Computational Protein Design - Where it goes?
- Authors: Xu B.1, Chen Y.1, Xue W.1
-
Affiliations:
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University
- Issue: Vol 31, No 20 (2024)
- Pages: 2841-2854
- Section: Anti-Infectives and Infectious Diseases
- URL: https://medjrf.com/0929-8673/article/view/645206
- DOI: https://doi.org/10.2174/0929867330666230602143700
- ID: 645206
Cite item
Full Text
Abstract
Proteins have been playing a critical role in the regulation of diverse biological processes related to human life. With the increasing demand, functional proteins are sparse in this immense sequence space. Therefore, protein design has become an important task in various fields, including medicine, food, energy, materials, etc. Directed evolution has recently led to significant achievements. Molecular modification of proteins through directed evolution technology has significantly advanced the fields of enzyme engineering, metabolic engineering, medicine, and beyond. However, it is impossible to identify desirable sequences from a large number of synthetic sequences alone. As a result, computational methods, including data-driven machine learning and physics-based molecular modeling, have been introduced to protein engineering to produce more functional proteins. This review focuses on recent advances in computational protein design, highlighting the applicability of different approaches as well as their limitations.
About the authors
Binbin Xu
Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University
Email: info@benthamscience.net
Yingjun Chen
Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University
Email: info@benthamscience.net
Weiwei Xue
Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University
Author for correspondence.
Email: info@benthamscience.net
References
- Devries, M.C.; Phillips, S.M. Supplemental protein in support of muscle mass and health: Advantage whey. J. Food Sci., 2015, 80(S1)(Suppl. 1), A8-A15. doi: 10.1111/1750-3841.12802 PMID: 25757896
- Das, S.; Dawson, N.L.; Orengo, C.A. Diversity in protein domain superfamilies. Curr. Opin. Genet. Dev., 2015, 35, 40-49. doi: 10.1016/j.gde.2015.09.005 PMID: 26451979
- Boeckmann, B.; Blatter, M.C.; Famiglietti, L.; Hinz, U.; Lane, L.; Roechert, B.; Bairoch, A. Protein variety and functional diversity: Swiss-Prot annotation in its biological context. C. R. Biol., 2005, 328(10-11), 882-899. doi: 10.1016/j.crvi.2005.06.001 PMID: 16286078
- Cheng, L.; Fan, K.; Huang, Y.; Wang, D.; Leung, K.S. Full characterization of localization diversity in the human protein interactome. J. Proteome Res., 2017, 16(8), 3019-3029. doi: 10.1021/acs.jproteome.7b00306 PMID: 28707887
- Anfinsen, C.B. Principles that govern the folding of protein chains. Science, 1973, 181(4096), 223-230. doi: 10.1126/science.181.4096.223 PMID: 4124164
- Kuhlman, B.; Bradley, P. Advances in protein structure prediction and design. Nat. Rev. Mol. Cell Biol., 2019, 20(11), 681-697. doi: 10.1038/s41580-019-0163-x PMID: 31417196
- Huang, P.S.; Boyken, S.E.; Baker, D. The coming of age of de novo protein design. Nature, 2016, 537(7620), 320-327. doi: 10.1038/nature19946 PMID: 27629638
- Jones, D.T.; Singh, T.; Kosciolek, T.; Tetchner, S. MetaPSICOV: Combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins. Bioinformatics, 2015, 31(7), 999-1006. doi: 10.1093/bioinformatics/btu791 PMID: 25431331
- Mravic, M.; Thomaston, J.L.; Tucker, M.; Solomon, P.E.; Liu, L.; DeGrado, W.F. Packing of apolar side chains enables accurate design of highly stable membrane proteins. Science, 2019, 363(6434), 1418-1423. doi: 10.1126/science.aav7541 PMID: 30923216
- Silva, D.A.; Yu, S.; Ulge, U.Y.; Spangler, J.B.; Jude, K.M.; Labão-Almeida, C.; Ali, L.R.; Quijano-Rubio, A.; Ruterbusch, M.; Leung, I.; Biary, T.; Crowley, S.J.; Marcos, E.; Walkey, C.D.; Weitzner, B.D.; Pardo-Avila, F.; Castellanos, J.; Carter, L.; Stewart, L.; Riddell, S.R.; Pepper, M.; Bernardes, G.J.L.; Dougan, M.; Garcia, K.C.; Baker, D. De novo design of potent and selective mimics of IL-2 and IL-15. Nature, 2019, 565(7738), 186-191. doi: 10.1038/s41586-018-0830-7 PMID: 30626941
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242. doi: 10.1093/nar/28.1.235 PMID: 10592235
- Evans, R.; ONeill, M.; Pritzel, A.; Antropova, N.; Senior, A.; Green, T.; ídek, A.; Bates, R.; Blackwell, S.; Yim, J.; Ronneberger, O.; Bodenstein, S.; Zielinski, M.; Bridgland, A.; Potapenko, A.; Cowie, A.; Tunyasuvunakool, K.; Jain, R.; Clancy, E.; Kohli, P.; Jumper, J.; Hassabis, D. Protein complex prediction with AlphaFold-Multimer. bioRxiv, 2021. doi: 10.1101/2021.10.04.463034
- Yang, K.K.; Wu, Z.; Arnold, F.H. Machine-learning-guided directed evolution for protein engineering. Nat. Methods, 2019, 16(8), 687-694. doi: 10.1038/s41592-019-0496-6 PMID: 31308553
- Khoury, G.A.; Smadbeck, J.; Kieslich, C.A.; Floudas, C.A. Protein folding and de novo protein design for biotechnological applications. Trends Biotechnol., 2014, 32(2), 99-109. doi: 10.1016/j.tibtech.2013.10.008 PMID: 24268901
- Woolfson, D.N.; Bartlett, G.J.; Burton, A.J.; Heal, J.W.; Niitsu, A.; Thomson, A.R.; Wood, C.W. De novo protein design: How do we expand into the universe of possible protein structures? Curr. Opin. Struct. Biol., 2015, 33, 16-26. doi: 10.1016/j.sbi.2015.05.009 PMID: 26093060
- Gouw, M.; Michael, S.; Sámano-Sánchez, H.; Kumar, M.; Zeke, A.; Lang, B.; Bely, B.; Chemes, L.B.; Davey, N.E.; Deng, Z.; Diella, F.; Gürth, C.M.; Huber, A.K.; Kleinsorg, S.; Schlegel, L.S.; Palopoli, N.; Roey, K.V.; Altenberg, B.; Reményi, A.; Dinkel, H.; Gibson, T.J. The eukaryotic linear motif resource 2018 update. Nucleic Acids Res., 2018, 46(D1), D428-D434. doi: 10.1093/nar/gkx1077 PMID: 29136216
- Yang, J.; Zhang, Z.; Yang, F.; Zhang, H.; Wu, H.; Zhu, F.; Xue, W. Computational design and modeling of nanobodies toward SARS-CoV-2 receptor binding domain. Chem. Biol. Drug Des., 2021, 98(1), 1-18. doi: 10.1111/cbdd.13847 PMID: 33894099
- Zhang, Y.F.; Ho, M. Humanization of rabbit monoclonal antibodies via grafting combined Kabat/IMGT/Paratome complementarity-determining regions: Rationale and examples. MAbs, 2017, 9(3), 419-429. doi: 10.1080/19420862.2017.1289302 PMID: 28165915
- Carter, P.; Presta, L.; Gorman, C.M.; Ridgway, J.B.; Henner, D.; Wong, W.L.; Rowland, A.M.; Kotts, C.; Carver, M.E.; Shepard, H.M. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc. Natl. Acad. Sci. USA, 1992, 89(10), 4285-4289. doi: 10.1073/pnas.89.10.4285 PMID: 1350088
- Ewert, S.; Honegger, A.; Plückthun, A. Stability improvement of antibodies for extracellular and intracellular applications: CDR grafting to stable frameworks and structure-based framework engineering. Methods, 2004, 34(2), 184-199. doi: 10.1016/j.ymeth.2004.04.007 PMID: 15312672
- Liu, Y.; Kuhlman, B. RosettaDesign server for protein design. Nucleic Acids Res., 2006, 34(Issue suppl_2), W235-W235. doi: 10.1093/nar/gkl163
- Kuhlman, B.; Dantas, G.; Ireton, G.C.; Varani, G.; Stoddard, B.L.; Baker, D. Design of a novel globular protein fold with atomic-level accuracy. Science, 2003, 302(5649), 1364-1368. doi: 10.1126/science.1089427 PMID: 14631033
- Anand-Achim, N.; Eguchi, R.R.; Derry, A.; Altman, R.B.; Huang, P-S. Protein sequence design with a learned potential. biorxiv, 2020. doi: 10.1101/2020.01.06.895466
- Voigt, C.A.; Martinez, C.; Wang, Z.G.; Mayo, S.L.; Arnold, F.H. Protein building blocks preserved by recombination. Nat. Struct. Biol., 2002, 9(7), 553-558. doi: 10.1038/nsb805 PMID: 12042875
- McMahon, C.; Baier, A.S.; Pascolutti, R.; Wegrecki, M.; Zheng, S.; Ong, J.X.; Erlandson, S.C.; Hilger, D.; Rasmussen, S.G.F.; Ring, A.M.; Manglik, A.; Kruse, A.C. Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat. Struct. Mol. Biol., 2018, 25(3), 289-296. doi: 10.1038/s41594-018-0028-6 PMID: 29434346
- Lee, C.V.; Liang, W.C.; Dennis, M.S.; Eigenbrot, C.; Sidhu, S.S.; Fuh, G. High-affinity human antibodies from phage-displayed synthetic Fab libraries with a single framework scaffold. J. Mol. Biol., 2004, 340(5), 1073-1093. doi: 10.1016/j.jmb.2004.05.051 PMID: 15236968
- Fellouse, F.A.; Esaki, K.; Birtalan, S.; Raptis, D.; Cancasci, V.J.; Koide, A.; Jhurani, P.; Vasser, M.; Wiesmann, C.; Kossiakoff, A.A.; Koide, S.; Sidhu, S.S. High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries. J. Mol. Biol., 2007, 373(4), 924-940. doi: 10.1016/j.jmb.2007.08.005 PMID: 17825836
- Fellouse, F.A.; Barthelemy, P.A.; Kelley, R.F.; Sidhu, S.S. Tyrosine plays a dominant functional role in the paratope of a synthetic antibody derived from a four amino acid code. J. Mol. Biol., 2006, 357(1), 100-114. doi: 10.1016/j.jmb.2005.11.092 PMID: 16413576
- Jäckel, C.; Kast, P.; Hilvert, D. Protein design by directed evolution. Annu. Rev. Biophys., 2008, 37(1), 153-173. doi: 10.1146/annurev.biophys.37.032807.125832 PMID: 18573077
- Eijsink, V.G.H.; Gåseidnes, S.; Borchert, T.V.; van den Burg, B. Directed evolution of enzyme stability. Biomol. Eng., 2005, 22(1-3), 21-30. doi: 10.1016/j.bioeng.2004.12.003 PMID: 15857780
- Johannes, T.W.; Zhao, H. Directed evolution of enzymes and biosynthetic pathways. Curr. Opin. Microbiol., 2006, 9(3), 261-267. doi: 10.1016/j.mib.2006.03.003 PMID: 16621678
- Xu, Y.; Verma, D.; Sheridan, R.P.; Liaw, A.; Ma, J.; Marshall, N.M.; McIntosh, J.; Sherer, E.C.; Svetnik, V.; Johnston, J.M. Deep dive into machine learning models for protein engineering. J. Chem. Inf. Model., 2020, 60(6), 2773-2790. doi: 10.1021/acs.jcim.0c00073 PMID: 32250622
- Chen, T.R.; Juan, S.H.; Huang, Y.W.; Lin, Y.C.; Lo, W.C. A secondary structure-based position-specific scoring matrix applied to the improvement in protein secondary structure prediction. PLoS One, 2021, 16(7), e0255076. doi: 10.1371/journal.pone.0255076 PMID: 34320027
- Xiaotong Lin; Xue-Wen Chen; Chen, X.W. On position-specific scoring matrix for protein function prediction. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2011, 8(2), 308-315. doi: 10.1109/TCBB.2010.93 PMID: 20855926
- Seeger, M. Gaussian processes for machine learning. Int. J. Neural Syst., 2004, 14(2), 69-106. doi: 10.1142/S0129065704001899 PMID: 15112367
- Romero, P.A.; Krause, A.; Arnold, F.H. Navigating the protein fitness landscape with Gaussian processes. Proc. Natl. Acad. Sci. USA, 2013, 110(3), E193-E201. doi: 10.1073/pnas.1215251110 PMID: 23277561
- Bedbrook, C.N.; Yang, K.K.; Robinson, J.E.; Mackey, E.D.; Gradinaru, V.; Arnold, F.H. Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics. Nat. Methods, 2019, 16(11), 1176-1184. doi: 10.1038/s41592-019-0583-8 PMID: 31611694
- Gao, W.; Mahajan, S.P.; Sulam, J.; Gray, J.J. Deep learning in protein structural modeling and design. Patterns, 2020, 1(9), 100142. doi: 10.1016/j.patter.2020.100142 PMID: 33336200
- Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; ídek, A.; Nelson, A.W.R.; Bridgland, A.; Penedones, H.; Petersen, S.; Simonyan, K.; Crossan, S.; Kohli, P.; Jones, D.T.; Silver, D.; Kavukcuoglu, K.; Hassabis, D. Improved protein structure prediction using potentials from deep learning. Nature, 2020, 577(7792), 706-710. doi: 10.1038/s41586-019-1923-7 PMID: 31942072
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; ídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873), 583-589. doi: 10.1038/s41586-021-03819-2 PMID: 34265844
- Frappier, V.; Keating, A.E. Data-driven computational protein design. Curr. Opin. Struct. Biol., 2021, 69, 63-69. doi: 10.1016/j.sbi.2021.03.009 PMID: 33910104
- N., Anand; Huang, P. Generative modeling for protein structures. NIPS'18: Proceedings of the 32nd International Conference on Neural Information Processing Systems., 2018, pp. 7505-7516.
- Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; ídek, A.; Nelson, A.W.R.; Bridgland, A.; Penedones, H.; Petersen, S.; Simonyan, K.; Crossan, S.; Kohli, P.; Jones, D.T.; Silver, D.; Kavukcuoglu, K.; Hassabis, D. Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13). Proteins, 2019, 87(12), 1141-1148. doi: 10.1002/prot.25834 PMID: 31602685
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw., 1989, 2(5), 359-366. doi: 10.1016/0893-6080(89)90020-8
- Anishchenko, I.; Pellock, S.J.; Chidyausiku, T.M.; Ramelot, T.A.; Ovchinnikov, S.; Hao, J.; Bafna, K.; Norn, C.; Kang, A.; Bera, A.K.; DiMaio, F.; Carter, L.; Chow, C.M.; Montelione, G.T.; Baker, D. De novo protein design by deep network hallucination. Nature, 2021, 600(7889), 547-552. doi: 10.1038/s41586-021-04184-w PMID: 34853475
- Anand, N.; Eguchi, R.; Mathews, I.I.; Perez, C.P.; Derry, A.; Altman, R.B.; Huang, P.S. Protein sequence design with a learned potential. Nat. Commun., 2022, 13(1), 746. doi: 10.1038/s41467-022-28313-9 PMID: 35136054
- Strokach, A.; Becerra, D.; Corbi-Verge, C.; Perez-Riba, A.; Kim, P.M. Fast and flexible protein design using deep graph neural networks. Cell Syst., 2020, 11(4), 402-411.e4. doi: 10.1016/j.cels.2020.08.016 PMID: 32971019
- Xie, J.J.; Xu, B.; Zhang, C. Horizontal and vertical ensemble with deep representation for classfication. eprint arXiv, 2013.
- Dvornik, N.; Mairal, J.; Schmid, C. Diversity with Cooperation: Ensemble Methods for Few-Shot Classification. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 3722-3730.
- Cao, Y.; Geddes, T.A.; Yang, J.Y.H.; Yang, P. Ensemble deep learning in bioinformatics. Nat. Mach. Intell., 2020, 2(9), 500-508. doi: 10.1038/s42256-020-0217-y
- Ju, C.; Bibaut, A.; van der Laan, M. The relative performance of ensemble methods with deep convolutional neural networks for image classification. J. Appl. Stat., 2018, 45(15), 2800-2818. doi: 10.1080/02664763.2018.1441383 PMID: 31631918
- Madani, A.; Krause, B.; Greene, E.R.; Subramanian, S.; Mohr, B.P.; Holton, J.M.; Olmos, J.L., Jr; Xiong, C.; Sun, Z.Z.; Socher, R.; Fraser, J.S.; Naik, N. Large language models generate functional protein sequences across diverse families. Nat. Biotechnol., 2023, 1-8. doi: 10.1038/s41587-022-01618-2 PMID: 36702895
- Russ, W.P.; Figliuzzi, M.; Stocker, C.; Barrat-Charlaix, P.; Socolich, M.; Kast, P.; Hilvert, D.; Monasson, R.; Cocco, S.; Weigt, M.; Ranganathan, R. An evolution-based model for designing chorismate mutase enzymes. Science, 2020, 369(6502), 440-445. doi: 10.1126/science.aba3304 PMID: 32703877
- Endelman, J.B.; Silberg, J.J.; Wang, Z.G.; Arnold, F.H. Site-directed protein recombination as a shortest-path problem. Protein Eng. Des. Sel., 2004, 17(7), 589-594. doi: 10.1093/protein/gzh067 PMID: 15331774
- Bedbrook, C.N.; Rice, A.J.; Yang, K.K.; Ding, X.; Chen, S.; LeProust, E.M.; Gradinaru, V.; Arnold, F.H. Structure-guided SCHEMA recombination generates diverse chimeric channelrhodopsins. Proc. Natl. Acad. Sci. USA, 2017, 114(13), E2624-E2633. doi: 10.1073/pnas.1700269114 PMID: 28283661
- Silva, D.A.; Correia, B.E.; Procko, E. Motif-driven design of proteinprotein interfaces. Methods Mol. Biol., 2016, 1414, 285-304. doi: 10.1007/978-1-4939-3569-7_17 PMID: 27094298
- Procko, E.; Berguig, G.Y.; Shen, B.W.; Song, Y.; Frayo, S.; Convertine, A.J.; Margineantu, D.; Booth, G.; Correia, B.E.; Cheng, Y.; Schief, W.R.; Hockenbery, D.M.; Press, O.W.; Stoddard, B.L.; Stayton, P.S.; Baker, D. A computationally designed inhibitor of an Epstein-Barr viral Bcl-2 protein induces apoptosis in infected cells. Cell, 2014, 157(7), 1644-1656. doi: 10.1016/j.cell.2014.04.034 PMID: 24949974
- Kim, J.W.; Kim, S.; Lee, H.; Cho, G.; Kim, S.C.; Lee, H.; Jin, M.S.; Lee, J.O. Application of antihelix antibodies in protein structure determination. Proc. Natl. Acad. Sci. USA, 2019, 116(36), 17786-17791. doi: 10.1073/pnas.1910080116 PMID: 31371498
- Yang, C.; Sesterhenn, F.; Bonet, J.; van Aalen, E.A.; Scheller, L.; Abriata, L.A.; Cramer, J.T.; Wen, X.; Rosset, S.; Georgeon, S.; Jardetzky, T.; Krey, T.; Fussenegger, M.; Merkx, M.; Correia, B.E. Bottom-up de novo design of functional proteins with complex structural features. Nat. Chem. Biol., 2021, 17(4), 492-500. doi: 10.1038/s41589-020-00699-x PMID: 33398169
- Sesterhenn, F.; Yang, C.; Bonet, J.; Cramer, J.T.; Wen, X.; Wang, Y.; Chiang, C.I.; Abriata, L.A.; Kucharska, I.; Castoro, G.; Vollers, S.S.; Galloux, M.; Dheilly, E.; Rosset, S.; Corthésy, P.; Georgeon, S.; Villard, M.; Richard, C.A.; Descamps, D.; Delgado, T.; Oricchio, E.; Rameix-Welti, M.A.; Más, V.; Ervin, S.; Eléouët, J.F.; Riffault, S.; Bates, J.T.; Julien, J.P.; Li, Y.; Jardetzky, T.; Krey, T.; Correia, B.E. De novo protein design enables the precise induction of RSV-neutralizing antibodies. Science, 2020, 368(6492), eaay5051. doi: 10.1126/science.aay5051 PMID: 32409444
- Bonet, J.; Wehrle, S.; Schriever, K.; Yang, C.; Billet, A.; Sesterhenn, F.; Scheck, A.; Sverrisson, F.; Veselkova, B.; Vollers, S.; Lourman, R.; Villard, M.; Rosset, S.; Krey, T.; Correia, B.E. Rosetta FunFolDes A general framework for the computational design of functional proteins. PLOS Comput. Biol., 2018, 14(11), e1006623. doi: 10.1371/journal.pcbi.1006623 PMID: 30452434
- Huang, P.S.; Ban, Y.E.A.; Richter, F.; Andre, I.; Vernon, R.; Schief, W.R.; Baker, D. RosettaRemodel: A generalized framework for flexible backbone protein design. PLoS One, 2011, 6(8), e24109. doi: 10.1371/journal.pone.0024109 PMID: 21909381
- Wood, C.W.; Heal, J.W.; Thomson, A.R.; Bartlett, G.J.; Ibarra, A.Á.; Brady, R.L.; Sessions, R.B.; Woolfson, D.N. ISAMBARD: An open-source computational environment for biomolecular analysis, modelling and design. Bioinformatics, 2017, 33(19), 3043-3050. doi: 10.1093/bioinformatics/btx352 PMID: 28582565
- Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; Millán, C.; Park, H.; Adams, C.; Glassman, C.R.; DeGiovanni, A.; Pereira, J.H.; Rodrigues, A.V.; van Dijk, A.A.; Ebrecht, A.C.; Opperman, D.J.; Sagmeister, T.; Buhlheller, C.; Pavkov-Keller, T.; Rathinaswamy, M.K.; Dalwadi, U.; Yip, C.K.; Burke, J.E.; Garcia, K.C.; Grishin, N.V.; Adams, P.D.; Read, R.J.; Baker, D. Accurate prediction of protein structures and interactions using a three-track neural network. Science, 2021, 373(6557), 871-876. doi: 10.1126/science.abj8754 PMID: 34282049
- Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; Smetanin, N.; Verkuil, R.; Kabeli, O.; Shmueli, Y.; dos Santos Costa, A.; Fazel-Zarandi, M.; Sercu, T.; Candido, S.; Rives, A. Evolutionary-scale prediction of atomic level protein structure with a language model. bioRxiv, 2022. doi: 10.1101/2022.07.20.500902
- Wu, R.; Ding, F.; Wang, R.; Shen, R.; Zhang, X.; Luo, S.; Su, C.; Wu, Z.; Xie, Q.; Berger, B.; Ma, J.; Peng, J. High-resolution de novo structure prediction from primary sequence. bioRxiv, 2022. doi: 10.1101/2022.07.21.500999
- Yang, J.; Anishchenko, I.; Park, H.; Peng, Z.; Ovchinnikov, S.; Baker, D. Improved protein structure prediction using predicted interresidue orientations. Proc. Natl. Acad. Sci. USA, 2020, 117(3), 1496-1503. doi: 10.1073/pnas.1914677117 PMID: 31896580
- Xue, W.; Wang, P.; Li, B.; Li, Y.; Xu, X.; Yang, F.; Yao, X.; Chen, Y.Z.; Xu, F.; Zhu, F. Identification of the inhibitory mechanism of FDA approved selective serotonin reuptake inhibitors: An insight from molecular dynamics simulation study. Phys. Chem. Chem. Phys., 2016, 18(4), 3260-3271. doi: 10.1039/C5CP05771J PMID: 26745505
- Zheng, G.; Xue, W.; Yang, F.; Zhang, Y.; Chen, Y.; Yao, X.; Zhu, F. Revealing vilazodones binding mechanism underlying its partial agonism to the 5-HT1A receptor in the treatment of major depressive disorder. Phys. Chem. Chem. Phys., 2017, 19(42), 28885-28896. doi: 10.1039/C7CP05688E PMID: 29057413
- Xue, W.; Wang, P.; Tu, G.; Yang, F.; Zheng, G.; Li, X.; Li, X.; Chen, Y.; Yao, X.; Zhu, F. Computational identification of the binding mechanism of a triple reuptake inhibitor amitifadine for the treatment of major depressive disorder. Phys. Chem. Chem. Phys., 2018, 20(9), 6606-6616. doi: 10.1039/C7CP07869B PMID: 29451287
- Xue, W.; Yang, F.; Wang, P.; Zheng, G.; Chen, Y.; Yao, X.; Zhu, F. What contributes to serotoninnorepinephrine reuptake inhibitors dual-targeting mechanism? the key role of transmembrane domain 6 in human berotonin and norepinephrine transporters revealed by molecular dynamics simulation. ACS Chem. Neurosci., 2018, 9(5), 1128-1140. doi: 10.1021/acschemneuro.7b00490 PMID: 29300091
- Du, Q.; Qian, Y.; Xue, W. Molecular simulation of oncostatin M and receptor (OSMOSMR) interaction as a potential therapeutic target for inflammatory bowel disease. Front. Mol. Biosci., 2020, 7, 29. doi: 10.3389/fmolb.2020.00029 PMID: 32195265
- Xue, W.; Fu, T.; Deng, S.; Yang, F.; Yang, J.; Zhu, F. Molecular mechanism for the allosteric inhibition of the human serotonin transporter by antidepressant escitalopram. ACS Chem. Neurosci., 2022, 13(3), 340-351. doi: 10.1021/acschemneuro.1c00694 PMID: 35041375
- Filipe, H.A.L.; Loura, L.M.S. Molecular dynamics simulations: Advances and applications. Molecules, 2022, 27(7), 2105. doi: 10.3390/molecules27072105 PMID: 35408504
- Wang, X.; Li, F.; Qiu, W.; Xu, B.; Li, Y.; Lian, X.; Yu, H.; Zhang, Z.; Wang, J.; Li, Z.; Xue, W.; Zhu, F. SYNBIP: Synthetic binding proteins for research, diagnosis and therapy. Nucleic Acids Res., 2022, 50(D1), D560-D570. doi: 10.1093/nar/gkab926 PMID: 34664670
- Eastman, P.; Behara, P.K.; Dotson, D.L.; Galvelis, R.; Herr, J.E.; Horton, J.T.; Mao, Y.; Chodera, J.D.; Pritchard, B.P.; Wang, Y.; De Fabritiis, G.; Markland, T.E. SPICE, A dataset of drug-like molecules and peptides for training machine learning potentials. Sci. Data, 2023, 10(1), 11. doi: 10.1038/s41597-022-01882-6 PMID: 36599873
Supplementary files
