W.; Millis, M.P.; Yeatts, K.A.; Kobes, S.; Pearson, J.V.; Lee, A.M.; Knowler, W.C.; Nelson, R.G.; Wolford, J.K. Identification of PVT1 as a candidate gene for end-stage renal disease in type 2 diabetes using a pooling-based genome-wide single nucleotide polymorphism association study. Diabetes, 2007, 56(4), 975-983. doi: 10.2337/db06-1072 PMID: 17395743
  16. He, R.Q.; Qin, M.J.; Lin, P.; Luo, Y.H.; Ma, J.; Yang, H.; Hu, X.H.; Chen, G. Prognostic significance of LncRNA PVT1 and its potential target gene network in human cancers: A comprehensive inquiry based upon 21 cancer types and 9972 cases. Biochem. Pharmacol., 2018, 46(2), 591-608.
  17. Cheng, Y.; Hu, Q.; Zhou, J. Silencing of lncRNA PVT1 ameliorates streptozotocin-induced pancreatic β cell injury and enhances insulin secretory capacity by regulating miR-181a-5p. Can. J. Physiol. Pharmacol., 2021, 99(3), 303-312. doi: 10.1139/cjpp-2020-0268 PMID: 32758099
  18. Ge, C.; Xu, M.; Qin, Y.; Gu, T.; Lou, D.; Li, Q.; Hu, L.; Nie, X.; Wang, M.; Tan, J. Fisetin supplementation prevents high fat diet-induced diabetic nephropathy by repressing insulin resistance and RIP3-regulated inflammation. Food Funct., 2019, 10(5), 2970-2985. doi: 10.1039/C8FO01653D PMID: 31074472
  19. Bichu, P.; Nistala, R.; Khan, A.; Sowers, J.R.; Whaley-Connell, A. Angiotensin receptor blockers for the reduction of proteinuria in diabetic patients with overt nephropathy: Results from the AMADEO study. Vasc. Health Risk Manag., 2009, 5(1), 129-140. PMID: 19436679
  20. Baulida, J.; Díaz, V.M.; García de Herreros, A. Snail1: A transcriptional factor controlled at multiple levels. J. Clin. Med., 2019, 8(6), 757. doi: 10.3390/jcm8060757 PMID: 31141910
  21. Qin, B.; Cao, X. LncRNA PVT1 regulates high glucose-induced viability, oxidative stress, fibrosis, and inflammation in diabetic nephropathy via miR-325-3p/Snail1 Axis. Diabetes Metab. Syndr. Obes., 2021, 14, 1741-1750. doi: 10.2147/DMSO.S303151 PMID: 33907435
  22. Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol., 2009, 1(6), a001651. doi: 10.1101/cshperspect.a001651 PMID: 20457564
  23. Zhong, W.; Zeng, J.; Xue, J.; Du, A.; Xu, Y. Knockdown of lncRNA PVT1 alleviates high glucose-induced proliferation and fibrosis in human mesangial cells by miR-23b-3p/WT1 axis. Diabetol. Metab. Syndr., 2020, 12(1), 33. doi: 10.1186/s13098-020-00539-x PMID: 32322310
  24. Yu, D.; Yang, X.; Zhu, Y.; Xu, F.; Zhang, H.; Qiu, Z. Knockdown of plasmacytoma variant translocation 1 (PVT1) inhibits high glucose-induced proliferation and renal fibrosis in HRMCs by regulating miR-23b-3p/early growth response factor 1 (EGR1). Endocr. J., 2021, 68(5), 519-529. doi: 10.1507/endocrj.EJ20-0642 PMID: 33408314
  25. Alvarez, M.L.; Khosroheidari, M.; Eddy, E.; Kiefer, J. Role of microRNA 1207-5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: Implications for diabetic nephropathy. PLoS One, 2013, 8(10), e77468. doi: 10.1371/journal.pone.0077468 PMID: 24204837
  26. Liu, D.W.; Zhang, J.H.; Liu, F.X.; Wang, X.T.; Pan, S.K.; Jiang, D.K.; Zhao, Z.H.; Liu, Z.S. Silencing of long noncoding RNA PVT1 inhibits podocyte damage and apoptosis in diabetic nephropathy by upregulating FOXA1. Exp. Mol. Med., 2019, 51(8), 1-15. doi: 10.1038/s12276-019-0259-6 PMID: 31371698
  27. Prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation--United States, 2010-2012. MMWR Morb. Mortal. Wkly. Rep., 2013, 62(44), 869-873. PMID: 24196662
  28. Schett, G.; Kleyer, A.; Perricone, C.; Sahinbegovic, E.; Iagnocco, A.; Zwerina, J.; Lorenzini, R.; Aschenbrenner, F.; Berenbaum, F.; D’Agostino, M.A.; Willeit, J.; Kiechl, S. Diabetes is an independent predictor for severe osteoarthritis: Results from a longitudinal cohort study. Diabetes Care, 2013, 36(2), 403-409. doi: 10.2337/dc12-0924 PMID: 23002084
  29. Burrage, P.S.; Mix, K.S.; Brinckerhoff, C.E. Matrix metalloproteinases: Role in arthritis. Front. Biosci., 2006, 11(1), 529-543. doi: 10.2741/1817 PMID: 16146751
  30. Ding, L.B.; Li, Y.; Liu, G.Y.; Li, T.H.; Li, F.; Guan, J.; Wang, H.J. Long non-coding RNA PVT1, a molecular sponge of miR-26b, is involved in the progression of hyperglycemia-induced collagen degradation in human chondrocytes by targeting CTGF/TGF- β signal ways. Innate Immun., 2020, 26(3), 204-214. doi: 10.1177/1753425919881778 PMID: 31625803
  31. Wang, Y.Z.; Yao-Li; Liang, S.K.; Ding, L.B.; Feng-Li; Guan, J.; Wang, H.J. LncPVT1 promotes cartilage degradation in diabetic OA mice by downregulating miR-146a and activating TGF-β/SMAD4 signaling. J. Bone Miner. Metab., 2021, 39(4), 534-546. doi: 10.1007/s00774-020-01199-7 PMID: 33569722
  32. Barrett, A.M.; Lucero, M.A.; Le, T.; Robinson, R.L.; Dworkin, R.H.; Chappell, A.S. Epidemiology, public health burden, and treatment of diabetic peripheral neuropathic pain: A review. Pain Med., 2007, 8(Suppl. 2), S50-S62. doi: 10.1111/j.1526-4637.2006.00179.x PMID: 17714116
  33. Albers, J.W.; Pop-Busui, R. Diabetic neuropathy: Mechanisms, emerging treatments, and subtypes. Curr. Neurol. Neurosci. Rep., 2014, 14(8), 473. doi: 10.1007/s11910-014-0473-5 PMID: 24954624
  34. Crepaldi, G.; Fedele, D.; Tiengo, A.; Battistin, L.; Negrin, P.; Pozza, G.; Canal, N.; Comi, G.C.; Lenti, G.; Pagano, G.; Bergamini, L.; Troni, W.; Frigato, F.; Ravenna, C.; Mezzina, C.; Gallato, R.; Massari, D.; Massarotti, M.; Matano, R.; Grigoletto, F.; Davis, H.; Klein, M. Ganglioside treatment in diabetic peripheral neuropathy: A multicenter trial. Acta Diabetol. Lat., 1983, 20(3), 265-276. doi: 10.1007/BF02581271 PMID: 6356740
  35. Meydan, C.; Üçeyler, N.; Soreq, H. Non-coding RNA regulators of diabetic polyneuropathy. Neurosci. Lett., 2020, 731, 135058. doi: 10.1016/j.neulet.2020.135058 PMID: 32454150
  36. Chen, L.; Gong, H.Y.; Xu, L. PVT1 protects diabetic peripheral neuropathy via PI3K/AKT pathway. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(20), 6905-6911. PMID: 30402856
  37. Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E., Jr; Colvin, M.M.; Drazner, M.H.; Filippatos, G.S.; Fonarow, G.C.; Givertz, M.M.; Hollenberg, S.M.; Lindenfeld, J.; Masoudi, F.A.; McBride, P.E.; Peterson, P.N.; Stevenson, L.W.; Westlake, C. ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: A report of the American college of cardiology/American heart association task force on clinical practice guidelines and the heart failure society of America. Circulation, 2017, 136(6), e137-e161. doi: 10.1161/CIR.0000000000000509 PMID: 28455343
  38. Xia, Y-W.; Wang, S-B.; Wang, S.B.; Xiao, L.H. Long noncoding RNA PVT1 facilitates high glucose induced cardiomyocyte death through the miR23a3p/CASP10 axis. Cell Biol. Int., 2021, 45(1), 154-163. doi: 10.1002/cbin.11479 PMID: 33049089
  39. Šimunović, M.; Paradžik, M.; Škrabić, R.; Unić, I.; Bućan, K.; Škrabić, V. Cataract as early ocular complication in children and adolescents with type 1 diabetes mellitus. Int. J. Endocrinol., 2018, 2018, 1-6. doi: 10.1155/2018/6763586 PMID: 29755521
  40. Lim, J.C.; Caballero Arredondo, M.; Braakhuis, A.J.; Donaldson, P.J. Vitamin C and the lens: New insights into delaying the onset of cataract. Nutrients, 2020, 12(10), 3142. doi: 10.3390/nu12103142 PMID: 33066702
  41. Yang, J.; Zhao, S.; Tian, F. SP1 mediated lncRNA PVT1 modulates the proliferation and apoptosis of lens epithelial cells in diabetic cataract via miR-214-3p/MMP2 axis. J. Cell. Mol. Med., 2020, 24(1), 554-561. doi: 10.1111/jcmm.14762 PMID: 31755246
  42. Benhalima, K.; Van Crombrugge, P.; Moyson, C.; Verhaeghe, J.; Vandeginste, S.; Verlaenen, H.; Vercammen, C.; Maes, T.; Dufraimont, E.; De Block, C.; Jacquemyn, Y.; Mekahli, F.; De Clippel, K.; Van Den Bruel, A.; Loccufier, A.; Laenen, A.; Minschart, C.; Devlieger, R.; Mathieu, C. Prediction of glucose intolerance in early postpartum in women with gestational diabetes mellitus based on the 2013 WHO criteria. J. Clin. Med., 2019, 8(3), 383. doi: 10.3390/jcm8030383 PMID: 30893935
  43. Zhu, Y.; Zhang, C. Prevalence of gestational diabetes and risk of progression to type 2 diabetes: A global perspective. Curr. Diab. Rep., 2016, 16(1), 7. doi: 10.1007/s11892-015-0699-x PMID: 26742932
  44. Chu, S.Y.; Callaghan, W.M.; Kim, S.Y.; Schmid, C.H.; Lau, J.; England, L.J.; Dietz, P.M. Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care, 2007, 30(8), 2070-2076. doi: 10.2337/dc06-2559a PMID: 17416786
  45. Wang, Q.; Lu, X.; Li, C.; Zhang, W.; Lv, Y.; Wang, L.; Wu, L.; Meng, L.; Fan, Y.; Ding, H.; Long, W.; Lv, M. Down-regulated long non-coding RNA PVT1 contributes to gestational diabetes mellitus and preeclampsia via regulation of human trophoblast cells. Biomed. Pharmacother., 2019, 120, 109501. doi: 10.1016/j.biopha.2019.109501
  46. Tanase, D.M.; Gosav, E.M.; Costea, C.F.; Ciocoiu, M.; Lacatusu, C.M.; Maranduca, M.A.; Ouatu, A.; Floria, M. The intricate relationship between type 2 diabetes mellitus (T2DM), insulin resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD). J. Diabetes Res., 2020, 2020, 3920196. doi: 10.1155/2020/3920196 PMID: 32832560
  47. Brown, A.E.; Walker, M. Genetics of insulin resistance and the metabolic syndrome. Curr. Cardiol. Rep., 2016, 18(8), 75. doi: 10.1007/s11886-016-0755-4 PMID: 27312935
  48. Zhang, H.; Niu, Q.; Liang, K.; Li, X.; Jiang, J.; Bian, C. Effect of LncPVT1/miR-20a-5p on lipid metabolism and insulin resistance in NAFLD. Diabetes Metab. Syndr. Obes., 2021, 14, 4599-4608. doi: 10.2147/DMSO.S338097 PMID: 34848984
  49. Díaz-Gerevini, G.T.; Daín, A.; Pasqualini, M.E.; López, C.B.; Eynard, A.R.; Repossi, G. Diabetic encephalopathy: Beneficial effects of supplementation with fatty acids ω3 and nordihydroguaiaretic acid in a spontaneous diabetes rat model. Lipids Health Dis., 2019, 18(1), 43. doi: 10.1186/s12944-018-0938-7 PMID: 30736810
  50. Shi, R.; Weng, J.; Zhao, L.; Li, X.M.; Gao, T.M.; Kong, J. Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci. Ther., 2012, 18(3), 250-260. doi: 10.1111/j.1755-5949.2012.00295.x PMID: 22449108
  51. Rami, A.; Langhagen, A.; Steiger, S. Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. Neurobiol. Dis., 2008, 29(1), 132-141. doi: 10.1016/j.nbd.2007.08.005 PMID: 17936001
  52. Li, Z.; Hao, S.; Yin, H.; Gao, J.; Yang, Z. Autophagy ameliorates cognitive impairment through activation of PVT1 and apoptosis in diabetes mice. Behav. Brain Res., 2016, 305, 265-277. doi: 10.1016/j.bbr.2016.03.023 PMID: 26971628

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024