In silico Studies on Natural Products and Derivatives against Different Types of Cancer


Цитировать

Полный текст

Аннотация

According to the World Health Organization (WHO), cancer is the second cause of death worldwide, responsible for almost 10 million deaths and accounting for one in every six deaths. It is a disease that can affect any organ or tissue with rapid progression to the final stage, which is metastasis, in which the disease spreads to different regions of the body. Many studies have been carried out to find a cure for cancer. Early diagnosis contributes to the individual achieving the cure; however, deaths are increasing considerably due to late diagnosis. Thus, this bibliographical review discussed several scientific research works pointing to in silico analyses in the proposition of new antineoplastic agents for glioblastoma, breast, colon, prostate, and lung cancer, as well as some of their respective molecular receptors involved in molecular docking simulations and molecular dynamics. This review involved articles describing the contribution of computational techniques for the development of new drugs or already existing drugs with biological activity; thus, important data were highlighted in each study, such as the techniques used, results obtained in each study, and the conclusion. Furthermore, 3D chemical structures of the molecules with the best computational response and significant interactions between the tested molecules and the PDB receptors were also presented. With this, it is expected to help new research in the fight against cancer, the creation of new antitumor drugs, and the advancement of the pharmaceutical industry and scientific knowledge about studied tumors.

Об авторах

Alex Messias Monteiro

Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba

Email: info@benthamscience.net

Fábia da Silva

Postgraduate Program in Chemistry, Federal Rural University of Pernambuco

Email: info@benthamscience.net

Teresa Rodrigues

Postgraduate Program in Natural and Synthetic Bioactive Products,, Federal University of Paraíba

Email: info@benthamscience.net

Clécio Ramos

Postgraduate Program in Chemistry, Federal Rural University of Pernambuco

Email: info@benthamscience.net

Marcus Scotti

Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba

Email: info@benthamscience.net

Luciana Scotti

Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. NIH. What is Cancer?-NCI. Available from: https://www.cancer.gov/about-cancer/understanding/what-is-cancer (Accessed on: January 25, 2022).
  2. Oliveira, A.F.; Quadros, C.A.; de Castro Ribeiro, H.S.; Wainstein, A.J.A.; de Queiroz Sarmento, B.J.; Lyra, J.; Baiocchi Neto, G.; Ribeiro, R.; Pinheiro, R.N.; da Silva Barreto, E.J.S.; Park, J.; McKay, A.; Gupta, A.; Savant, D.; Nissan, A.; Zippel, D.; Leon, A.; Bargallo-Rocha, J.E.; Martinez Said, H.; Kitagawa, Y.; Yoshida, K.; Lee, W.Y.; Park, D.J.; Zaghloul, A.; Gawad, W.A.; Chen, G.; Majid, H.J.; Cheema, M.A.; Gronchi, A.; Kovacs, T.; D’Ugo, D.; Bartlett, D.L.; Howe, J.R.; Are, C. Global Forum of Cancer Surgeons: Support for the Brazilian society of surgical oncology journey towards implementation of cytoreductive surgery/hyperthermic intraperitoneal chemotherapy in Brazil. Ann. Surg. Oncol., 2021, 28(4), 1892-1895. doi: 10.1245/s10434-020-09527-x PMID: 33462717
  3. WHO. Cancer. Available from: https://who.int/health-topics/cancer (Accessed on: January 30, 2022).
  4. WHO Report on Cancer: Setting Priorities, Investing Wisely and Providing Care for All. Available from: https://www.who.int/publications/i/item/9789240001299 (Accessed on: February 15, 2022).
  5. WHO. Breast cancer. Available from: https://www.who.int/news-room/fact-sheets/detail/breast-cancer (Accessed on: May 30, 2022).
  6. ACS. Breast Cancer Facts & Figures 2019-2020; Atlanta Am. Cancer Soc., 2019, pp. 1-44.
  7. Guennoun, R.; Hojanazarova, J.; Trerice, K.E.; Azin, M.; McGoldrick, M.T.; Schiferle, E.B.; Stover, M.P.; Demehri, S. Thymic stromal lymphopoietin induction suppresses lung cancer development. Cancers, 2022, 14(9), 2173. doi: 10.3390/cancers14092173 PMID: 35565302
  8. Shi, J.; Li, Y.; Song, W.; Wang, M.; Zhang, L.; Lian, H.; He, Z.; Wei, N.; Zheng, Z.; Wen, J. Risk of colon cancer-related death in people who had cancer in the past. Int. J. Colorectal Dis., 2022, 37(8), 1785-1797. doi: 10.1007/s00384-022-04202-x PMID: 35796872
  9. Klein, R.J.; Vertosick, E.; Sjoberg, D.; Ulmert, D.; Rönn, A.C.; Häggström, C.; Thysell, E.; Hallmans, G.; Dahlin, A.; Stattin, P.; Melander, O.; Vickers, A.; Lilja, H. Prostate cancer polygenic risk score and prediction of lethal prostate cancer. NPJ Precis. Oncol., 2022, 6(1), 1-8. doi: 10.1038/s41698-022-00266-8
  10. Bueno-Martínez, E.; Lara-Almunia, M.; Rodríguez-Arias, C.; Otero-Rodríguez, A.; Garfias-Arjona, S.; González-Sarmiento, R. Polymorphisms in autophagy genes are genetic susceptibility factors in glioblastoma development. BMC Cancer, 2022, 22(1), 146. doi: 10.1186/s12885-022-09214-y PMID: 35123435
  11. Tamimi, A.F.; Juweid, M. Epidemiology and Outcome of Glioblastoma; Glioblastoma, 2017, pp. 143-153. doi: 10.15586/codon.glioblastoma.2017.ch8
  12. Mondal, P.; Natesh, J.; Penta, D.; Meeran, S.M. Progress and promises of epigenetic drugs and epigenetic diets in cancer prevention and therapy: A clinical update. Semin. Cancer Biol., 2022, 83, 503-522. doi: 10.1016/j.semcancer.2020.12.006 PMID: 33309850
  13. Khaledi, F.; Ghasemi, S. A review on epigenetic effects of environmental factors causing and inhibiting cancer. Curr. Mol. Med., 2022, 22(1), 8-24. doi: 10.2174/1566524021666210211112800 PMID: 33573554
  14. Tybjerg, A.J.; Friis, S.; Brown, K.; Nilbert, M.C.; Morch, L.; Køster, B. Updated fraction of cancer attributable to lifestyle and environmental factors in Denmark in 2018. Sci. Rep., 2022, 12(1), 1-11. doi: 10.1038/s41598-021-04564-2
  15. Brunton, L.L.; Hilal-Dandan, R.; Knollmann, B.C. As Bases Farmacológicas Da Terapêutica de Goodman e Gilman; Artmed Editora, 2018.
  16. Guo, M.; Jin, J.; Zhao, D.; Rong, Z.; Cao, L.Q.; Li, A.H.; Sun, X.Y.; Jia, L.Y.; Wang, Y.D.; Huang, L.; Li, Y.H.; He, Z.J.; Li, L.; Ma, R.K.; Lv, Y.F.; Shao, K.K.; Cao, H.L. Research advances on anti-cancer natural products. Front. Oncol., 2022, 12, 866154. doi: 10.3389/fonc.2022.866154 PMID: 35646647
  17. Poustforoosh, A. Faramarz, S.; Nematollahi, M.H.; Hashemipour, H.; Tüzün, B.; Pardakhty, A.; Mehrabani, M. 3D‐QSAR, molecular docking, molecular dynamics, and ADME/T analysis of marketed and newly designed flavonoids as inhibitors of Bcl‐2 family proteins for targeting U‐87 glioblastoma. J. Cell. Biochem., 2022, 123(2), 390-405. doi: 10.1002/jcb.30178 PMID: 34791695
  18. Pande, A.; Abdalla, M.; Madhavi, M.; Chopra, I.; Bhrdwaj, A.; Soni, L.; Vijayakumar, N.; Panwar, U.; Khan, M.A.; Prajapati, L. Structure-based virtual screening, molecular docking, molecular dynamics simulation of EGFR for the clinical treatment of glioblastoma. Appl. Biochem. Biotechnol., 2023.
  19. Younus, S.; Vinod Chandra, S.S.; Nair, A.S.S. Docking and dynamic simulation study of crizotinib and temozolomide drug with glioblastoma and NSCLC target to identify better efficacy of the drug. Future J. Pharm. Sci., 2021, 7(1), 187. doi: 10.1186/s43094-021-00323-2
  20. Ghosh, A.; Chakraborty, D.; Mukerjee, N.; Baishya, D.; Chigurupati, S.; Felemban, S.G.; Almahmoud, S.A.; Almikhlafi, M.A.; Sehgal, A.; Singh, S.; Sharma, N.; Aleya, L.; Behl, T. Target-based virtual screening and molecular interaction studies for lead identification of natural olive compounds against glioblastoma multiforme. Environ. Sci. Pollut. Res. Int., 2022. doi: 10.1007/s11356-022-22401-5 PMID: 35994146
  21. Huang, J.; Zhou, Y.; Zhong, X.; Su, F.; Xu, L. Effects of Vitexin, a natural flavonoid glycoside, on the proliferation, invasion, and apoptosis of human U251 glioblastoma cells. Oxid. Med. Cell. Longev., 2022, 2022, 1-13. doi: 10.1155/2022/3129155 PMID: 35281458
  22. Antika, G.; Cinar, Z.Ö.; Seçen, E.; Özbil, M.; Tokay, E.; Köçkar, F.; Prandi, C.; Tumer, T.B. Strigolactone analogs: Two new potential bioactiphores for glioblastoma. ACS Chem. Neurosci., 2022, 13(5), 572-580. doi: 10.1021/acschemneuro.1c00702 PMID: 35138812
  23. Gholivand, K.; Faraghi, M.; Fallah, N.; Babaei, A.; Pirastehfar, F.; Dusek, M.; Eigner, V.; Salimi, F. Therapeutic potential of phospho-thiadiazole derivatives as anti-glioblastoma agents: Synthesis, biological assessment and computational study. Bioorg. Chem., 2022, 129, 106123. doi: 10.1016/j.bioorg.2022.106123 PMID: 36108588
  24. Budama-Kilinc, Y.; Kecel-Gunduz, S.; Cakir-Koc, R.; Aslan, B.; Bicak, B.; Kokcu, Y.; Ozel, A.E.; Akyuz, S. Structural characterization and drug delivery system of natural growth-modulating peptide against glioblastoma cancer. Int. J. Pept. Res. Ther., 2021, 27(3), 2015-2028. doi: 10.1007/s10989-021-10229-5
  25. Netto, J.B.; Melo, E.S.A.; Oliveira, A.G.S.; Sousa, L.R.; Santiago, L.R.; Santos, D.M.; Chagas, R.C.R.; Gonçalves, A.S.; Thomé, R.G.; Santos, H.B.; Reis, R.M.; Ribeiro, R.I.M.A. Matteucinol combined with temozolomide inhibits glioblastoma proliferation, invasion, and progression: An in vitro, in silico, and in vivo study. Braz. J. Med. Biol. Res., 2022.
  26. Wang, W.; Wu, Y.; Chen, S.; Liu, X.; He, J.; Wang, S.; Lu, W.; Tang, Y.; Huang, J. Shikonin is a novel and selective IMPDH2 inhibitor that target triple‐negative breast cancer. Phytother. Res., 2021, 35(1), 463-476. doi: 10.1002/ptr.6825 PMID: 32779300
  27. Ibrahim, R.S.; El-Banna, A.A. Network pharmacology-based analysis for unraveling potential cancer-related molecular targets of Egyptian propolis phytoconstituents accompanied with molecular docking and in vitro studies. RSC Advances, 2021, 11(19), 11610-11626. doi: 10.1039/D1RA01390D PMID: 35423607
  28. Jairajpuri, D.S.; Mohammad, T.; Adhikari, K.; Gupta, P.; Hasan, G.M.; Alajmi, M.F.; Rehman, M.T.; Hussain, A.; Hassan, M.I. Identification of Sphingosine Kinase-1 inhibitors from bioactive natural products targeting cancer therapy. ACS Omega, 2020, 5(24), 14720-14729. doi: 10.1021/acsomega.0c01511 PMID: 32596609
  29. Saravanan, R.; Raja, K.; Shanthi, D. GC–MS analysis, molecular docking and pharmacokinetic properties of phytocompounds from solanum torvum unripe fruits and its effect on breast cancer target protein. Appl. Biochem. Biotechnol., 2022, 194(1), 529-555. doi: 10.1007/s12010-021-03698-3 PMID: 34643844
  30. Kores, K.; Kolenc, Z.; Furlan, V.; Bren, U. Inverse molecular docking elucidating the anticarcinogenic potential of the hop natural product Xanthohumol and its metabolites. Foods, 2022, 11(9), 1253. doi: 10.3390/foods11091253 PMID: 35563976
  31. Yousuf, M.; Shamsi, A.; Khan, P.; Shahbaaz, M.; AlAjmi, M.F.; Hussain, A.; Hassan, G.M.; Islam, A.; Rizwanul Haque, Q.M.; Hassan, M.I. Ellagic acid controls cell proliferation and induces apoptosis in breast cancer cells via inhibition of cyclin-dependent kinase 6. Int. J. Mol. Sci., 2020, 21(10), 3526. doi: 10.3390/ijms21103526 PMID: 32429317
  32. Pang, X.; Fu, W.; Wang, J.; Kang, D.; Xu, L.; Zhao, Y.; Liu, A.L.; Du, G.H. Identification of estrogen receptor α antagonists from natural products via in vitro and in silico approaches. Oxid. Med. Cell. Longev., 2018, 2018, 1-11. doi: 10.1155/2018/6040149 PMID: 29861831
  33. Acharya, R.; Chacko, S.; Bose, P.; Lapenna, A.; Pattanayak, S.P. Structure based multitargeted molecular docking analysis of selected furanocoumarins against breast cancer. Sci. Rep., 2019, 9(1), 15743. doi: 10.1038/s41598-019-52162-0 PMID: 31673107
  34. Banik, A.; Ghosh, K.; Patil, U.K.; Gayen, S. Identification of molecular fingerprints of natural products for the inhibition of breast cancer resistance protein (BCRP). Phytomedicine, 2021, 85, 153523. doi: 10.1016/j.phymed.2021.153523 PMID: 33662771
  35. Taghizadeh, M.S.; Niazi, A.; Moghadam, A.; Afsharifar, A. Experimental, molecular docking and molecular dynamic studies of natural products targeting overexpressed receptors in breast cancer. PLoS One, 2022, 17(5), e0267961. doi: 10.1371/journal.pone.0267961 PMID: 35536789
  36. Govindarasu, M.; Ganeshan, S.; Ansari, M.A.; Alomary, M.N.; AlYahya, S.; Alghamdi, S.; Almehmadi, M.; Rajakumar, G.; Thiruvengadam, M.; Vaiyapuri, M. In silico modeling and molecular docking insights of kaempferitrin for colon cancer-related molecular targets. J. Saudi Chem. Soc., 2021, 25(9), 101319. doi: 10.1016/j.jscs.2021.101319
  37. Zhang, M.M.; Wang, D.; Lu, F.; Zhao, R.; Ye, X.; He, L.; Ai, L.; Wu, C.J. Identification of the active substances and mechanisms of ginger for the treatment of colon cancer based on network pharmacology and molecular docking. BioData Min., 2021, 14(1), 1-16. doi: 10.1186/s13040-020-00232-9 PMID: 33430939
  38. Md Nesran, Z.N.; Shafie, N.H.; Md Tohid, S.F.; Norhaizan, M.E.; Ismail, A. Iron chelation properties of green tea epigallocatechin-3-Gallate (EGCG) in colorectal cancer cells: Analysis on Tfr/Fth regulations and molecular docking. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-8. doi: 10.1155/2020/7958041 PMID: 32280356
  39. Larsen, C.A.; Bisson, W.H.; Dashwood, R.H. Tea catechins inhibit hepatocyte growth factor receptor (MET kinase) activity in human colon cancer cells: Kinetic and molecular docking studies. J. Med. Chem., 2009, 52(21), 6543-6545. doi: 10.1021/jm901330e PMID: 19839593
  40. Qi, X.; Xu, H.; Zhang, P.; Chen, G.; Chen, Z.; Fang, C.; Lin, L. Investigating the Mechanism of Scutellariae barbata herba in the treatment of colorectal cancer by network pharmacology and molecular docking. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-18. doi: 10.1155/2021/3905367 PMID: 34381520
  41. Gouthami, K.; Veeraraghavan, V.; Lavanya, L.; Prashantha, C.N. Molecular docking studies for Vitex negundo (L) leaf extract compounds against Wnt- signalling proteins towards the treatment of colon cancer. Chem. Data Collect., 2022, 38, 100829.
  42. Liñares-Blanco, J.; Munteanu, C.R.; Pazos, A.; Fernandez-Lozano, C. Molecular docking and machine learning analysis of Abemaciclib in colon cancer. BMC Mol. Cell Biol., 2020, 21(1), 52. doi: 10.1186/s12860-020-00295-w PMID: 32640984
  43. Abd El-Fadeal, N.M.; Nafie, M.S.; El-Kherbetawy, K. M.; El-Mistekawy, A.; Mohammad, H.M.F.; Elbahaie, A.M.; Hashish, A.A.; Alomar, S.Y.; Aloyouni, S.Y.; El-Dosoky, M.; Morsy, K.M.; Zaitone, S.A. Antitumor activity of nitazoxanide against colon cancers: Molecular docking and experimental studies based on Wnt/β-Catenin signaling inhibition. Int. J. Mol. Sci., 2021, 22(10), 5213. doi: 10.3390/ijms22105213 PMID: 34069111
  44. Vlasiou, M.C.; Petrou, C.C.; Sarigiannis, Y.; Pafiti, K.S. Density functional theory studies and molecular docking on Xanthohumol, 8-Prenylnaringenin and their symmetric substitute diethanolamine derivatives as inhibitors for colon cancer-related proteins. Symmetry, 2021, 13(6), 948. doi: 10.3390/sym13060948
  45. Meng, X.; Cui, L.; Song, F.; Luan, M.; Ji, J.; Si, H.; Duan, Y.; Zhai, H. 3D-QSAR and molecular docking studies on design anti-prostate cancer curcumin analogues. Curr. Computeraided Drug Des., 2020, 16(3), 245-256. doi: 10.2174/18756697OTQwcNzA3TcVY PMID: 30370853
  46. Olubode, S.O.; Bankole, M.O.; Akinnusi, P.A.; Adanlawo, O.S.; Ojubola, K.I.; Nwankwo, D.O.; Edjebah, O.E.; Adebesin, A.O.; Ayodele, A.O. Molecular modeling studies of natural inhibitors of androgen signaling in prostate cancer. Cancer Inform., 2022, 21, 11769351221118556. doi: 10.1177/11769351221118556 PMID: 35983016
  47. Ahmed, M.N.; Wahlsten, M.; Jokela, J.; Nees, M.; Stenman, U.H.; Alvarenga, D.O.; Strandin, T.; Sivonen, K.; Poso, A.; Permi, P.; Metsä-Ketelä, M.; Koistinen, H.; Fewer, D.P. Potent inhibitor of human trypsins from the aeruginosin family of natural products. ACS Chem. Biol., 2021, 16(11), 2537-2546. doi: 10.1021/acschembio.1c00611 PMID: 34661384
  48. Yan, G.; Zhang, H.; Li, Y.; Miao, G.; Liu, X.; Lv, Q. Viscosalactone B, a natural LSD1 inhibitor, inhibits proliferation in vitro and in vivo against prostate. Cancer Cells, 2022, 1-15. doi: 10.21203/rs.3.rs-1831655/v1
  49. de Lima, C.A.; Cubero, M.C.Z.; Franco, Y.E.M.; Rodrigues, C.D.P.; do Nascimento, J.R.; Vendramini-Costa, D.B.; Sciani, J.M.; da Rocha, C.Q.; Longato, G.B. Antiproliferative activity of two unusual dimeric flavonoids, brachydin E and Brachydin F, isolated from Fridericia platyphylla (Cham.) L.G.Lohmann: In vitro and molecular docking evaluation. BioMed Res. Int., 2022, 2022, 1-12. doi: 10.1155/2022/3319203 PMID: 35187163
  50. Grande, F.; Rizzuti, B.; Occhiuzzi, M.A.; Ioele, G.; Casacchia, T.; Gelmini, F.; Guzzi, R.; Garofalo, A.; Statti, G. Identification by molecular docking ofhomoisoflavones from leopoldia comosa as ligands of estrogen receptors. Molecules, 2018, 23(4), 894. doi: 10.3390/molecules23040894 PMID: 29649162
  51. Balusamy, S.R.; Perumalsamy, H.; Veerappan, K.; Huq, M.A.; Rajeshkumar, S.; Lakshmi, T.; Kim, Y.J. Citral induced apoptosis through modulation of key genes involved in fatty acid biosynthesis in human prostate cancer cells: In silico and in vitro study. BioMed Res. Int., 2020, 2020, 1-15. doi: 10.1155/2020/6040727 PMID: 32258129
  52. Gurung, A.B.; Ali, M.A.; Lee, J.; Farah, M.A.; Al-Anazi, K.M. Molecular docking and dynamics simulation study of bioactive compounds from Ficus carica L. with important anticancer drug targets. PLoS One, 2021, 16(7), e0254035. doi: 10.1371/journal.pone.0254035 PMID: 34260631
  53. Saffari Chaleshtori, J.; Heidari-Sureshjani, E.; Moradi, F.; Heidarian, E. The effects of thymoquinone on viability, and anti-apoptotic factors (BCL-XL, BCL-2, MCL-1) in Prostate Cancer (PC3) cells: An in vitro and computer-simulated environment study. Adv. Pharm. Bull., 2019, 9(3), 490-496. doi: 10.15171/apb.2019.058 PMID: 31592099
  54. El Raey, M.A.; El-Hagrassi, A.M.; Osman, A.F.; Darwish, K.M.; Emam, M. Acalypha wilkesiana flowers: Phenolic profiling, cytotoxic activity of their biosynthesized silver nanoparticles and molecular docking study for its constituents as Topoisomerase-I inhibitors. Biocatal. Agric. Biotechnol., 2019, 20, 101243. doi: 10.1016/j.bcab.2019.101243
  55. Yuan, C.; Wang, M.H.; Wang, F.; Chen, P.Y.; Ke, X.G.; Yu, B.; Yang, Y.F.; You, P.T.; Wu, H.Z. Network pharmacology and molecular docking reveal the mechanism of Scopoletin against non-small cell lung cancer. Life Sci., 2021, 270, 119105. doi: 10.1016/j.lfs.2021.119105 PMID: 33497736
  56. Reddy, P.S.; Lokhande, K.B.; Nagar, S.; Reddy, V.D.; Murthy, P.S.; Swamy, K.V. Molecular modeling, docking, dynamics and simulation of gefitinib and its derivatives with EGFR in non-small cell lung cancer. Curr. Computeraided Drug Des., 2018, 14(3), 246-252. doi: 10.2174/1573409914666180228111433 PMID: 29493460
  57. Singh, P.K.; Silakari, O. Pharmacophore and molecular dynamics based activity profiling of natural products for kinases involved in lung cancer. J. Mol. Model., 2018, 24(11), 318. doi: 10.1007/s00894-018-3849-7 PMID: 30343450
  58. Yan, Y.; Su, W.; Zeng, S.; Qian, L.; Chen, X.; Wei, J.; Chen, N.; Gong, Z.; Xu, Z. Effect and mechanism of Tanshinone I on the radiosensitivity of lung cancer cells. Mol. Pharm., 2018, 15(11), 4843-4853. doi: 10.1021/acs.molpharmaceut.8b00489 PMID: 30216081
  59. Zhang, Y.Y.; Chen, J.J.; Li, D.Q.; Zhang, Y.; Wang, X.B.; Yao, G.D.; Song, S.J. Network pharmacology uncovers anti-cancer activity of vibsane-type diterpenes from Viburnum odoratissimum. Nat. Prod. Res., 2021, 35(4), 637-640. doi: 10.1080/14786419.2019.1582047 PMID: 30856004
  60. Anwar, S.; Mohammad, T.; Shamsi, A.; Queen, A.; Parveen, S.; Luqman, S.; Hasan, G.M.; Alamry, K.A.; Azum, N.; Asiri, A.M.; Hassan, M.I. Discovery of hordenine as a potential inhibitor of pyruvate dehydrogenase kinase 3: Implication in lung cancer therapy. Biomedicines, 2020, 8(5), 119. doi: 10.3390/biomedicines8050119 PMID: 32422877
  61. Jing, S.Y.; Wu, Z.D.; Zhang, T.H.; Zhang, J.; Wei, Z.Y. In vitro antitumor effect of cucurbitacin E on human lung cancer cell line and its molecular mechanism. Chin. J. Nat. Med., 2020, 18(7), 483-490. doi: 10.1016/S1875-5364(20)30058-3 PMID: 32616188
  62. Chen, H.; Miao, L.; Huang, F.; Yu, Y.; Peng, Q.; Liu, Y.; Li, X.; Liu, H. Glochidiol, a natural triterpenoid, exerts its anti-cancer effects by targeting the colchicine binding site of tubulin. Invest. New Drugs, 2021, 39(2), 578-586. doi: 10.1007/s10637-020-01013-1 PMID: 33026557
  63. Liu, X.; Chen, W.; Liu, Q.; Dai, J. Abietic acid suppresses non-small-cell lung cancer cell growth via blocking IKKβ/NF-κB signaling. OncoTargets Ther., 2019, 12, 4825-4837. doi: 10.2147/OTT.S199161 PMID: 31354305

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024